Acids, Bases and Buffers

Mr. Pankaj Kusum Ramdas Khuspe M. Pharma (Pharmaceutics)

VPC, Kalyan

Acids, Bases are defined by Four main theories,

a)Traditional theory / concept
b)Arrhenius theory
c)Bronsted and Lowry theory
d) Lewis theory

Traditional theory / concept : i) Acid: are the substance Which converts blue litmus paper to red \blacktriangleright Having the P^H <7 Sour taste React with bases to form salts and water Eg :- Hydrochloric acid (HCl)

ii) **Base**: are the substance Which converts red litmus paper to

blue

> Having the P^H >7

- Bitter taste
- React with Acids to form salts and

water

Eg: Sodium Hydroxide (NaOH)

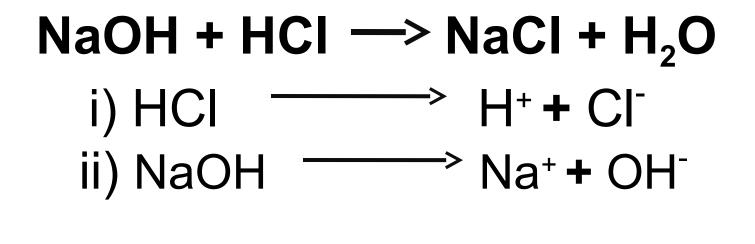
Arrhenius theory: In 1884 of Svante Arrhenius Also known as, a)Arrhenius theory of ionization b)Electron dissociation theory

This theory define acids & bases according to there formation of ions when dissolved in water

"An Acid is a substance that can release hydrogen ion (H+) when dissolved in water"

(OR)

"A substance which when dissolved in water gives hydrogen ions (H⁺) is known as acid" Eg: Hydrochloric acid. $HCI PC KAMAA H^+ + CI^-$


"A Base is a substance that can release a Hydroxyl ion (OH⁻) when dissolved in water"

(OR)

"A substance which when dissolved in water gives Hydroxyl ion (OH⁻)is known as acid" Eg : Sodium Hydroxide NaOH

Neutralization reaction Acid react Base Salt & Water Eg: Hydrochloric acid react sodium hydroxide Sodium chloride (Salt) & water $NaOH + HCI \longrightarrow NaCI + H_2O$ (Acid)_{PC. Kalvan} (Salt) (base)

According to Arrhenius theory, "Neutralization as the process in which hydrogen ion and hydroxyl ion combine to form unionized molecule or water"

Limitations:

Water is essential

 Not explain acidity or basisity of non aqueous Solvent Eg :benzene
 Basisity of Ammonia (No OH⁻ ion)

is not explained Acidity of BF₃, AlCl₃ (No H⁺ ion) is not explained VPC, Kalyan

Acidity of oxides of P block element (CO₂) is not explained **Basisity of oxides of S block** element (Na₂o) is not explained Neutralization with out absence of solvent is not explained

Boric Acid, > Hydrochloric acid, Strong ammonium hydroxide, Calcium hydroxide, Sodium hydroxide.

Boric Acid H₃BO₃ / 61.83

<u>Syn</u>: Orthoboric Acid, Aecidium boricum <u>MOP</u>:-

Borax with Sulphuric acid in presence of water

 $Na_2B_4O_7 + H_2SO_4 + 5H_2O$ $4H_3BO_3 + Na_2SO_4$

Properties :-

a) **Physical Properties**:

- White crystalline powder
- Odorless
- Soluble in water
- Soluble in Ethanol
- Soluble in glycerin

b) Chemical Properties:

a) Reaction with turmeric paper: Boric acid turn into brown color

b) Reaction with glycerin: Boric acid + glycerin dissolve

VPC, Kalyan

c) Action on heating :-

Boric acid (H_3BO_3) ↓ 100°C Metaboric acid (HBO₂) Tetra boric acid $(H_2B_4O_7)$ Up to red hot Boron trioxide (B_2O_3)

<u>Uses</u>:

- Local anti-infective
- ➢To maintain acidic p^H medium in Medicament
- Preparation of buffer solution
- In ophthalmic preparation
- Dusting powder
- Preparation of ointement

"It should be stored in well closed container at a cool Place."

Hydrochloric Acid HCI / 36.46

Syn: spirit of salt, muriatic acid, acidium hydrochloricum

<u>MOP</u>:-

Conc.Sulphuric acid react with sodium chloride NaCl + $H_2SO_4 \longrightarrow HCl + NaHSO_4$

Properties :-

a) Physical Properties:

- Clear colorless liquid
- Pungent odour
- Miscible with water
- Miscible with alcohol
- fuming liquid

b) Chemical Properties:-

i)Reaction with metals :

hydrochloric acid react with sodium gives sodium chloride & evolution of hydrogen gas.

$2Na + 2HCI \longrightarrow 2NaCI + H_2$

ii)Reaction with alkali :

hydrochloric acid react with sodium hydroxide gives sodium chloride & water

HCI + NaOH \longrightarrow NaCI+ H₂O

1)As a pharmaceutical aid (acidifying agent)

2)Solvent in industry

3)For manufacturing of basic pharmaceuticals

4)Reagent in Laboratory

VPC, Kalyan

Storage

" It should be stored in well closed container of glass at a temperature not exceeding 30°C"

Strong ammonium hydroxide NH₃ / 17.03

Syn: Ammonia solution, ammonium hydroxide, strong ammonium water, liquor ammoniae forties MOP:-

By mixing ammonium chloride with slaked lime

 $NH_4CI + Ca(OH)_2 \longrightarrow NH_4OH + CaCl_2$

Properties :-

a)Physical Properties:

- Clear colorless liquid
- Pungent odour
- Characteristic taste
- Miscible with water
- Aqueous solution is strongly alkaline in nature

b) Chemical Properties:-

i) Reaction with acid : React with acid it form salts and water

$NH_4OH + HCI \longrightarrow NH_4CI + H_2O$

ii) Reaction with cations : React with acid it form complex

Alkalizing agent

- Reflux stimulant (fainted person)
- Vaso constrictor
- Strong base
- Antacid
- Reagent in Laboratory

Storage

"It should be stored in well closed amber colored container with a rubber stopper at a cool Place."

Incompatibility

- With iodine (Explosive compound)
- heavy metals, silver salts and tannins

Calcium hydroxide Ca(OH)₂ / 74.10

Synonym: slaked lime, lime water

<u>MOP</u>:-

by treating calcium chloride with sodium hydroxide

 $CaCl_2 + 2NaOH \longrightarrow Ca(OH)_2 + 2NaCl$

a)Physical Properties:

White amorphous powder
 Slight bitter taste
 Slightly soluble in water
 Insoluble in alcohol
 Soluble in glycerin

b) Chemical Properties:-

i)Reaction with hydrochloric acid :

On Reaction with hydrochloric acid gives calcium chloride and water

$$Ca(OH)_2 + 2HCI \longrightarrow CaCl_2 + 2H_2O$$

ii) Effect of heating :On strongly heating it looses water and converted into calcium oxide

$$Ca(OH)_2 \longrightarrow Cao + H_2O$$

VPC, Kalyan

<u>Uses</u>:

- Antacid
- Astringent
- Fluid electrolyte
- Emulsifying agent
- Absorb carbon dioxide
- Making of glass
- White washing of cloth

" It should be stored in air tight container at a cool Place."

Sodium hydroxide NaOH / 40

<u>Syn</u>: Caustic soda, soda lye MOP:

By treating sodium carbonate with lime water Na,CO, + Ca(OH), →2NaOH + CaCO,

Properties :a)Physical Properties:

- ➢White amorphous pellets
- Slight bitter taste
- Soluble in water
- Soluble in alcohol

Soluble in glycerin
 Deliquescent in nature

b) Chemical Properties:i)Reaction with HCl : Sodium hydroxide react with Hydrochloric acid gives sodium chloride & water $HCI + NaOH \longrightarrow NaCI + H_2O$

ii) Reaction with carbon dioxide:It absorb carbon dioxide from air to form sodium carbonate

$2NaOH + CO_2 \longrightarrow Na_2CO_3 + H_2O$

Uses:

- > Alkalizing agent
- > Disinfectant for animal houses
- > For preparation of soap
- > Absorb CO₂ gas
- > Common laboratory reagent

"It should be stored in air tight container at a cool Place."

Common Properties H_3BO_3 , HCl, NH₃, Ca(OH)₂ & NaOH Colorless or white color HCl & NH₃ : Liquid H₃BO₃, Ca(OH)₂, NaOH : Solid

- characteristic odor
- Soluble in water
- Soluble in alcohol

(expect calcium hydroxide)

For more enquiries and quarries feel free to contact: Pankaj Khuspe:

Call & What's app

+919561713783

khuspepankaj@gmail.com

www.facebook.com/pankajkhuspe

