
1.1

1.2

1.2.1

1.2.1.1

1.2.1.2

1.2.2

1.2.2.1

1.2.3

1.2.3.1

1.2.3.2

1.3

1.3.1

1.3.1.1

1.3.1.2

1.3.1.3

1.3.1.4

1.3.1.5

1.4

1.4.1

1.4.1.1

1.4.1.2

1.4.2

1.4.2.1

1.4.2.2

1.5

1.5.1

1.5.1.1

1.5.2

1.5.2.1

1.5.3

Table	of	Contents
Introduction

Unit	1:	Expand	the	user	experience

Lesson	1:	Fragments

1.1:	Creating	a	Fragment	with	a	UI

1.2:	Communicating	with	a	Fragment

Lesson	2:	App	widgets

2.1:	Building	app	widgets

Lesson	3:	Sensors

3.1:	Working	with	sensor	data

3.2:	Working	with	sensor-based	orientation

Unit	2:	Make	your	apps	fast	and	small

Lesson	4:	Performance

4.1A:	Using	the	Profile	GPU	Rendering	tool

4.1B:	Using	the	Debug	GPU	Overdraw	and	Layout	Inspector	tools

4.1C:	Using	the	Systrace	and	dumpsys	tools

4.2:	Using	the	Memory	Profiler	tool

4.3:	Optimizing	network,	battery,	and	image	use

Unit	3:	Make	your	apps	accessible

Lesson	5:	Localization

5.1:	Using	resources	for	languages

5.2:	Using	the	locale	to	format	information

Lesson	6:	Accessibility

6.1:	Exploring	accessibility	in	Android

6.2:	Creating	accessible	apps

Unit	4:	Add	geo	features	to	your	apps

Lesson	7:	Location

7.1:	Using	the	device	location

Lesson	8:	Places

8.1:	Using	the	Places	API

Lesson	9:	Mapping

1

1.5.3.1

1.6

1.6.1

1.6.1.1

1.6.1.2

1.6.2

1.6.2.1

1.6.2.2

1.6.2.3

1.6.2.4

1.6.3

1.6.3.1

1.6.4

1.6.4.1

1.7

1.7.1

1.7.1.1

1.7.1.2

1.8

1.8.1

1.8.2

9.1:	Adding	a	Google	Map	to	your	app

Unit	5:	Advanced	graphics	and	views

Lesson	10:	Custom	views

10.1A:	Creating	a	custom	view	from	a	View	subclass

10.1B:	Creating	a	custom	view	from	scratch

Lesson	11:	Canvas

11.1A:	Creating	a	simple	Canvas	object

11.1B:	Drawing	on	a	Canvas	object

11.1C:	Applying	clipping	to	a	Canvas	object

11.2:	Creating	a	SurfaceView	object

Lesson	12:	Animations

12.1:	Creating	property	animations

Lesson	13:	Media

13.1:	Playing	video	with	VideoView

Unit	6:	Working	with	Architecture	Components

Lesson	14:	Room,	LiveData,	ViewModel

14.1A:	Room,	LiveData,	ViewModel

14.1B:	Deleting	and	updating	data	with	Room

Appendix

Appendix:	Setup

Appendix:	Homework

2

Advanced	Android	Development	—	Practicals
This	is	the	hands-on	practical	workbook	for	Advanced	Android	Development,	a	training
course	created	by	the	Google	Developers	Training	team.	This	course	builds	on	the	skills	you
learned	in	the	Android	Developer	Fundamentals	course.

This	course	is	intended	to	be	taught	in	a	classroom,	but	all	the	materials	are	available	online,
so	if	you	like	to	learn	by	yourself,	go	ahead!

Prerequisites

The	Advanced	Android	Development	course	is	intended	for	experienced	developers	who
have	Java	programming	experience	and	know	the	fundamentals	of	how	to	build	an	Android
app	using	the	Java	programming	language.	This	course	assumes	you	have	mastered	the
topics	in	Units	1	to	4	of	the	Android	Developer	Fundamentals	course.

Specifically,	this	course	assumes	you	know	how	to:

Install	and	use	Android	Studio
Run	apps	from	Android	Studio	on	both	a	device	and	an	emulator
Create	and	use		Activity		instances
Use		View		instances	to	create	your	app's	user	interface
Enable	interaction	through	click	handlers
Create	layouts	using	the	Android	Studio	layout	editor
Create	and	use		RecyclerView		and		Adapter		classes
Run	tasks	in	the	background
Save	data	in	Android	shared	preferences
Save	data	in	a	local	SQL	database

Course	materials

The	course	materials	include:

This	practical	workbook,	which	guides	you	through	creating	Android	apps	to	practice
and	perfect	the	skills	you're	learning
A	concept	reference:	Advanced	Android	Development—Concepts
Slide	decks	for	optional	use	by	instructors
Source	code	in	GitHub	for	apps	that	you	create	during	the	practical	exercises

Get	ready	for	this	course

Introduction

3

https://developers.google.com/training/courses/android-advanced
https://developers.google.com/training/courses/android-fundamentals
https://www.gitbook.com/book/google-developer-training/android-developer-advanced-course-concepts/details
https://drive.google.com/corp/drive/folders/1MRqvBGEDtNtpDyKd8sulMJreFCz1JxgC
https://github.com/google-developer-training/android-advanced

The	practicals	in	this	book	assume	that	you	are	using	the	latest	version	of	Android	Studio.
Some	of	the	practicals	require	at	least	Android	Studio	3.0.

See	Appendix:	Setup	for	details.

What	topics	are	covered?

Unit	1:	Expand	the	user	experience

Lesson	1:	Fragments

Create	a	fragment	that	has	its	own	UI,	and	enable	your	activities	to	communicate	with
fragments.

Lesson	2:	App	widgets

Create	and	update	app	widgets.

Lesson	3:	Sensors

Learn	how	to	work	with	sensor	data	and	build	an	app	that	detects	and	responds	to	device
orientation.

Unit	2:	Make	your	apps	fast	and	small

Lesson	4:	Performance

Learn	how	to	detect	and	analyze	your	app's	performance	using	tools	like	these:

Profile	GPU	Rendering
Debug	GPU	Overdraw	and	Layout	Inspector
Systrace	and	dumpsys
Memory	Profiler
Tools	to	improve	the	efficiency	of	your	networking,	battery	use,	and	data	compression

Unit	3:	Make	your	apps	accessible

Lesson	5:	Localization

Use	resources	for	different	languages,	and	use	the	device	locale	to	format	information.

Lesson	6:	Accessibility

Explore	accessibility	in	Android,	and	learn	how	to	make	your	app	more	usable	for	users	who
use	Google	TalkBack.

Introduction

4

https://google-developer-training.gitbooks.io/android-developer-advanced-course-practicals/content/appendix/appendix-setup/appendix-setup.html

Unit	4:	Add	geo	features	to	your	apps

Lesson	7:	Location

Enable	your	app	to	detect	and	update	the	device's	current	location.

Lesson	8:	Places

Use	the	Places	API	to	detect	the	user's	location	and	offer	a	"picker"	showing	local	places.

Lesson	9:	Mapping

Add	a	Google	Map	to	your	app.

Unit	5:	Advanced	graphics	and	views

Lesson	10:	Custom	views

Create	a	custom	view	based	on	an	existing		View		class,	then	create	a	custom	view	from
scratch.

Lesson	11:	Canvas

Create	a	simple		Canvas		object,	then	draw	on	the	canvas	and	apply	clipping	regions	to	it.
Use	a		SurfaceView		object	to	draw	to	the	screen	outside	of	the	main	UI	thread.

Lesson	12:	Animations

Learn	how	use	property	animations	to	define	an	animation	to	change	an	object	property.

Developed	by	the	Google	Developers	Training	Team

Last	updated:	October	2017

Introduction

5

This	work	is	licensed	under	a	Creative	Commons	Attribution	4.0	International	License

Introduction

6

1.1:	Creating	a	Fragment	with	a	UI
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Include	a	fragment	for	an	activity's	entire	lifecycle
Task	1	solution	code
Coding	challenge
Task	2.	Add	a	fragment	to	an	activity	dynamically
Task	2	solution	code
Summary
Related	concept
Learn	more

A		Fragment		is	a	self-contained	component	with	its	own	user	interface	(UI)	and	lifecycle	that
can	be	reused	in	different	parts	of	an	app's	UI.	(A		Fragment		can	also	be	used	without	a	UI,
in	order	to	retain	values	across	configuration	changes,	but	this	lesson	does	not	cover	that
usage.)

A		Fragment		can	be	a	static	part	of	the	UI	of	an		Activity	,	which	means	that	the		Fragment	
remains	on	the	screen	during	the	entire	lifecycle	of	the		Activity	.	However,	the	UI	of	an
	Activity		may	be	more	effective	if	it	adds	or	removes	the		Fragment		dynamically	while	the
	Activity		is	running.

One	example	of	a	dynamic		Fragment		is	the		DatePicker		object,	which	is	an	instance	of
	DialogFragment	,	a	subclass	of		Fragment	.	The	date	picker	displays	a	dialog	window	floating
on	top	of	its		Activity		window	when	a	user	taps	a	button	or	an	action	occurs.	The	user	can

Introduction

7

http://developer.android.com/guide/components/fragments.html
https://developer.android.com/reference/android/widget/DatePicker.html
https://developer.android.com/reference/android/support/v4/app/DialogFragment.html
https://developer.android.com/reference/android/app/Fragment.html

click	OK	or	Cancel	to	close	the		Fragment	.	

This	practical	introduces	the		Fragment		class	and	shows	you	how	to	include	a		Fragment		as
a	static	part	of	a	UI,	as	well	as	how	to	use		Fragment		transactions	to	add,	replace,	or	remove
a		Fragment		dynamically.

What	you	should	already	KNOW
You	should	be	able	to:

Create	and	run	apps	in	Android	Studio.
Use	the	layout	editor	to	create	a	UI	with	a		ConstraintLayout	.
Inflate	the	UI	layout	for	an		Activity	.
Add	a	set	of	radio	buttons	with	a	listener	to	a	UI.

What	you	will	LEARN
You	will	learn	how	to:

Create	a		Fragment		with	an	interactive	UI.
Add	a		Fragment		to	the	layout	of	an		Activity	.

Introduction

8

https://developer.android.com/reference/android/app/Fragment.html

Add,	replace,	and	remove	a		Fragment		while	an		Activity		is	running.

What	you	will	DO
Create	a		Fragment		to	use	as	a	UI	element	that	gives	users	a	"yes"	or	"no"	choice.
Add	interactive	elements	to	the		Fragment		that	enable	the	user	to	choose	"yes"	or	"no".
Include	the		Fragment		for	the	duration	of	an		Activity	.
Use		Fragment		transactions	to	add,	replace,	and	remove	a		Fragment		while	an
	Activity		is	running.

App	overview
The	FragmentExample1	app	shows	an	image	and	the	title	and	text	of	a	magazine	article.	It
also	shows	a		Fragment		that	enables	users	to	provide	feedback	for	the	article.	In	this	case
the	feedback	is	very	simple:	just	"Yes"	or	"No"	to	the	question	"Like	the	article?"	Depending
on	whether	the	user	gives	positive	or	negative	feedback,	the	app	displays	an	appropriate
response.

The		Fragment		is	skeletal,	but	it	demonstrates	how	to	create	a		Fragment		to	use	in	multiple
places	in	your	app's	UI.

In	the	first	task,	you	add	the		Fragment		statically	to	the		Activity		layout	so	that	it	is	displayed
for	the	entire	duration	of	the		Activity		lifecycle.	The	user	can	interact	with	the	radio	buttons
in	the		Fragment		to	choose	either	"Yes"	or	"No,"	as	shown	in	the	figure	above.

If	the	user	chooses	"Yes,"	the	text	in	the		Fragment		changes	to	"Article:	Like."

Introduction

9

https://github.com/google-developer-training/android-advanced/tree/master/FragmentExample1

If	the	user	chooses	"No,"	the	text	in	the		Fragment		changes	to	"Article:	Thanks."

In	the	second	task,	in	which	you	create	the	FragmentExample2	app,	you	add	the		Fragment	
dynamically	—	your	code	adds,	replaces,	and	removes	the		Fragment		while	the		Activity		is
running.	You	will	change	the		Activity		code	and	layout	to	do	this.

As	shown	below,	the	user	can	tap	the	Open	button	to	show	the		Fragment		at	the	top	of	the
screen.	The	user	can	then	interact	with	the	UI	elements	in	the		Fragment	.	The	user	taps
Close	to	close	the		Fragment	.

Task	1.	Include	a	Fragment	for	the	entire
Activity	lifecycle
In	this	task	you	modify	a	starter	app	to	add	a		Fragment		statically	as	a	part	of	the	layout	of	the
	Activity	,	which	means	that	the		Fragment		is	shown	during	the	entire	lifecycle	of	the
	Activity	.	This	is	a	useful	technique	for	consolidating	a	set	of	UI	elements	(such	as	radio
buttons	and	text)	and	user	interaction	behavior	that	you	can	reuse	in	layouts	for	other
activities.

Introduction

10

https://github.com/google-developer-training/android-advanced/tree/master/FragmentExample2

1.1	Open	the	starter	app	project

Download	the	FragmentExample_start	Android	Studio	project.	Refactor	and	rename	the
project	to		FragmentExample1	.	(For	help	with	copying	projects	and	refactoring	and	renaming,
see	Copy	and	rename	a	project.)	Explore	the	app	using	Android	Studio.

In	the	above	figure:

1.	 The	Project:	Android	pane	shows	the	contents	of	the	project.
2.	 The	Component	Tree	pane	for	the		activity_main.xml		layout	shows	the		android:id	

value	of	each	UI	element.
3.	 The	layout	includes	image	and	text	elements	arranged	to	provide	a	space	at	the	top	for

the	app	bar	and	a		Fragment	.

1.2	Add	a	Fragment

1.	 In	Project:	Android	view,	expand	app	>	java	and	select
com.example.android.fragmentexample.

2.	 Choose	File	>	New	>	Fragment	>	Fragment	(Blank).
3.	 In	the	Configure	Component	dialog,	name	the		Fragment		SimpleFragment.	The

Create	layout	XML	option	should	already	be	selected,	and	the		Fragment		layout	will	be
filled	in	as		fragment_simple	.

Introduction

11

https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/FragmentExample_start
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/appendix_utilities.html#copy_project

4.	 Uncheck	the	Include	fragment	factory	methods	and	Include	interface	callbacks
options.	Click	Finish	to	create	the		Fragment	.	

5.	 Open		SimpleFragment	,	and	inspect	the	code:

	public	class	SimpleFragment	extends	Fragment	{

					public	SimpleFragment()	{

									//	Required	empty	public	constructor

					}

					@Override

					public	View	onCreateView(LayoutInflater	inflater,	

																		ViewGroup	container,	Bundle	savedInstanceState)	{

									//	Inflate	the	layout	for	this	fragment

									return	inflater.inflate(R.layout.fragment_simple,	

																		container,	false);

All	subclasses	of		Fragment		must	include	a	public	no-argument	constructor	as	shown.
The	Android	framework	often	re-instantiates	a		Fragment		object	when	needed,	in
particular	during	state	restore.	The	framework	needs	to	be	able	to	find	this	constructor
so	it	can	instantiate	the		Fragment	.

The		Fragment		class	uses	callback	methods	that	are	similar	to		Activity		callback
methods.	For	example,		onCreateView()		provides	a		LayoutInflater		to	inflate	the
	Fragment		UI	from	the	layout	resource		fragment_simple	.

1.3	Edit	the	Fragment's	layout

1.	 Open		fragment_simple.xml	.	In	the	layout	editor	pane,	click	Text	to	view	the	XML.
2.	 Change	the	attributes	for	the	"Hello	blank	fragment"		TextView	:

Introduction

12

https://developer.android.com/reference/android/app/Fragment.html
https://developer.android.com/reference/android/app/Fragment.html#onCreateView(android.view.LayoutInflater,%20android.view.ViewGroup,%20android.os.Bundle)
https://developer.android.com/reference/android/view/LayoutInflater.html

	TextView		attribute Value
	android:id	 	"@+id/fragment_header"	

	android:layout_width	 	"wrap_content"		

	android:layout_height	 	"wrap_content"		

	android:textAppearance	 	"@style/Base.TextAppearance.AppCompat.Medium"	

	android:padding	 	"4dp"	

	android:text	 	"@string/question_article"	

The		@string/question_article		resource	is	defined	in	the		strings.xml		file	in	the	starter
app	as		"LIKE	THE	ARTICLE?"	.

3.	 Change	the		FrameLayout		root	element	to		LinearLayout	,	and	change	the	following
attributes	for	the		LinearLayout	:

	LinearLayout		attribute Value
	android:layout_height	 	"wrap_content"		

	android:background	 	"@color/my_fragment_color"	

	android:orientation	 	"horizontal"	

The		my_fragment_color		value	for	the		android:background		attribute	is	already	defined	in
the	starter	app	in		colors.xml	.

4.	 Within	the		LinearLayout	,	add	the	following		RadioGroup		element	after	the		TextView	
element:

	<RadioGroup

					android:id="@+id/radio_group"

					android:layout_width="wrap_content"

					android:layout_height="wrap_content"

					android:orientation="horizontal">

									<RadioButton

													android:id="@+id/radio_button_yes"

													android:layout_width="wrap_content"

													android:layout_height="wrap_content"

													android:layout_marginRight="8dp"

													android:text="@string/yes"	/>

									<RadioButton

													android:id="@+id/radio_button_no"

													android:layout_width="wrap_content"

													android:layout_height="wrap_content"

													android:layout_marginRight="8dp"

													android:text="@string/no"	/>

	</RadioGroup>

Introduction

13

The		@string/yes		and		@string/no		resources	are	defined	in	the		strings.xml		file	in	the
starter	app	as		"Yes"		and		"No"	.	In	addition,	the	following	string	resources	are	also
defined	in	the		strings.xml		file:

<string	name="yes_message">ARTICLE:	Like</string>

<string	name="no_message">ARTICLE:	Thanks</string>

The	layout	preview	for		fragment_simple.xml		should	look	like	the	following:	

1.4	Add	a	listener	for	the	radio	buttons

Add	the		RadioGroup.OnCheckedChangeListener		interface	to	define	a	callback	to	be	invoked
when	a	radio	button	is	checked	or	unchecked:

1.	 Open		SimpleFragment		again.
2.	 Change	the	code	in		onCreateView()		to	the	code	below.	This	code	sets	up	the		View	

and	the		RadioGroup	,	and	returns	the		View		(rootView).	The		View		and		RadioGroup	
are	declared	as		final	,	which	means	they	won't	change.	This	is	because	you	will	need
to	access	them	from	within	an	anonymous	inner	class	(the		OnCheckedChangeListener		for
the		RadioGroup):

Introduction

14

https://developer.android.com/reference/android/widget/RadioGroup.OnCheckedChangeListener.html

	//	Inflate	the	layout	for	this	fragment.

	final	View	rootView	=	

										inflater.inflate(R.layout.fragment_simple,	container,	false);

	final	RadioGroup	radioGroup	=	rootView.findViewById(R.id.radio_group);

	//	TODO:	Set	the	radioGroup	onCheckedChanged	listener.

	//	Return	the	View	for	the	fragment's	UI.

	return	rootView;

3.	 Add	the	following	constants	to	the	top	of		SimpleFragment		to	represent	the	two	states	of
the	radio	button	choice:	0	=	yes	and	1	=	no:

	private	static	final	int	YES	=	0;

	private	static	final	int	NO	=	1;

4.	 Replace	the		TODO		comment	inside	the		onCreateView()		method	with	the	following	code
to	set	the	radio	group	listener	and	change	the		textView		(the		fragment_header		in	the
layout)	depending	on	the	radio	button	choice:

	radioGroup.setOnCheckedChangeListener(new	

																													RadioGroup.OnCheckedChangeListener()	{

					@Override

					public	void	onCheckedChanged(RadioGroup	group,	int	checkedId)	{

									View	radioButton	=	radioGroup.findViewById(checkedId);

									int	index	=	radioGroup.indexOfChild(radioButton);

									TextView	textView	=

																									rootView.findViewById(R.id.fragment_header);

									switch	(index)	{

													case	YES:	//	User	chose	"Yes."

																	textView.setText(R.string.yes_message);

																	break;

													case	NO:	//	User	chose	"No."

																	textView.setText(R.string.no_message);

																	break;

													default:	//	No	choice	made.

																	//	Do	nothing.

																	break;

									}

							}

					});

The		onCheckedChanged()		method	must	be	implemented	for
	RadioGroup.OnCheckedChangeListener	;	in	this	example,	the	index	for	the	two	radio
buttons	is	0	("Yes")	or	1	("No"),	which	display	either	the		yes_message		text	or	the
	no_message		text.

Introduction

15

https://developer.android.com/reference/android/widget/RadioGroup.OnCheckedChangeListener.html

1.5	Add	the	Fragment	statically	to	the	Activity

1.	 Open		activity_main.xml	.
2.	 Add	the	following		<fragment>		element	below	the		ScrollView		within	the

	ConstraintLayout		root	view.	It	refers	to	the		SimpleFragment		you	just	created:

	<fragment

					android:id="@+id/fragment"

					android:name="com.example.android.fragmentexample.SimpleFragment"

					android:layout_width="0dp"

					android:layout_height="wrap_content"

					app:layout_constraintLeft_toLeftOf="parent"

					app:layout_constraintRight_toRightOf="parent"

					app:layout_constraintTop_toTopOf="parent"

					tools:layout="@layout/fragment_simple"	/>

The	figure	below	shows	the	layout	preview,	with		SimpleFragment		statically	included	in
the	activity	layout:	

A	render	error	may	appear	below	the	preview,	because	a		<fragment>		element	can
dynamically	include	different	layouts	when	the	app	runs,	and	the	layout	editor	doesn't
know	what	layout	to	use	for	a	preview.	To	see	the		Fragment		in	the	preview,	click	the
@layout/fragment_simple	link	in	the	error	message,	and	choose	SimpleFragment.

3.	 Run	the	app.	The		Fragment		is	now	included	in	the		MainActivity		layout,	as	shown	in
the	figures	below.

Introduction

16

4.	 Tap	a	radio	button.	The	"LIKE	THE	ARTICLE?"	text	is	replaced	by	either	the
	yes_message		text	("ARTICLE:	Like")	or	the		no_message		text	("ARTICLE:	Thanks"),
depending	on	which	radio	button	is	tapped.

5.	 After	tapping	a	radio	button,	change	the	orientation	of	your	device	or	emulator	from
portrait	to	landscape.	Note	that	the	"Yes"	or	"No"	choice	is	still	selected.	

Switching	the	device	orientation	after	choosing	"No"	demonstrates	that	a		Fragment		can
retain	an	instance	of	its	data	after	a	configuration	change	(such	as	changing	the	orientation).
This	feature	makes	a		Fragment		useful	as	a	UI	component,	as	compared	to	using	separate
	Views	.	While	an		Activity		is	destroyed	and	recreated	when	a	device's	configuration
changes,	a		Fragment		is	not	destroyed.

Introduction

17

Task	1	solution	code
Android	Studio	project:	FragmentExample1

Coding	challenge
Note:	All	coding	challenges	are	optional.
Challenge:	Expand	the		Fragment		to	include	another	question	("Like	the	song?")
underneath	the	first	question,	so	that	it	appears	as	shown	in	the	figure	below.	Add	a
	RatingBar		so	that	the	user	can	set	a	rating	for	the	song,	and	a		Toast		message	that	shows
the	chosen	rating.

Hint:	Use	the		OnRatingBarChangeListener		in	the		Fragment	,	and	be	sure	to	include	the
	android:isIndicator		attribute,	set	to		false	,	for	the		RatingBar		in	the		Fragment		layout.

This	challenge	demonstrates	how	a		Fragment		can	handle	different	kinds	of	user	input.

Introduction

18

https://github.com/google-developer-training/android-advanced/tree/master/FragmentExample1
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjal5zP_9zVAhUjjVQKHeBRCT8QFggoMAA&url=https%3A%2F%2Fdeveloper.android.com%2Freference%2Fandroid%2Fwidget%2FRatingBar.html&usg=AFQjCNHfTD5-dFNTdtjAus6uYxAiCkWLWQ
https://developer.android.com/reference/android/widget/Toast.html
https://developer.android.com/reference/android/widget/RatingBar.OnRatingBarChangeListener.html

Introduction

19

Challenge	solution	code

Android	Studio	project:	FragmentExample1_challenge

Task	2.	Add	a	Fragment	to	an	Activity
dynamically
In	this	task	you	learn	how	to	add	the	same		Fragment		to	an		Activity		dynamically	.	The
	Fragment		is	added	only	if	the	user	performs	an	interaction	in	the		Activity	—in	this	case,
tapping	a	button.

You	will	change	the	FragmentExample1	app	to	manage	the		Fragment		using
	FragmentManager		and		FragmentTransaction		statements	that	can	add,	remove,	and	replace	a
	Fragment	.

2.1	Add	a	ViewGroup	for	the	Fragment

At	any	time	while	your		Activity		is	running,	your	code	can	add	a		Fragment		to	the
	Activity	.	All	your		Activity		code	needs	is	a		ViewGroup		in	the	layout	as	a	placeholder	for
the		Fragment	,	such	as	a		FrameLayout		.		Change	the		<fragment>		element	to
	<FrameLayout>		in	the	main	layout.	Follow	these	steps:

1.	 Copy	the	FragmentExample1	project,	and	open	the	copy	in	Android	Studio.	Refactor
and	rename	the	project	to		FragmentExample2	.	(For	help	with	copying	projects	and
refactoring	and	renaming,	see	Copy	and	rename	a	project.)

If	a	warning	appears	to	remove	the		FragmentExample1		modules,	click	to	remove	them.

2.	 Open	the		activity_main.xml		layout,	and	switch	the	layout	editor	to	Text	(XML)	view.

3.	 Change	the		<fragment>		element	to		<FrameLayout>	,	and	change	the		android:id		to
	fragment_container	,	as	shown	below:

	<FrameLayout

					android:id="@+id/fragment_container"

2.2	Add	a	button	to	open	and	close	the	Fragment

Users	need	a	way	to	open	and	close	the		Fragment		from	the		Activity	.	To	keep	this
example	simple,	add	a		Button		to	open	the		Fragment	,	and	if	the		Fragment		is	open,	the
same		Button		can	close	the		Fragment	.

Introduction

20

https://github.com/google-developer-training/android-advanced/tree/master/FragmentExample1_challenge
https://github.com/google-developer-training/android-advanced/tree/master/FragmentExample1
https://developer.android.com/reference/android/app/FragmentManager.html
https://developer.android.com/reference/android/app/FragmentTransaction.html
https://developer.android.com/reference/android/view/ViewGroup.html
https://developer.android.com/reference/android/widget/FrameLayout.html
https://github.com/google-developer-training/android-advanced/tree/master/FragmentExample1
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/appendix_utilities.html#copy_project

1.	 Open		activity_main.xml	,	click	the	Design	tab	if	it	is	not	already	selected,	and	add	a
	Button		under	the		imageView		element.

2.	 Constrain	the		Button		to	the	bottom	of		imageView		and	to	the	left	side	of	the	parent.
3.	 Open	the	Attributes	pane,	and	add	the	ID		open_button		and	the	text	"	@string/open	".

The		@string/open		and		@string/close		resources	are	defined	in	the		strings.xml		file	in
the	starter	app	as		"OPEN"		and		"CLOSE"	.

Note	that	since	you	have	changed		<fragment>		to		<FrameLayout>	,	the		Fragment		(now
called		fragment_container)	no	longer	appears	in	the	design	preview—but	don't	worry,

it's	still	there!	

4.	 Open		MainActivity	,	and	declare	and	initialize	the		Button	.	Also	add	a		private	
	boolean		to	determine	whether	the		Fragment		is	displayed:

	private	Button	mButton;

	private	boolean	isFragmentDisplayed	=	false;

5.	 Add	the	following	to	the		onCreate()		method	to	initialize	the		mButton	:

	mButton	=	findViewById(R.id.open_button);

Introduction

21

2.3	Use	Fragment	transactions

To	manage	a		Fragment		in	your		Activity	,	use		FragmentManager	.	To	perform	a		Fragment	
transaction	in	your		Activity	—such	as	adding,	removing,	or	replacing	a		Fragment	—use
methods	in		FragmentTransaction	.

The	best	practice	for	instantiating	the		Fragment		in	the	A	ctivity		is	to	provide	a
	newinstance()		factory	method	in	the		Fragment	.	Follow	these	steps	to	add	the
	newinstance()		method	to		SimpleFragment		and	instantiate	the		Fragment		in		MainActivity	.
You	will	also	add	the		displayFragment()		and		closeFragment()		methods,	and	use		Fragment	
transactions:

1.	 Open		SimpleFragment	,	and	add	the	following	method	for	instantiating	and	returning	the
	Fragment		to	the		Activity	:

	public	static	SimpleFragment	newInstance()	{

									return	new	SimpleFragment();

	}

2.	 Open		MainActivity	,	and	create	the	following		displayFragment()		method	to	instantiate
and	open		SimpleFragment	.	It	starts	by	creating	an	instance	of		simpleFragment		by
calling	the		newInstance()		method	in		SimpleFragment	:

	public	void	displayFragment()	{

					SimpleFragment	simpleFragment	=	SimpleFragment.newInstance();

					//	TODO:	Get	the	FragmentManager	and	start	a	transaction.

					//	TODO:	Add	the	SimpleFragment.

	}

3.	 Replace	the		TODO:	Get	the	FragmentManager...		comment	in	the	above	code	with	the
following:

	//	Get	the	FragmentManager	and	start	a	transaction.

	FragmentManager	fragmentManager	=	getSupportFragmentManager();

	FragmentTransaction	fragmentTransaction	=	fragmentManager

													.beginTransaction();

To	start	a	transaction,	get	an	instance	of		FragmentManager		using
	getSupportFragmentManager()	,	and	then	get	an	instance	of		FragmentTransaction		that
uses		beginTransaction()	.		Fragment		operations	are	wrapped	into	a	transaction	(similar
to	a	bank	transaction)	so	that	all	the	operations	finish	before	the	transaction	is
committed	for	the	final	result.

Introduction

22

https://developer.android.com/reference/android/app/FragmentManager.html
https://developer.android.com/reference/android/app/FragmentTransaction.html
https://developer.android.com/reference/android/support/v4/app/FragmentActivity.html#getSupportFragmentManager()
https://developer.android.com/reference/android/app/FragmentManager.html#beginTransaction()

Use		getSupportFragmentManager()		(instead	of		getFragmentManager())	to	instantiate	the
	Fragment		class	so	your	app	remains	compatible	with	devices	running	system	versions
as	low	as	Android	1.6.	(The		getSupportFragmentManager()		method	uses	the	Support
Library.)

4.	 Replace	the		TODO:	Add	the	SimpleFragment		comment	in	the	above	code	with	the
following:

	//	Add	the	SimpleFragment.

	fragmentTransaction.add(R.id.fragment_container,

													simpleFragment).addToBackStack(null).commit();

	//	Update	the	Button	text.

	mButton.setText(R.string.close);

	//	Set	boolean	flag	to	indicate	fragment	is	open.

	isFragmentDisplayed	=	true;

This	code	adds	a	new		Fragment		using	the		add()		transaction	method.	The	first
argument	passed	to		add()		is	the	layout	resource	(fragment_container)	for	the
	ViewGroup		in	which	the		Fragment		should	be	placed.	The	second	parameter	is	the
	Fragment		(simpleFragment)	to	add.

In	addition	to	the		add()		transaction,	the	code	calls		addToBackStack(null)		in	order	to
add	the	transaction	to	a	back	stack	of		Fragment		transactions.	This	back	stack	is
managed	by	the		Activity	.	It	allows	the	user	to	return	to	the	previous		Fragment		state
by	pressing	the	Back	button.

The	code	then	calls		commit()		for	the	transaction	to	take	effect.

The	code	also	changes	the	text	of	the		Button		to		"CLOSE"		and	sets	the	Boolean
	isFragmentDisplayed		to		true		so	that	you	can	track	the	state	of	the		Fragment	.

5.	 To	close	the		Fragment	,	add	the	following		closeFragment()		method	to		MainActivity	:

Introduction

23

https://developer.android.com/tools/support-library/index.html
https://developer.android.com/reference/android/app/FragmentTransaction.html#add(int,%20android.app.Fragment)
https://developer.android.com/reference/android/app/FragmentTransaction.html#add(int,%20android.app.Fragment)
https://developer.android.com/reference/android/app/FragmentTransaction.html#addToBackStack(java.lang.String)
https://developer.android.com/reference/android/app/FragmentTransaction.html#commit()

public	void	closeFragment()	{

				//	Get	the	FragmentManager.

				FragmentManager	fragmentManager	=	getSupportFragmentManager();

				//	Check	to	see	if	the	fragment	is	already	showing.

				SimpleFragment	simpleFragment	=	(SimpleFragment)	fragmentManager

																.findFragmentById(R.id.fragment_container);

				if	(simpleFragment	!=	null)	{

								//	Create	and	commit	the	transaction	to	remove	the	fragment.

								FragmentTransaction	fragmentTransaction	=

																fragmentManager.beginTransaction();

								fragmentTransaction.remove(simpleFragment).commit();

				}

				//	Update	the	Button	text.

				mButton.setText(R.string.open);

				//	Set	boolean	flag	to	indicate	fragment	is	closed.

				isFragmentDisplayed	=	false;

}

As	with		displayFragment()	,	the		closeFragment()		code	snippet	gets	an	instance	of
	FragmentManager		using		getSupportFragmentManager()	,	uses		beginTransaction()		to	start
a	series	of	transactions,	and	acquires	a	reference	to	the		Fragment		using	the	layout
resource	(fragment_container).	It	then	uses	the		remove()		transaction	to	remove	the
	Fragment	.

However,	before	creating	this	transaction,	the	code	checks	to	see	if	the		Fragment		is
displayed	(not		null).	If	the		Fragment		is	not	displayed,	there's	nothing	to	remove.

The	code	also	changes	the	text	of	the		Button		to		"OPEN"		and	sets	the	Boolean
	isFragmentDisplayed		to		false		so	that	you	can	track	the	state	of	the		Fragment	.

2.4	Set	the	Button	onClickListener

To	take	action	when	the	user	clicks	the		Button	,	implement	an		OnClickListener		for	the
button	in	the		onCreate()		method	of		MainActivity		in	order	to	open	and	close	the	fragment
based	on	the	boolean	value	of		isFragmentDisplayed	.	The		onClick()		method	will	call	the
	displayFragment()		method	to	open	the		Fragment		if	the		Fragment		is	not	already	open;
otherwise	it	calls		closeFragment()	.

You	will	also	add	code	to	save	the	value	of		isFragmentDisplayed		and	use	it	if	the
configuration	changes,	such	as	if	the	user	switches	from	portrait	or	landscape	orientation.

1.	 Open		MainActivity	,	and	add	the	following	to	the		onCreate()		method	to	set	the	click
listener	for	the	Button:

Introduction

24

https://developer.android.com/reference/android/app/FragmentManager.html
https://developer.android.com/reference/android/support/v4/app/FragmentActivity.html#getSupportFragmentManager()
https://developer.android.com/reference/android/app/FragmentManager.html#beginTransaction()
https://developer.android.com/reference/android/app/FragmentTransaction.html#remove(android.app.Fragment)

	//	Set	the	click	listener	for	the	button.

	mButton.setOnClickListener(new	View.OnClickListener()	{

					@Override

					public	void	onClick(View	view)	{

									if	(!isFragmentDisplayed)	{

														displayFragment();

									}	else	{

														closeFragment();

									}

					}

	});

2.	 To	save	the	boolean	value	representing	the		Fragment		display	state,	define	a	key	for	the
	Fragment		state	to	use	in	the		savedInstanceState			Bundle	.	Add	this	member	variable	to
	MainActivity	:

	static	final	String	STATE_FRAGMENT	=	"state_of_fragment";

3.	 Add	the	following	method	to		MainActivity		to	save	the	state	of	the		Fragment		if	the
configuration	changes:

	public	void	onSaveInstanceState(Bundle	savedInstanceState)	{

					//	Save	the	state	of	the	fragment	(true=open,	false=closed).

					savedInstanceState.putBoolean(STATE_FRAGMENT,	isFragmentDisplayed);

					super.onSaveInstanceState(savedInstanceState);

	}

4.	 Go	back	to	the		onCreate()		method	and	add	the	following	code.	It	checks	to	see	if	the
instance	state	of	the		Activity		was	saved	for	some	reason,	such	as	a	configuration
change	(the	user	switching	from	vertical	to	horizontal).	If	the	saved	instance	was	not
saved,	it	would	be		null	.	If	the	saved	instance	is	not		null	,	the	code	retrieves	the
	Fragment		state	from	the	saved	instance,	and	sets	the		Button		text:

	if	(savedInstanceState	!=	null)	{

					isFragmentDisplayed	=	

																						savedInstanceState.getBoolean(STATE_FRAGMENT);

					if	(isFragmentDisplayed)	{

									//	If	the	fragment	is	displayed,	change	button	to	"close".

									mButton.setText(R.string.close);

					}

	}

5.	 Run	the	app.	Tapping	Open	adds	the		Fragment		and	shows	the	Close	text	in	the	button.
Tapping	Close	removes	the		Fragment		and	shows	the	Open	text	in	the	button.	You	can
switch	your	device	or	emulator	from	vertical	to	horizontal	orientation	to	see	that	the
buttons	and		Fragment		work.	

Introduction

25

Task	2	solution	code
Android	Studio	project:	FragmentExample2

Summary
To	create	a	blank		Fragment	,	expand	app	>	java	in	Project:	Android	view,	select	the
folder	containing	the	Java	code	for	your	app,	and	choose	File	>	New	>	Fragment	>
Fragment	(Blank).
The		Fragment		class	uses	callback	methods	that	are	similar	to		Activity		callbacks,
such	as		onCreateView()	,	which	provides	a		LayoutInflater		object	to	inflate	the
	Fragment		UI	from	the	layout	resource		fragment_simple	.
To	add	a		Fragment		statically	to	an		Activity		so	that	it	is	displayed	for	the	entire
lifecycle	of	the		Activity	,	declare	the		Fragment		inside	the	layout	file	for	the		Activity	
using	the		<fragment>		tag.	You	can	specify	layout	attributes	for	the		Fragment		as	if	it
were	a		View	.
To	add	a		Fragment		dynamically	to	an		Activity		so	that	the		Activity		can	add,	replace,

Introduction

26

https://github.com/google-developer-training/android-advanced/tree/master/FragmentExample2
https://developer.android.com/reference/android/app/Fragment.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Fragment.html#onCreateView(android.view.LayoutInflater,%20android.view.ViewGroup,%20android.os.Bundle)
https://developer.android.com/reference/android/view/LayoutInflater.html

or	remove	it,	specify	a		ViewGroup		inside	the	layout	file	for	the		Activity		such	as	a
	FrameLayout	.
When	adding	a		Fragment		dynamically	to	an		Activity	,	the	best	practice	for	creating
the	fragment	is	to	create	the	instance	with	a		newinstance()		method	in	the		Fragment	
itself.	Call	the		newinstance()		method	from	the		Activity		to	create	a	new	instance.
To	get	an	instance	of		FragmentManager	,	use		getSupportFragmentManager()		in	order	to
instantiate	the		Fragment		class	using	the	Support	Library	so	your	app	remains
compatible	with	devices	running	system	versions	as	low	as	Android	1.6.
To	start	a	series	of		Fragment		transactions,	call		beginTransaction()	
ona	FragmentTransaction	.
With		FragmentManager		your	code	can	perform	the	following		Fragment		transactions
while	the	app	runs,	using		FragmentTransaction		methods:

Add	a		Fragment		using		add()	.
Remove	a		Fragment		using		remove()	.
Replace	a		Fragment		with	another		Fragment		using		replace()	.

Related	concept
The	related	concept	documentation	is	Fragments.

Learn	more
Android	developer	documentation:

Fragment
Fragments
FragmentManager
FragmentTransaction
Creating	a	Fragment
Building	a	Flexible	UI
Building	a	Dynamic	UI	with	Fragments
Handling	Configuration	Changes
Supporting	Tablets	and	Handsets

Videos:

What	the	Fragment?	(Google	I/O	2016)
Fragment	Tricks	(Google	I/O	'17)
Por	que	Precisamos	de	Fragments?

Introduction

27

https://developer.android.com/reference/android/view/ViewGroup.html
https://developer.android.com/reference/android/widget/FrameLayout.html
https://developer.android.com/reference/android/support/v4/app/FragmentActivity.html#getSupportFragmentManager()
https://developer.android.com/tools/support-library/index.html
https://developer.android.com/reference/android/app/FragmentManager.html#beginTransaction()
https://developer.android.com/reference/android/app/FragmentManager.html#beginTransaction()
https://developer.android.com/reference/android/app/FragmentTransaction.html
https://developer.android.com/reference/android/app/FragmentTransaction.html#add(int,%20android.app.Fragment)
https://developer.android.com/reference/android/app/FragmentTransaction.html#remove(android.app.Fragment)
https://developer.android.com/reference/android/app/FragmentTransaction.html#replace(int,%20android.app.Fragment)
https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-1-expand-the-user-experience/lesson-1-fragments/1-1-c-fragments/1-1-c-fragments.html
https://developer.android.com/reference/android/app/Fragment.html
https://developer.android.com/guide/components/fragments.html
https://developer.android.com/reference/android/app/FragmentManager.html
https://developer.android.com/reference/android/app/FragmentTransaction.html
https://developer.android.com/training/basics/fragments/creating.html
https://developer.android.com/training/basics/fragments/fragment-ui.html
https://developer.android.com/training/basics/fragments/index.html
https://developer.android.com/guide/topics/resources/runtime-changes.html
https://developer.android.com/guide/practices/tablets-and-handsets.html
https://www.youtube.com/watch?v=k3IT-IJ0J98
https://www.youtube.com/watch?v=eUG3VWnXFtg
https://www.youtube.com/watch?v=m3A_82efr70

Introduction

28

1.2:	Communicating	with	a	Fragment
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
Apps	overview
Task	1.	Communicating	with	a	fragment
Task	1	solution	code
Task	2.	Changing	an	app	to	a	master/detail	layout
Task	2	solution	code
Summary
Related	concept
Learn	more

An		Activity		hosting	a		Fragment		can	send	data	to	and	receive	data	from	the		Fragment	.	A
	Fragment		can't	communicate	directly	with	another		Fragment	,	even	within	the	same
	Activity	.	The	host		Activity		must	be	used	as	an	intermediary.

This	practical	demonstrates	how	to	use	an		Activity		to	communicate	with	a		Fragment	.	It
also	shows	how	to	use	a		Fragment		to	implement	a	two-pane	master/detail	layout.	A
master/detail	layout	is	a	layout	that	allows	users	to	view	a	list	of	items	(the	master	view)	and
drill	down	into	each	item	for	more	details	(the	detail	view).

What	you	should	already	KNOW
You	should	be	able	to:

Create	a		Fragment		with	an	interactive	UI.
Add	a	static		Fragment		to	the	UI	layout	of	an		Activity	.
Add,	replace,	and	remove	a	dynamic		Fragment		while	an		Activity		is	running.

What	you	will	LEARN
You	will	learn	how	to:

Send	data	to	a		Fragment	.
Retrieve	data	from	a		Fragment	.

Introduction

29

Implement	a	master/detail	layout	for	wide	screens.

What	you	will	DO
Use	an	argument		Bundle		to	send	data	to	a		Fragment	.
Define	a	listener	interface	with	a	callback	method	in	a		Fragment	.
Implement	the	listener	for	the		Fragment		and	a	callback	to	retrieve	data	from	the
	Fragment	.
Move		Activity		code	to	a		Fragment		for	a	master/detail	layout.

Apps	overview
In	FragmentExample2,	the	app	from	the	lesson	on	using	a		Fragment	,	a	user	can	tap	the
Open	button	to	show	the		Fragment	,	tap	a	radio	button	for	a	"Yes"	or	"No"	choice,	and	tap
Close	to	close	the		Fragment	.	If	the	user	opens	the		Fragment		again,	the	previous	choice	is
not	retained.

Introduction

30

https://github.com/google-developer-training/android-advanced/tree/master/FragmentExample2

In	this	lesson	you	modify	the	code	in	the	FragmentExample2	app	to	send	the	user's	choice
back	to	the	host		Activity	.	When	the		Activity		opens	a	new		Fragment	,	the		Activity		can
send	the	user's	previous	choice	to	the	new		Fragment	.	As	a	result,	when	the	user	taps	Open
again,	the	app	shows	the	previously	selected	choice.

The	second	app,	SongDetail,	demonstrates	how	you	can:

Use	a		Fragment		to	show	a	master/detail	layout	on	tablets.
Provide	the		Fragment		with	the	information	it	needs	to	perform	tasks.

On	a	mobile	phone	screen,	the	SongDetail	app	looks	like	the	following	figure:

Introduction

31

https://github.com/google-developer-training/android-advanced/tree/master/FragmentExample2
https://github.com/google-developer-training/android-advanced/tree/master/SongDetail

On	a	tablet	in	horizontal	orientation,	the	SongDetail	app	displays	a	master/detail	layout:

Task	1.	Communicating	with	a	fragment
You	will	modify	the	FragmentExample2	app	from	the	lesson	on	creating	a		Fragment		with	a
UI,	so	that	the		Fragment		can	tell	the	host		Activity		which	choice	("Yes"	or	"No")	the	user
made.	You	will:

Define	a	listener	interface	in	the		Fragment		with	a	callback	method	to	get	the	user's
choice.
Implement	the	interface	and	callback	in	the	host		Activity		to	retrieve	the	user's	choice.
Use	the		newInstance()		factory	method	to	provide	the	user's	choice	back	to	the
	Fragment		when	creating	the	next		Fragment		instance.

1.1	Define	a	listener	interface	with	a	callback

To	define	a	listener	interface	in	the		Fragment	:

1.	 Copy	the		FragmentExample2		project	in	order	to	preserve	it	as	an	intermediate	step.
Open	the	new	copy	in	Android	Studio,	and	refactor	and	rename	the	new	project	to
	FragmentCommunicate	.	(For	help	with	copying	projects	and	refactoring	and	renaming,
see	Copy	and	rename	a	project.)

2.	 Open		SimpleFragment	,	and	add	another	constant	in	the		SimpleFragment		class	to

Introduction

32

https://github.com/google-developer-training/android-advanced/tree/master/FragmentExample2
https://github.com/google-developer-training/android-advanced/tree/master/FragmentExample2
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/appendix_utilities.html#copy_project

represent	the	third	state	of	the	radio	button	choice,	which	is	2	if	the	user	has	not	yet
made	a	choice:

	private	static	final	int	NONE	=	2;

3.	 Add	a	variable	for	the	radio	button	choice:

	public	int	mRadioButtonChoice	=	NONE;

4.	 Define	a	listener	interface	called		OnFragmentInteractionListener	.	In	it,	specify	a
callback	method	that	you	will	create,	called		onRadioButtonChoice()	:

	interface	OnFragmentInteractionListener	{

					void	onRadioButtonChoice(int	choice);

	}

5.	 Define	a	variable	for	the	listener	at	the	top	of	the		SimpleFragment		class.	You	will	use
this	variable	in		onAttach()		in	the	next	step:

	OnFragmentInteractionListener	mListener;

6.	 Override	the		onAttach()		lifecycle	method	in		SimpleFragment		to	capture	the	host
	Activity		interface	implementation:

	@Override

	public	void	onAttach(Context	context)	{

					super.onAttach(context);

					if	(context	instanceof	OnFragmentInteractionListener)	{

									mListener	=	(OnFragmentInteractionListener)	context;

					}	else	{

									throw	new	ClassCastException(context.toString()

												+	getResources().getString(R.string.exception_message));

					}

	}

The		onAttach()		method	is	called	as	soon	as	the		Fragment		is	associated	with	the
	Activity	.	The	code	makes	sure	that	the	host		Activity		has	implemented	the	callback
interface.	If	not,	it	throws	an	exception.

The	string	resource		exception_message		is	included	in	the	starter	app	for	the	text	"must
implement	OnFragmentInteractionListener".

7.	 In		onCreateView()	,	get	the		mRadioButtonChoice		by	adding	code	to	each		case		of	the
	switch	case		block	for	the	radio	buttons:

Introduction

33

https://developer.android.com/reference/android/app/Fragment.html#onAttach(android.app.Activity)

	case	YES:	//	User	chose	"Yes."

					textView.setText(R.string.yes_message);

					mRadioButtonChoice	=	YES;

					mListener.onRadioButtonChoice(YES);

					break;

	case	NO:	//	User	chose	"No."

					textView.setText(R.string.no_message);

					mRadioButtonChoice	=	NO;

					mListener.onRadioButtonChoice(NO);

					break;

	default:	//	No	choice	made.

					mRadioButtonChoice	=	NONE;

					mListener.onRadioButtonChoice(NONE);

					break;

1.2	Implement	the	callback	in	the	Activity

To	implement	the	callback:

1.	 Open		MainActivity		and	implement		OnFragmentInteractionListener		in	order	to	receive
the	data	from	the		Fragment	:

	public	class	MainActivity	extends	AppCompatActivity

									implements	SimpleFragment.OnFragmentInteractionListener	{

2.	 In	Android	Studio,	the	above	code	is	underlined	in	red,	and	a	red	bulb	appears	in	the	left
margin.	Click	the	bulb	and	choose	Implement	methods.	Choose
onRadioButtonChoice(choice:int):void,	and	click	OK.	An	empty
	onRadioButtonChoice()		method	appears	in		MainActivity	.

3.	 Add	a	member	variable	in		MainActivity		for	the	choice	the	user	makes	with	the	radio
buttons,	and	set	it	to	the	default	value:

	private	int	mRadioButtonChoice	=	2;	//	The	default	(no	choice).

4.	 Add	code	to	the	new		onRadioButtonChoice()		method	to	assign	the	user's	radio	button
choice	from	the		Fragment		to		mRadioButtonChoice	.	Add	a		Toast		to	show	that	the
	Activity		has	received	the	data	from	the		Fragment	:

	@Override

	public	void	onRadioButtonChoice(int	choice)	{

					//	Keep	the	radio	button	choice	to	pass	it	back	to	the	fragment.

					mRadioButtonChoice	=	choice;

					Toast.makeText(this,	"Choice	is	"	+	Integer.toString(choice),	

																																								Toast.LENGTH_SHORT).show();

	}

Introduction

34

5.	 Run	the	app,	tap	Open,	and	make	a	choice.	The		Activity		shows	the		Toast		message
with	the	choice	as	an	integer	(0	is	"Yes"	and	1	is	"No").

Introduction

35

Introduction

36

1.3	Provide	the	user's	choice	to	the	fragment

To	provide	the	user's	previous	"Yes"	or	"No"	choice	from	the	host		Activity		to	the
	Fragment	,	pass	the		choice		to	the		newInstance()		method	in		SimpleFragment		when
instantiating		SimpleFragment	.	You	can	set	a		Bundle		and	use	the
	Fragment.		setArguments(Bundle)		method	to	supply	the	construction	arguments	for	the
	Fragment	.

Follow	these	steps:

1.	 Open		MainActivity	,	and	change	the		newInstance()		statement	in		displayFragment()	
to	the	following:

	SimpleFragment	fragment	=	SimpleFragment.newInstance(mRadioButtonChoice);

2.	 Open		SimpleFragment		and	add	the	following	constant,	which	is	the	key	to	finding	the
information	in	the		Bundle	:

	private	static	final	String	CHOICE	=	"choice";

3.	 In		SimpleFragment	,	change	the		newInstance()		method	to	the	following,	which	uses	a
	Bundle		and	the		setArguments(Bundle)		method	to	set	the	arguments	before	returning
the		Fragment	:

	public	static	SimpleFragment	newInstance(int	choice)	{

									SimpleFragment	fragment	=	new	SimpleFragment();

									Bundle	arguments	=	new	Bundle();

									arguments.putInt(CHOICE,	choice);

									fragment.setArguments(arguments);

									return	fragment;

	}

4.	 Now	that	a		Bundle		of	arguments	is	available	in	the		SimpleFragment	,	you	can	add	code
to	the		onCreateView()		method	in		SimpleFragment		to	get	the	choice	from	the		Bundle	.
Right	before	the	statement	that	sets	the		radioGroup			onCheckedChanged		listener,	add	the
following	code	to	retrieve	the	radio	button	choice	(if	a	choice	was	made),	and	pre-select
the	radio	button.

Introduction

37

https://developer.android.com/reference/android/os/Bundle.html
https://developer.android.com/reference/android/app/Fragment.html#setArguments(android.os.Bundle)

	if	(getArguments().containsKey(CHOICE))	{

					//	A	choice	was	made,	so	get	the	choice.

					mRadioButtonChoice	=	getArguments().getInt(CHOICE);

					//	Check	the	radio	button	choice.

					if	(mRadioButtonChoice	!=	NONE)	{

									radioGroup.check

																		(radioGroup.getChildAt(mRadioButtonChoice).getId());

					}

	}

5.	 Run	the	app.	At	first,	the	app	doesn't	show	the		Fragment		(see	the	left	side	of	the
following	figure).

6.	 Tap	Open	and	make	a	choice	such	as	"Yes"	(see	the	center	of	the	figure	below).	The
choice	you	made	appears	in	a		Toast	.

7.	 Tap	Close	to	close	the		Fragment	.
8.	 Tap	Open	to	reopen	the		Fragment	.	The		Fragment		appears	with	the	choice	already

made	(see	the	right	side	of	the	figure).	Your	app	has	communicated	the	choice	from	the
	Fragment		to	the		Activity	,	and	then	back	to	the		Fragment	.	

Task	1	solution	code
Android	Studio	project:	FragmentCommunicate

Task	2.	Changing	an	app	to	a	master/detail
layout

Introduction

38

https://github.com/google-developer-training/android-advanced/tree/master/FragmentCommunicate

This	task	demonstrates	how	you	can	use	a		Fragment		to	implement	a	two-pane	master/detail
layout	for	a	horizontal	tablet	display.	It	also	shows	how	to	take	code	from	an		Activity		and
encapsulate	it	within	a		Fragment	,	thereby	simplifying	the		Activity	.

In	this	task	you	use	a	starter	app	called	SongDetail_start	that	displays	song	titles	that	the
user	can	tap	to	see	song	details.

On	a	tablet,	the	app	doesn't	take	advantage	of	the	full	screen	size,	as	shown	in	the	following
figure:

Introduction

39

https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/SongDetail_start

When	set	to	a	horizontal	orientation,	a	tablet	device	is	wide	enough	to	show	information	in	a
master/detail	layout.	You	will	modify	the	app	to	show	a	master/detail	layout	if	the	device	is
wide	enough,	with	the	song	list	as	the	master,	and	the		Fragment		as	the	detail,	as	shown	in
the	following	figure.

The	following	diagram	shows	the	difference	in	the	code	for	the	SongDetail	starter	app	(1),
and	the	final	version	of	the	app	for	both	mobile	phone	and	wide	tablets	(2-3).

Introduction

40

In	the	above	figure:

1.	 Phone	or	tablet:	The	SongDetail_start	app	displays	the	song	details	in	a	vertical	layout
in		SongDetailActivity	,	which	is	called	from		MainActivity	.

2.	 Phone	or	small	screen:	The	final	version	of	SongDetail	displays	the	song	details	in
	SongDetailFragment	.		MainActivity		calls		SongDetailActivity	,	which	then	hosts	the
	Fragment		in	a	vertical	layout.

3.	 Tablet	or	larger	screen	in	horizontal	orientation:	If	the	screen	is	wide	enough	for	the
master/detail	layout,	the	final	version	of	SongDetail	displays	the	song	details	in
	SongDetailFragment	.		MainActivity		hosts	the		Fragment		directly.

2.1	Examine	the	starter	app	layout

To	save	time,	download	the	SongDetail_start	starter	app,	which	has	been	prepared	with
data,	layouts,	and	a		RecyclerView	.

1.	 Open	the	SongDetail_start	app	in	Android	Studio,	and	rename	and	refactor	the	project
to		SongDetail		(for	help	with	copying	projects	and	refactoring	and	renaming,	see	"Copy
and	rename	a	project").

2.	 Run	the	app	on	a	tablet	or	a	tablet	emulator	in	horizontal	orientation.	For	instructions	on
using	the	emulator,	see	Run	Apps	on	the	Android	Emulator.	The	starter	app	uses	the
same	layout	for	tablets	and	mobile	phones—it	doesn't	take	advantage	of	a	wide	screen.

3.	 Examine	the	layouts.	Although	you	don't	need	to	change	them,	you	will	reference	the
	android:id		values	in	your	code.

The		song_list.xml		layout	is	included	within		activity_song_list.xml		to	define	the	layout	of
the	song	list.	You	can	expand	it	to	show:

	song_list.xml		as	the	default	for	any	screen	size.
	song_list.xml	(w900dp)		for	devices	with	screens	that	have	a	width	of	900dp	or	larger.	It
differs	from		song_list.xml		because	it	includes	a		FrameLayout		with	an	id	of
	song_detail_container		for	displaying	the		Fragment		on	a	wide	screen.

Introduction

41

https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/SongDetail_start
https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/SongDetail_start
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/appendix_utilities.html#copy_project
https://developer.android.com/studio/run/emulator.html

The		activity_song_detail.xml		layout	for		SongDetailActivity		includes		song_detail.xml	.
Provided	is	a		FrameLayout		with	the	same	id	of		song_detail_container		for	displaying	the
	Fragment		on	a	screen	that	is	not	wide.

The	following	layouts	are	also	provided,	which	you	don't	have	to	change:

	song_detail.xml	:	Included	within		activity_song_detail.xml		to	define	the	layout	of	the
	TextView		for	the	detailed	song	information.
	activity_song_list.xml	:	Layout	for		MainActivity	.	This	layout	includes
	song_list.xml	.
	song_list_content.xml	:	Item	layout	for	the		RecyclerView		adapter.

2.2	Examine	the	starter	app	code

Open		SongDetailActivity		and	find	the	code	in	the		onCreate()		method	that	displays	the
song	detail:

//	...

//	This	activity	displays	the	detail.	In	a	real-world	scenario,

//	get	the	data	from	a	content	repository.

mSong	=	SongUtils.SONG_ITEMS.get

																(getIntent().getIntExtra(SongUtils.SONG_ID_KEY,	0));

//	Show	the	detail	information	in	a	TextView.

if	(mSong	!=	null)	{

				((TextView)	findViewById(R.id.song_detail))

																				.setText(mSong.details);

}

//	...

In	the	next	step	you	will	add	a	new		Fragment	,	and	copy	the		if	(mSong	!=	null)		block	with
	setText()		to	the	new		Fragment	,	so	that	the		Fragment		controls	how	the	song	detail	is
displayed.

The		SongUtils.java		class	in	the		content		folder	creates	an	array	of	fixed	entries	for	the
song	title	and	song	detail	information.	You	can	modify	this	class	to	refer	to	different	types	of
data.	However,	in	a	real-world	production	app,	you	would	most	likely	get	data	from	a
repository	or	server,	rather	than	hardcoding	it	in	the	app.

2.3	Add	the	fragment

Add	a	new	blank		Fragment	,	and	move	code	from		SongDetailActivity		to	the		Fragment	,	so
that	the		Fragment		can	take	over	the	job	of	displaying	the	song	detail.

1.	 Select	the	app	package	name	within		java		in	the	Project:	Android	view,	add	a	new

Introduction

42

Fragment	(Blank),	and	name	the		Fragment		SongDetailFragment.	Uncheck	the
Include	fragment	factory	methods	and	Include	interface	callbacks	options.

2.	 Open		SongDetailActivity	,	and	Edit	>	Cut	the		mSong		variable	declaration	from	the
	Activity	.	Some	of	the	code	in		SongDetailActivity		that	relies	on	it	will	be	underlined
in	red,	but	you	will	replace	that	code	in	subsequent	steps.

	public	SongUtils.Song	mSong;

3.	 Open		SongDetailFragment	,	and	Edit	>	Paste	the	above	declaration	at	the	top	of	the
class.

4.	 In		SongDetailFragment	,	remove	all	code	in	the		onCreateView()		method	and	change	it	to
inflate	the		song_detail.xm	l	layout:

	@Override

	public	View	onCreateView(LayoutInflater	inflater,	ViewGroup	container,

																														Bundle	savedInstanceState)	{

					View	rootView	=	

													inflater.inflate(R.layout.song_detail,	container,	false);

					//	TODO:	Show	the	detail	information	in	a	TextView.

					return	rootView;

	}

5.	 To	use	the	song	detail	in	the		Fragment	,	replace	the		TODO		comment	with	the		if	(mSong
!=	null)		block	from		SongDetailActivity	,	which	includes	the		setText()		method	to
show	the	detail	information	in	the		song_detail			TextView	.	You	need	to	add		rootView	
to	use	the		findViewById()		method;	otherwise,	the	block	is	the	same	as	the	one
formerly	used	in		SongDetailActivity	:

	if	(mSong	!=	null)	{

													((TextView)	rootView.findViewById(R.id.song_detail))

																					.setText(mSong.details);

	}

2.4	Check	if	the	screen	is	wide	enough	for	a	two-pane
layout

	MainActivity		in	the	starter	app	provides	the	data	to	a	second		Activity	
(SongDetailActivity)	to	display	the	song	detail	on	a	separate		Activity		display.	To	change
the	app	to	provide	data	for	the		Fragment	,	you	will	change	the	code	that	displays	the	song
detail.

If	the	display	is	wide	enough	for	a	two-pane	layout,		MainActivity		will	host	the
	Fragment	,	and	send	the	position	of	the	selected	song	in	the	list	directly	to	the
	Fragment	.

Introduction

43

If	the	screen	is	not	wide	enough	for	a	two-pane	layout,		MainActivity		will	use	an	intent
with	extra	data—the	position	of	the	selected	song—to	start		SongDetailActivity	.
	SongDetailActivity		will	then	host	the		Fragment	,	and	send	the	position	of	the	selected
song	to	the		Fragment	.

In	other	words,	the		Fragment		will	take	over	the	job	of	displaying	the	song	detail.	Therefore,
your	code	needs	to	host	the		Fragment		in		MainActivity		if	the	screen	is	wide	enough	for	a
two-pane	display,	or	in		SongDetailActivity		if	the	screen	is	not	wide	enough.

Open		MainActivity	,	and	follow	these	steps:

1.	 To	serve	as	a	check	for	the	size	of	the	screen,	add	a		private			boolean		to	the
	MainActivity		class	called		mTwoPane	:

	private	boolean	mTwoPane	=	false;

2.	 Add	the	following	to	the	end	of	the		MainActivity			onCreate()		method:

	if	(findViewById(R.id.song_detail_container)	!=	null)	{

					mTwoPane	=	true;

	}

The	above	code	checks	for	the	screen	size	and	orientation.	The		song_detail_container	
view	for		MainActivity		will	be	present	only	if	the	screen's	width	is	900dp	or	larger,
because	it	is	defined	only	in	the		song_list.xml	(w900dp)		layout,	not	in	the	default
	song_list.xml		layout	for	smaller	screen	sizes.	If	this	view	is	present,	then	the
	Activity		should	be	in	two-pane	mode.

If	a	tablet	is	set	to	portrait	orientation,	its	width	will	most	likely	be	lower	than	900dp,	and	so	it
will	not	show	a	two-pane	layout.	If	the	tablet	is	set	to	horizontal	orientation	and	its	width	is
900dp	or	larger,	it	will	show	a	two-pane	layout.

2.5	Use	the	fragment	to	show	song	detail

The		Fragment		needs	to	know	which	song	title	the	user	selected.	To	use	the	same	best
practice	for	creating	an	instance	of	a		Fragment	,	as	in	the	previous	exercises,	create	a
	newInstance()		factory	method	in	the		Fragment	.

In	the		newInstance()		method	you	can	set	a		Bundle		and	use	the
	Fragment.		setArguments(Bundle)		method	to	supply	the	construction	arguments	for	the
	Fragment	.	In	a	following	step,	you	will	use	the		Fragment.		getArguments()		method	in	the
	Fragment		to	get	the	arguments	supplied	by		setArguments(Bundle)	.

1.	 Open		SongDetailFragment	,	and	add	the	following	method	to	it:

Introduction

44

https://developer.android.com/reference/android/os/Bundle.html
https://developer.android.com/reference/android/app/Fragment.html#setArguments(android.os.Bundle)
https://developer.android.com/reference/android/app/Fragment.html#getArguments()

	public	static	SongDetailFragment	newInstance	(int	selectedSong)	{

					SongDetailFragment	fragment	=	new	SongDetailFragment();

					//	Set	the	bundle	arguments	for	the	fragment.

					Bundle	arguments	=	new	Bundle();

					arguments.putInt(SongUtils.SONG_ID_KEY,	selectedSong);

					fragment.setArguments(arguments);

					return	fragment;

	}

The	above	method	receives	the		selectedSong		(the	integer	position	of	the	song	title	in
the	list),	and	creates	the		arguments			Bundle		with		SONG_ID_KEY		and		selectedSong	.	It
then	uses		setArguments(arguments)		to	set	the	arguments	for	the		Fragment	,	and	returns
the		Fragment	.

2.	 Open		MainActivity	,	and	find	the		onBindViewHolder()		method	that	implements	a
listener	with		setOnClickListener()	.	When	the	user	taps	a	song	title,	the	starter	app
code	starts		SongDetailActivity		using	an	intent	with	extra	data	(the	position	of	the
selected	song	in	the	list):

	holder.mView.setOnClickListener(new	View.OnClickListener()	{

					@Override

					public	void	onClick(View	v)	{

									Context	context	=	v.getContext();

									Intent	intent	=	new	Intent(context,	SongDetailActivity.class);

									intent.putExtra(SongUtils.SONG_ID_KEY,

																																	holder.getAdapterPosition());

									context.startActivity(intent);

					}

	});

This	code	sends	the	extra	data—	SongUtils.SONG_ID_KEY		and
	holder.getAdapterPosition())—that		SongDetailActivity		uses	to	show	the	correct
detail	for	the	tapped	song	title.	You	will	have	to	send	this	data	to	the	new		Fragment	.

3.	 Change	the	code	within	the		onClick()		method	to	create	a	new	instance	of	the
	Fragment		for	two-pane	display,	or	to	use	the	intent	(as	before)	to	launch	the	second
	Activity		if	not	a	two-pane	display.

Introduction

45

https://developer.android.com/reference/android/app/Fragment.html#setArguments(android.os.Bundle)

	if	(mTwoPane)	{

					int	selectedSong	=	holder.getAdapterPosition();

					SongDetailFragment	fragment	=

																											SongDetailFragment.newInstance(selectedSong);

					getSupportFragmentManager().beginTransaction()

																										.replace(R.id.song_detail_container,	fragment)

																										.addToBackStack(null)

																										.commit();

	}	else	{

					Context	context	=	v.getContext();

					Intent	intent	=	new	Intent(context,	SongDetailActivity.class);

					intent.putExtra(SongUtils.SONG_ID_KEY,

																																	holder.getAdapterPosition());

					context.startActivity(intent);

	}

If		mTwoPane		is	true,	the	code	gets	the	selected	song	position	(selectedSong)	in	the
song	title	list,	and	passes	it	to	the	new	instance	of		SongDetailFragment		using	the
	newInstance()		method	in	the		Fragment	.	It	then	uses		getSupportFragmentManager()		with
a		replace		transaction	to	show	a	new	version	of	the		Fragment	.

The	transaction	code	for	managing	a		Fragment		should	be	familiar,	as	you	performed
such	operations	in	a	previous	lesson.	By	replacing	the		Fragment	,	you	can	refresh	with
new	data	a		Fragment		that	is	already	running.

If		mTwoPane		is	false,	the	code	does	exactly	the	same	thing	it	did	in	the	starter	app:	it
starts		SongDetailActivity		with	an	intent	and		SONG_ID_KEY		and
	holder.getAdapterPosition()		as	extra	data.

4.	 Open		SongDetailActivity	,	and	find	the	code	in	the		onCreate()		method	that	no	longer
works	due	to	the	removal	of	the		mSong		declaration.	In	the	next	step	you	will	replace	it.

	//	This	activity	displays	the	detail.	In	a	real-world	scenario,

	//	get	the	data	from	a	content	repository.

	mSong	=	SongUtils.SONG_ITEMS.get

																	(getIntent().getIntExtra(SongUtils.SONG_ID_KEY,	0));

	//	Show	the	detail	information	in	a	TextView.

	if	(mSong	!=	null)	{

					((TextView)	findViewById(R.id.song_detail))

																					.setText(mSong.details);

	}

Previously	you	cut	the		if	(mSong	!=	null)		block	that	followed	the	above	code	and
pasted	it	into	the		Fragment	,	so	that	the		Fragment		could	display	the	song	detail.	You
can	now	replace	the	above	code	in	the	next	step	so	that		SongDetailActivity		will	use
the		Fragment		to	display	the	song	detail.

Introduction

46

https://developer.android.com/reference/android/support/v4/app/FragmentActivity.html#getSupportFragmentManager()

5.	 Replace	the	above	code	in		onCreate()		with	the	following	code.	It	first	checks	if
	savedInstanceState		is		null	,	which	means	the		Activity		started	but	its	state	was	not
saved.	If	it	is		null	,	it	creates	an	instance	of	the		Fragment	,	passing	it	the
	selectedSong	.	(If		savedInstanceState		is	not		null	,	the		Activity		state	has	been
saved—such	as	when	the	screen	is	rotated.	In	such	cases,	you	don't	need	to	add	the
	Fragment	.)

	if	(savedInstanceState	==	null)	{

					int	selectedSong	=

																					getIntent().getIntExtra(SongUtils.SONG_ID_KEY,	0);

					SongDetailFragment	fragment	=

																					SongDetailFragment.newInstance(selectedSong);

					getSupportFragmentManager().beginTransaction()

																					.add(R.id.song_detail_container,	fragment)

																					.commit();

	}

The	code	first	gets	the	selected	song	title	position	from	the	intent	extra	data.	It	then
creates	an	instance	of	the		Fragment		and	adds	it	to	the		Activity		using	a		Fragment	
transaction.		SongDetailActivity		will	now	use	the		SongDetailFragment		to	display	the
detail.

6.	 To	set	up	the	data	in	the		Fragment	,	open		SongDetailFragment		and	add	the	entire
	onCreate()		method	before	the		onCreateView()		method.	The		getArguments()		method
in	the		onCreate()		method	gets	the	arguments	supplied	to	the		Fragment		using
	setArguments(Bundle)	.

	@Override

	public	void	onCreate(Bundle	savedInstanceState)	{

					super.onCreate(savedInstanceState);

					if	(getArguments().containsKey(SongUtils.SONG_ID_KEY))	{

									//	Load	the	content	specified	by	the	fragment	arguments.

									mSong	=	SongUtils.SONG_ITEMS.get(getArguments()

																					.getInt(SongUtils.SONG_ID_KEY));

					}

	}

7.	 Run	the	app	on	a	mobile	phone	or	phone	emulator.	It	should	look	the	same	as	it	did
before.	(Refer	to	the	figure	at	the	beginning	of	this	task.)

8.	 Run	the	app	on	a	tablet	or	tablet	emulator	in	horizontal	orientation.	It	should	display	the
master/detail	layout	as	shown	in	the	following	figure.	

Introduction

47

https://developer.android.com/reference/android/app/Fragment.html#getArguments()
https://developer.android.com/reference/android/app/Fragment.html#setArguments(android.os.Bundle)

Task	2	solution	code
Android	Studio	project:	SongDetail

Summary
Adding	a		Fragment		dynamically:

When	adding	a		Fragment		dynamically	to	an		Activity	,	the	best	practice	for
representing	the		Fragment		as	an	instance	in	the		Activity		is	to	create	the	instance
with	a		newinstance()		factory	method	in	the		Fragment	.
The		newinstance()		method	can	set	a		Bundle		and	use		setArguments(Bundle)		to	supply
the	construction	arguments	for	the		Fragment	.
Call	the		newinstance()		method	from	the		Activity		to	create	a	new	instance,	and	pass
the	specific	data	you	need	for	this		Bundle	.

Fragment	lifecycle:

The	system	calls		onAttach()		when	a		Fragment		is	first	associated	with	an		Activity	.
Use		onAttach()		to	initialize	essential	components	of	the		Fragment	,	such	as	a	listener.
The	system	calls		onCreate()		when	creating	a		Fragment	.	Use		onCreate()		to	initialize
components	of	the		Fragment		that	you	want	to	retain	when	the		Fragment		is	paused	or

Introduction

48

https://github.com/google-developer-training/android-advanced/tree/master/SongDetail
https://developer.android.com/reference/android/os/Bundle.html
https://developer.android.com/reference/android/app/Fragment.html#setArguments(android.os.Bundle)
https://developer.android.com/reference/android/app/Fragment.html#onAttach(android.app.Activity)
https://developer.android.com/reference/android/app/Fragment.html#onCreate(android.os.Bundle)

stopped,	then	resumed.
The	system	calls		onCreateView()		to	draw	a		Fragment		UI	for	the	first	time.	To	draw	a	UI
for	your		Fragment	,	you	must	return	the	root		View		of	your		Fragment		layout	from	this
method.	You	can	return		null		if	the		Fragment		does	not	provide	a	UI.
When	a		Fragment		is	in	the	active	or	resumed	state,	it	can	access	the	host		Activity	
instance	with		getActivity()	and	easily	perform	tasks	such	as	finding	a		View		in	the
	Activity		layout.

Calling		Fragment		methods	and	saving	its	state:

The	host		Activity		can	call	methods	in	a		Fragment		by	acquiring	a	reference	to	the
	Fragment		from		FragmentManager	,	using		findFragmentById()	.
Save	the		Fragment		state	during	the	onSaveInstanceState()	callback	and	restore	it
during	either		onCreate()	,		onCreateView()	,	or		onActivityCreated()	.

To	communicate	from	the	host		Activity		to	a		Fragment	,	use	a		Bundle		and	the	following:

	setArguments(Bundle)	:	Supply	the	construction	arguments	for	a		Fragment	.	The
arguments	are	retained	across	the		Fragment		lifecycle.
	getArguments()	:	Return	the	arguments	supplied	to		setArguments(Bundle)	,	if	any.

To	have	a		Fragment		communicate	to	its	host		Activity	,	declare	an	interface	in	the
	Fragment	,	and	implement	it	in	the		Activity	.

The	interface	in	the		Fragment		defines	a	callback	method	to	communicate	to	its	host
	Activity	.
The	host		Activity		implements	the	callback	method.

Related	concept
The	related	concept	documentation	is	Fragment	lifecycle	and	communications.

Learn	more
Android	developer	documentation:

Fragment
Fragments
FragmentManager
FragmentTransaction
Creating	a	Fragment
Communicating	with	Other	Fragments

Introduction

49

https://developer.android.com/reference/android/app/Fragment.html#onCreateView(android.view.LayoutInflater,%20android.view.ViewGroup,%20android.os.Bundle)
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Fragment.html#getActivity()
https://developer.android.com/reference/android/app/Fragment.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/FragmentManager.html
https://developer.android.com/reference/android/app/FragmentManager.html#findFragmentById(int)
https://developer.android.com/reference/android/app/Fragment.html#onSaveInstanceState(android.os.Bundle)
https://developer.android.com/reference/android/app/Fragment.html#onCreate(android.os.Bundle)
https://developer.android.com/reference/android/app/Fragment.html#onCreateView(android.view.LayoutInflater,%20android.view.ViewGroup,%20android.os.Bundle)
https://developer.android.com/reference/android/app/Fragment.html#onActivityCreated(android.os.Bundle)
https://developer.android.com/reference/android/os/Bundle.html
https://developer.android.com/reference/android/app/Fragment.html#setArguments(android.os.Bundle)
https://developer.android.com/reference/android/app/Fragment.html#getArguments()
https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-1-expand-the-user-experience/lesson-1-fragments/1-2-c-fragment-lifecycle-and-communications/1-2-c-fragment-lifecycle-and-communications.html
https://developer.android.com/reference/android/app/Fragment.html
https://developer.android.com/guide/components/fragments.html
https://developer.android.com/reference/android/app/FragmentManager.html
https://developer.android.com/reference/android/app/FragmentTransaction.html
https://developer.android.com/training/basics/fragments/creating.html
https://developer.android.com/training/basics/fragments/communicating.html

The	Activity	Lifecycle
Building	a	Flexible	UI
Building	a	Dynamic	UI	with	Fragments
Handling	Configuration	Changes
Tasks	and	Back	Stack

Videos:

What	the	Fragment?	(Google	I/O	2016)
Fragment	Tricks	(Google	I/O	'17)
Por	que	Precisamos	de	Fragments?

Introduction

50

https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/training/basics/fragments/fragment-ui.html
https://developer.android.com/training/basics/fragments/index.html
https://developer.android.com/guide/topics/resources/runtime-changes.html
https://developer.android.com/guide/components/activities/tasks-and-back-stack.html
https://www.youtube.com/watch?v=k3IT-IJ0J98
https://www.youtube.com/watch?v=eUG3VWnXFtg
https://www.youtube.com/watch?v=m3A_82efr70

2.1:	Building	app	widgets
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Set	up	the	app	widget	project
Task	2.	Create	the	app	widget	layout
Task	3.	Add	app	widget	updates	and	actions
Solution	code
Coding	challenge
Summary
Related	concept
Learn	more

An	app	widget	is	a	miniature	app	view	that	appears	on	the	Android	home	screen	and	can	be
updated	periodically	with	new	data.	App	widgets	display	small	amounts	of	information	or
perform	simple	functions	such	as	showing	the	time,	summarizing	the	day's	calendar	events,

Introduction

51

or	controlling	music	playback.	

App	widgets	are	add-ons	for	an	existing	app	and	are	made	available	to	users	when	the	app
is	installed	on	a	device.	Your	app	can	have	multiple	widgets.	You	can't	create	a	stand-alone
app	widget	without	an	associated	app.

Users	can	place	widgets	on	any	home	screen	panel	from	the	widget	picker.	To	access	the
widget	picker,	touch	&	hold	any	blank	space	on	the	home	screen,	and	then	choose	Widgets.
Touch	&	hold	any	widget	to	place	it	on	the	home	screen.	You	can	also	touch	&	hold	an
already-placed	widget	to	move	or	resize	it,	if	it	is	resizeable.

Note:	As	of	Android	5.0,	widgets	can	only	be	placed	on	the	Android	home	screen.	Previous
versions	of	Android	(4.2/API	17	to	4.4/API	19)	also	allowed	widgets	to	appear	on	the	lock
screen	(keyguard).	Although	the	app	widget	tools	and	APIs	still	occasionally	mention	lock
screen	widgets,	that	functionality	is	deprecated.	This	chapter	discusses	only	the	home
screen	widgets.
App	widgets	that	display	data	can	be	updated	periodically	to	refresh	that	data,	either	by	the
system	or	by	the	widget's	associated	app,	through	a	broadcast	intent.	An	app	widget	is	a
broadcast	receiver	that	accepts	those	intents.

App	widgets	can	also	perform	actions	when	tapped,	such	as	launching	their	associated	app.
You	can	create	click	handlers	to	perform	actions	for	the	widget	as	a	whole,	or	for	any	view	of
the	widget	layout	such	as	a	button.

Introduction

52

In	this	practical,	you	build	a	simple	widget	that	displays	data,	updates	itself	periodically,	and
includes	a	button	to	refresh	the	data	on	request.

Note:	The	term	"widget"	in	Android	also	commonly	refers	to	the	user	interface	elements
(views)	you	use	to	build	an	app,	such	as	buttons	and	checkboxes.	In	this	chapter	all
instances	of	the	word	widget	refers	to	app	widgets.

What	you	should	already	KNOW
You	should	be	familiar	with:

Creating,	building,	and	running	apps	in	Android	Studio.
Sending	and	receiving	broadcast	intents.
Building	and	sending	pending	intents.

What	you	will	LEARN
You	will	learn	how	to:

Identify	app	widgets,	and	understand	the	key	parts	of	an	app	widget.
Add	an	app	widget	to	your	project	with	Android	Studio.
Understand	the	mechanics	of	app	widget	updates,	and	how	to	receive	and	handle
update	intents	for	your	app	widget.
Implement	app	widget	actions	when	an	element	of	an	app	widget	is	tapped.

What	you	will	DO
Add	an	app	widget	to	a	starter	project	with	Android	Studio.
Implement	an	app	widget	layout.
Implement	app	widget	updates,	and	learn	the	difference	between	periodic	and
requested	updates.

App	overview
The	AppWidgetSample	app	demonstrates	a	simple	app	widget.	Because	the	app
demonstrates	app	widgets,	the	app's	main	activity	is	minimal,	with	one	explanatory	text	view:

Introduction

53

Introduction

54

The	actual	app	widget	has	two	panels	for	information	and	a	button:	

The	panels	display:

The	app	widget	ID.	The	user	can	place	multiple	widget	instances	on	their	home	screen.
An	internal	ID	identifies	each	widget.
How	many	times	the	widget	has	been	updated,	and	the	last	update	time.
An	Update	now	button,	to	request	an	immediate	update.

Task	1.	Set	up	the	app	widget	project
In	this	task,	you	open	the	starter	app	for	the	project,	add	a	skeleton	app	widget	to	that	app
with	Android	Studio,	and	explore	the	files	for	that	new	app	widget.

1.1	Build	and	run	the	app	project

1.	 Create	a	new	Android	project.	Call	it		AppWidgetSample		and	use	the	Empty	activity
template.

2.	 Open		res/layout/activity_main.xml	.
3.	 Change	the		android:text		attribute	of	the		TextView		to	read	"All	the	functionality	for	this

app	is	in	the	app	widget."	Extract	the	string.
4.	 Select	File	>	New	>	Widget	>	AppWidget.	Leave	the	widget	name	as	NewAppWidget.

Set	the	minimum	width	and	minimum	height	to	2	cells.	Leave	all	the	other	options	as
they	are,	and	click	Finish.	

Introduction

55

Android	Studio	generates	all	the	template	files	you	need	for	adding	an	app	widget	to
your	app.	You	explore	those	files	in	the	next	section.

5.	 Build	and	run	the	project	in	Android	Studio.

6.	 When	the	app	appears,	tap	the	home	button.
7.	 Touch	&	hold	any	empty	space	on	the	home	screen,	then	tap	Widgets.	A	list	of

available	widgets	appears.	This	screen	is	sometimes	called	the	"widget	picker."
8.	 Scroll	down	to	AppWidgetSample	section,	and	touch	&	hold	the	blue	EXAMPLE

widget.	Place	it	in	any	empty	spot	on	any	home	screen,	and	release.

The	new	widget	appears	on	the	home	screen	two	cells	wide	and	one	cell	high,	the
default	widget	size	you	defined	when	you	created	the	widget.	This	sample	widget
doesn't	do	anything	other	than	display	the	word	EXAMPLE	on	a	blue	background.	

Introduction

56

9.	 Add	another	widget.	You	can	add	multiple	widgets	from	the	same	app	on	your	home
screen.	This	functionality	is	mostly	useful	for	widgets	that	can	be	configured	to	display
customized	information.	For	example,	different	weather	widgets	could	display	the
weather	in	different	locations.

10.	 Touch	&	hold	either	of	the	EXAMPLE	widgets.	Resize	handles	appear	on	the	edges	of
the	widget.	You	can	now	move	the	widget	or	change	the	size	of	the	widget	to	take	up
more	than	the	allotted	cells	on	the	home	screen.

11.	 To	remove	an	EXAMPLE	widget	from	the	device,	touch	&	hold	the	widget	and	drag	it	to
the	word	Remove	at	the	top	of	the	screen.	Removing	a	widget	only	removes	that
particular	widget	instance.	Neither	the	second	widget	nor	the	app	are	removed.

1.2	Explore	the	AppWidgetSample	files

The	skeleton	EXAMPLE	widget	that	Android	Studio	created	for	you	generates	many	files	in
your	project.	In	this	task	you	explore	the	files.

1.	 Open		res/xml/new_app_widget_info.xml	.

This	XML	configuration	file	is	usually	called	the	provider-info	file	.	The	provider-info	file
defines	several	properties	of	your	app	widget,	including	the	widget's	layout	file,	default
size,	configuration	activity	(if	any),	preview	image,	and	periodic	update	frequency	(how
often	the	widget	updates	itself,	in	milliseconds).

2.	 Open		res/layout/new_app_widget.xml	.

This	file	defines	the	layout	of	your	app	widget.	App	widget	layouts	are	based	on
	RemoteViews		elements,	rather	than	the	normal		View		hierarchy,	although	you	define
them	in	XML	the	same	way.	Remote	views	provide	a	separate	view	hierarchy	that	can
be	displayed	outside	an	app.	Remote	views	include	a	limited	subset	of	the	available
Android	layouts	and	views.

3.	 Open		res/drawable/example_appwidget_preview.png	.	This	drawable	is	a	PNG	image	that
provides	a	preview	of	the	widget	itself.	The	preview	image	appears	on	the	Android
widget	picker	screen	when	the	user	installs	your	widget.	The	default	preview	image	you
get	when	you	create	the	app	widget	is	a	blue	rectangle	with	the	word	EXAMPLE.	If
there's	no	preview	image,	the	icon	for	your	app	is	used	instead.	The	resource	for	the
preview	image	is	specified	in	the	provider-info	file.

4.	 Open		java/values/NewAppWidget.java	.

This	file	is	the	widget	provider	,	the	Java	file	that	defines	the	behavior	for	your	widget.
The	key	task	for	a	widget	provider	is	to	handle	widget	update	intents.	App	widgets
extend	the		AppWidgetProvider		class,	which	in	turn	extends		BroadcastReceiver	.

Introduction

57

https://developer.android.com/reference/android/widget/RemoteViews.html
https://developer.android.com/reference/android/appwidget/AppWidgetProvider.html
https://developer.android.com/reference/android/content/BroadcastReceiver.html

5.	 Open		res/values/dimens.xml	.

This	default	dimensions	file	includes	a	value	for	the	widget	padding	of	8	dp.	App	widgets
look	best	with	a	little	extra	space	around	the	edges	so	that	the	widgets	do	not	display
edge-to-edge	on	the	user's	home	screen.	Before	Android	4.0	(API	14),	your	layout
needed	to	include	this	padding.	After	API	14	the	system	adds	the	margin	for	you.

6.	 Open		res/values/dimens.xml(2)/dimen.xml	(v14)	.

This	dimensions	file	is	used	for	Android	API	versions	14	and	higher.	The	value	of
widget-margin	in	this	file	is	0	dp,	because	the	system	adds	the	margin	for	you.

7.	 Open		manifests/AndroidManifest.xml	.

In	the		AndroidManifest.xml		file,	the	widget	provider	is	defined	as	a		BroadcastReceiver	
with	the		<receiver>		tag,	because	the		AppWidgetProvider		class	extends
	BroadcastReceiver	.	The	definition	also	includes	an	intent	filter	with	an	action	of
	android.appwidget.action.APPWIDGET_UPDATE	,	which	indicates	that	this	app	widget	listens
to	app	widget	update	broadcast	intents.	Note	the		android:resource		attribute	of	the
	meta-data		tag,	which	specifies	the	widget	provider-info	file	(new_app_widget_info).

1.3	Explore	the	provider-info	file

Some	metadata	about	the	app	widget	is	defined	in	the	widget	provider-info	file.	In	this	step,
you	explore	that	file	and	some	of	the	metadata	it	contains.

1.	 Open		res/xml/new_app_widget_info.xml	.
2.	 Note	the		android:initialLayout		attribute.

This	attribute	defines	the	layout	resource	that	your	app	widget	will	use,	in	this	case	the
	@layout/new_app_widget		layout	file.

Note:	The	default	provider-info	file	also	includes	an		android:initialKeyguardLayout	
attribute.	This	attribute	enables	you	to	provide	a	different	layout	for	keyguard	(lock
screen)	widgets.	Previous	versions	of	Android	(4.2/API	17	to	4.4/API	19)	allowed
widgets	to	appear	on	the	lock	screen.	Although	the	app	widget	tools	and	APIs	still
occasionally	mention	lock	screen	widgets,	that	functionality	is	deprecated.

3.	 Note	the		android:minHeight		and		android:minWidth		attributes.

These	attributes	define	the	minimum	initial	size	of	the	widget,	in	dp.	When	you	defined
your	widget	in	Android	Studio	to	be	2	cells	wide	by	2	high,	Android	Studio	fills	in	these
values	in	the	provider-info	file.	When	your	widget	is	added	to	a	user's	home	screen,	it	is
stretched	both	horizontally	and	vertically	to	occupy	as	many	grid	cells	as	satisfy	the
	minWidth		and		minHeight		values.

Introduction

58

https://developer.android.com/reference/android/appwidget/AppWidgetManager.html#ACTION_APPWIDGET_UPDATE

The	rule	for	how	many	dp	fit	into	a	grid	cell	is	based	on	the	equation	70	×	grid_size	−
30,	where	grid_size	is	the	number	of	cells	you	want	your	widget	to	take	up.	Generally
speaking,	you	can	use	this	table	to	determine	what	your		minWidth		and		minHeight	
should	be:

#	of	cells	(columns	or	rows) 	minWidth		or		minHeight	

1 40	dp

2 110	dp

3 180	dp

4 250	dp

Task	2.	Create	the	app	widget	layout
In	this	task,	you	learn	how	home	screen	cells	translate	to	actual	widget	dimensions.	You
create	the	widget	layout	views	in	the	layout	editor,	and	you	edit	the	widget	provider	to	build
and	display	the	layout.

2.1	Add	the	widget	layout

1.	 Open		res/layout/new_app_widget.xml	.
2.	 Note	the	value	for		android:padding		in	the	top-level		RelativeLayout		element.	This

padding	value	is	defined	in	the		dimens.xml		files	(@dimen/widget_margin),	and	varies
depending	on	the	version	of	Android	on	which	the	widget	is	running.

3.	 Delete	the	existing		TextView		element.	Add	a		LinearLayout		element	inside	the
	RelativeLayout		element	with	these	attributes:

Attribute Value
	android:id	 	"@+id/section_id"	

	android:layout_width	 	"match_parent"	

	android:layout_height	 	"wrap_content"	

	android:layout_alignParentLeft	 	"true"	

	android:layout_alignParentStart	 	"true"	

	android:layout_alignParentTop	 	"true"	

	android:orientation	 	"horizontal"	

	style	 	"@style/AppWidgetSection"	

This	linear	layout	provides	the	appearance	of	a	light-colored	panel	on	top	of	a	grey-blue
background.	The		AppWidgetSection		style	does	not	yet	exist	and	appears	in	red	in
Android	Studio.	(You	add	it	later.)

Introduction

59

4.	 Inside	the		LinearLayout	,	add	a		TextView		with	these	attributes:

Attribute Value
	android:id	 	"@+id/appwidget_id_label"	

	android:layout_width	 	"0dp"	

	android:layout_height	 	"wrap_content"	

	android:layout_weight	 	"2"	

	android:text	 	"Widget	ID"	

	style	 	"@style/AppWidgetLabel"	

Extract	the	string	for	the	text.	This	text	view	is	the	label	for	the	widget	ID.	The
	AppWidgetLabel		style	does	not	yet	exist.

5.	 Add	a	second		TextView		below	the	first	one,	and	give	it	these	attributes:

Attribute Value
	android:id	 	"@+id/appwidget_id"	

	android:layout_width	 	"0dp"	

	android:layout_height	 	"wrap_content"	

	android:layout_weight	 	"1"	

	android:text	 	"XX"	

	style	 	"@style/AppWidgetText"	

You	do	not	need	to	extract	the	string	for	the	text	in	this	text	view,	because	the	string	is
replaced	with	the	actual	ID	when	the	app	widget	runs.	As	with	the	previous	views,	the
	AppWidgetText		style	is	not	yet	defined.

6.	 Open		res/values/styles.xml	.	Add	the	following	code	below	the		AppTheme		styles	to
define		AppWidgetSection	,		AppWidgetLabel	,	and		AppWidgetText	:

Introduction

60

	<style	name="AppWidgetSection"	parent="@android:style/Widget">

				<item	name="android:padding">8dp</item>

				<item	name="android:layout_marginTop">12dp</item>

				<item	name="android:layout_marginLeft">12dp</item>

				<item	name="android:layout_marginRight">12dp</item>

				<item	name="android:background">@android:color/white</item>

	</style>

	<style	name="AppWidgetLabel"	parent="AppWidgetText">

				<item	name="android:textStyle">bold</item>

	</style>

	<style	name="AppWidgetText"	parent="Base.TextAppearance.AppCompat.Subhead">

				<item	name="android:textColor">@android:color/black</item>

	</style>

7.	 Return	to	the	app	widget's	layout	file.	Click	the	Design	tab	to	examine	the	layout	in	the
design	editor.	By	default,	Android	Studio	assumes	that	you	are	designing	a	layout	for	a
regular	activity,	and	it	displays	a	default	activity	"skin"	around	your	layout.	Android
Studio	does	not	provide	a	preview	for	app	widget	designs.

TIP:	To	simulate	a	simple	widget	design,	choose	Android	Wear	Square	from	the	device
menu	and	resize	the	layout	to	be	approximately	110	dp	wide	and	110	dp	tall	(the	values	of
	minWidth		and		minHeight		in	the	provider-info	file).

2.2	Build	the	widget	views	in	the	widget	provider

The	widget-provider	class	is	a	subclass	of		AppWidgetProvider	.	You	must	implement	the
	onUpdate()		method	for	every	app	widget.	This	method	is	called	the	first	time	the	widget
runs	and	again	each	time	the	widget	receives	an	update	request	(a	broadcast	intent).

Implementing	a	widget	update	typically	involves	these	tasks:

Retrieve	any	new	data	that	the	app	widget	needs	to	display.
Build	a		RemoteViews		object	from	the	app's	context	and	the	app	widget's	layout	file.
Update	any	views	within	the	app	widget's	layout	with	new	data.
Tell	the	app	widget	manager	to	redisplay	the	widget	with	the	new	remote	views.

Unlike	activities,	where	you	only	inflate	the	layout	once	and	then	modify	it	in	place	as	new
data	appears,	the	entire	app	widget	layout	must	be	reconstructed	and	redisplayed	each	time
the	widget	receives	an	update	intent.

1.	 Open		java/values/NewAppWidget.java	.
2.	 Scroll	down	to	the		onUpdate()		method,	and	examine	the	method	parameters.

Introduction

61

https://developer.android.com/reference/android/appwidget/AppWidgetProvider.html

The		onUpdate()		method	is	called	with	several	arguments	including	the	context,	the	app
widget	manager,	and	an	array	of	integers	that	contains	all	the	available	app	widget	IDs.

Every	app	widget	that	the	user	adds	to	the	home	screen	gets	a	unique	internal	ID	that
identifies	that	app	widget.	Each	time	you	get	an	update	request	in	your	provider	class,
you	must	update	all	app	widget	instances	by	iterating	over	that	array	of	IDs.

The	template	code	that	Android	Studio	defines	for	your	widget	provider's		onUpdate()	
method	iterates	over	that	array	of	app	widget	IDs	and	calls	the		updateAppWidget()	
helper	method.

@Override

public	void	onUpdate(Context	context,	

			AppWidgetManager	appWidgetManager,	int[]	appWidgetIds)	{

			//	There	may	be	multiple	widgets	active,	so	update	all	of	them

			for	(int	appWidgetId	:	appWidgetIds)	{

						updateAppWidget(context,	appWidgetManager,	appWidgetId);

			}

}

When	you	use	this	template	code	for	an	app	widget,	you	do	not	need	to	modify	the
actual		onUpdate()		method.	Use	the		updateAppWidget()		helper	method	to	update	each
individual	widget.

3.	 In	the		updateAppWidget()		method,	delete	the	line	that	gets	the	app	widget	text:

	CharSequence	widgetText	=	

				context.getString(R.string.appwidget_text);

The	template	code	for	the	app	widget	includes	this	string.	You	won't	use	it	for	this	app
widget.

4.	 Modify	the	arguments	to	the		views.setTextViewText()		method	to	update	the
	R.id.appwidget_id		view	with	the	actual		appWidgetId	.

	views.setTextViewText(R.id.appwidget_id,	String.valueOf(appWidgetId));

5.	 Delete	the		onEnabled()		and		onDisabled()		method	stubs.

You	would	use		onEnabled()		to	perform	initial	setup	for	a	widget	(such	as	opening	a
new	database)	when	the	first	instance	is	initially	added	to	the	user's	home	screen.	Even
if	the	user	adds	multiple	widgets,	this	method	is	only	called	once.	Use		onDisabled()	,

Introduction

62

https://developer.android.com/reference/android/appwidget/AppWidgetProvider.html#onUpdate(android.content.Context,%20android.appwidget.AppWidgetManager,%20int[])
https://developer.android.com/reference/android/appwidget/AppWidgetProvider.html#onEnabled(android.content.Context)
https://developer.android.com/reference/android/appwidget/AppWidgetProvider.html#onDisabled(android.content.Context)

correspondingly,	to	clean	up	any	resources	that	were	created	in		onEnabled()		once	the
last	instance	of	that	widget	is	removed.	You	won't	use	either	of	these	methods	for	this
app,	so	you	can	delete	them.

6.	 Build	and	run	the	app.	When	the	app	launches,	go	to	the	device's	Home	screen.

Delete	the	existing	EXAMPLE	widget	from	the	home	screen,	and	add	a	new	widget.	The
preview	for	your	app	widget	in	the	widget	picker	still	uses	an	image	that	represents	the
EXAMPLE	widget.	When	you	place	the	new	widget	on	a	home	screen,	the	widget
should	show	the	new	layout	with	the	internal	widget	ID.	Note	that	the	current	height	of
the	widget	leaves	a	lot	of	space	below	the	panel	for	the	ID.	You'll	add	more	panels	soon.

Note:	Because	app	widgets	are	updated	independently	from	their	associated	app,
sometimes	when	you	make	changes	to	an	app	widget	in	Android	Studio	those	changes
do	not	show	up	in	existing	apps.	When	testing	widgets	make	sure	to	remove	all	existing
widgets	before	adding	new	ones.

7.	 Add	a	second	copy	of	the	app	widget	to	the	home	screen.	Note	that	each	widget	has	its
own	widget	ID.

Task	3.	Add	app	widget	updates	and	actions
The	data	your	app	widget	contains	can	be	updated	in	two	ways:

The	widget	can	update	itself	at	regular	intervals.	You	can	define	the	interval	in	the
widget's	provider-info	file.
The	widget's	associated	app	can	request	a	widget	update	explicitly.

In	both	these	cases	the	app	widget	manager	sends	a	broadcast	intent	with	the	action
	ACTION_APPWIDGET_UPDATE	.	Your	app	widget-provider	class	receives	that	intent,	and	calls	the
	onUpdate()		method.

3.1	Handle	periodic	updates

Introduction

63

https://developer.android.com/reference/android/appwidget/AppWidgetManager.html#ACTION_APPWIDGET_UPDATE

In	this	task,	you	add	a	second	panel	to	the	app	widget	that	indicates	how	many	times	the
widget	has	been	updated,	and	the	last	update	time.

1.	 In	the	widget	layout	file,	add	a	second		LinearLayout		element	just	after	the	first,	and
give	it	these	attributes:

Attribute Value
	android:id	 	"@+id/section_update"	

	android:layout_width	 	"match_parent"	

	android:layout_height	 	"wrap_content"	

	android:layout_alignParentLeft	 	"true"	

	android:layout_alignParentStart	 	"true"	

	android:layout_below	 	"@+id/section_id"	

	android:orientation	 	"vertical"	

	style	 	"@style/AppWidgetSection"	

2.	 Inside	the	new		LinearLayout	,	add	a		TextView		with	these	attributes,	and	extract	the
string:

Attribute Value
	android:id	 	"@+id/appwidget_update_label"	

	android:layout_width	 	"match_parent"	

	android:layout_height	 	"wrap_content"	

	android:layout_marginBottom	 	"2dp"	

	android:text	 	"Last	Updated"	

	style	 	"@style/AppWidgetLabel"	

3.	 Add	a	second		TextView		after	the	first	one	and	give	it	these	attributes:

Attribute Value
	android:id	 	"@+id/appwidget_update"	

	android:layout_width	 	"match_parent"	

	android:layout_height	 	"wrap_content"	

	android:layout_weight	 	"1"	

	android:text	 	"%1$d	@%2$s"	

	style	 	"@style/AppWidgetText"	

Extract	the	string	in		android:text		and	give	it	the	name		date_count_format	.	The	odd
characters	in	this	text	string	are	placeholder	formatting	code.	Parts	of	this	string	will	be
replaced	in	the	Java	code	for	your	app,	with	the	formatting	codes	filled	in	with	numeric
values.	In	this	case	the	formatting	code	has	four	parts:

Introduction

64

	%1	:	The	first	placeholder.
	$d	:	The	format	for	the	first	placeholder	value.	In	this	case,	a	decimal	number.
	%2	:	The	second	placeholder.
	$s	:	The	format	for	the	second	placeholder	value	(a	string).

The	parts	of	the	string	that	are	not	placeholders	(here,	just	the		@		sign)	are	passed
through	to	the	new	string.	You	can	find	out	more	about	placeholders	and	formatting
codes	in	the	Formatter	documentation.

TIP:	To	see	the	new	widget	in	Android	Studio's	Design	tab,	you	may	need	to	enlarge
the	layout	by	dragging	the	lower-right	corner	downward.

4.	 In	the	app	widget	provider-info	file	(res/xml/new_app_widget_info.xml),	change	the
	android:minHeight		attribute	to		180dp	.

	android:minHeight="180dp"

When	you	add	more	content	to	the	layout,	the	default	size	of	the	widget	in	cells	on	the
home	screen	also	needs	to	change.	This	iteration	of	the	app	widget	is	3	cells	high	by	2
wide,	which	means		minHeight		is	now	180	dp	and		minWidth		remains	110	dp.

5.	 Also	in	the	provider-info	file,	change		android:updatePeriodMillis		to		1800000	.

The		android:updatePeriodMillis		attribute	defines	how	often	the	app	widget	is	updated.
The	default	update	interval	is	86,400,000	milliseconds	(24	hours).	1,800,000
milliseconds	is	a	30	minute	interval.	If	you	set		updatePeriodMillis		to	less	than
1,800,000	milliseconds,	the	app	widget	manager	only	sends	update	requests	every	30
minutes.	Because	updates	use	system	resources,	even	if	the	associated	app	is	not
running,	you	should	generally	avoid	frequent	app	widget	updates.

6.	 In	the	app	widget	provider	(NewAppWidget.java),	add	static	variables	to	the	top	of	the
class	for	shared	preferences.	You'll	use	shared	preferences	to	keep	track	of	the	current
update	count	for	the	widget.

	private	static	final	String	mSharedPrefFile	=	

				"com.example.android.appwidgetsample";

	private	static	final	String	COUNT_KEY	=	"count";

7.	 At	the	top	of	the		updateAppWidget()		method,	get	the	value	of	the	update	count	from	the
shared	preferences,	and	increment	that	value.

	SharedPreferences	prefs	=	context.getSharedPreferences(

				mSharedPrefFile,	0);

	int	count	=	prefs.getInt(COUNT_KEY	+	appWidgetId,	0);

	count++;

Introduction

65

https://developer.android.com/reference/java/util/Formatter.html#syntax

The	key	to	get	the	current	count	out	of	the	shared	preferences	includes	both	the	static
key		COUNT_KEY		and	the	current	app	widget	ID.	Each	app	widget	may	have	a	different
update	count	so	each	app	widget	needs	its	own	entry	in	the	shared	preferences.

8.	 Get	the	current	time	and	format	it	as	a	short	string	(DateFormat.SHORT):

	String	dateString	=	

				DateFormat.getTimeInstance(DateFormat.SHORT).format(new	Date());

You	will	need	to	import	both	the		DateFormat		(java.text.DateFormat)	and		Date	
(java.util.Date)	classes.

9.	 After	updating	the	text	view	for		appwidget_id	,	add	a	line	to	update	the
	appwidget_update		text	view.	This	code	gets	the	date	format	string	from	the	resources
and	substitutes	the	formatting	codes	in	the	string	with	the	actual	values	for	the	number
of	updates	(count)	and	the	current	update	time	(dateString):

	views.setTextViewText(R.id.appwidget_update,

								context.getResources().getString(

												R.string.date_count_format,	count,	dateString));

10.	 After	constructing	the		RemoteViews		object	and	before	requesting	the	update	from	the
app	widget	manager,	put	the	current	update	count	back	into	shared	preferences:

SharedPreferences.Editor	prefEditor	=	prefs.edit();

prefEditor.putInt(COUNT_KEY	+	appWidgetId,	count);

prefEditor.apply();

As	with	the	earlier	lines	where	you	retrieved	the	count	from	the	shared	preferences,
here	you	store	the	count	with	a	key	that	includes		COUNT_KEY		and	the	app	widget	ID,	to
differentiate	between	different	counts.

11.	 Compile	and	run	the	app.	As	before,	make	sure	you	remove	any	existing	widgets.

Introduction

66

https://developer.android.com/reference/java/text/DateFormat.html
https://developer.android.com/reference/java/util/Date.html

12.	 Add	two	widgets	to	the	home	screen,	at	least	one	minute	apart.	The	widgets	will	have
the	same	update	count	(1)	but	different	update	times.	

At	each	half	an	hour	interval	after	you	add	an	app	widget	to	the	home	screen,	the
Android	app	widget	manager	sends	an	update	broadcast	intent.	Your	widget	provider
accepts	that	intent,	increments	the	count	and	updates	the	time	for	each	widget.	You
could	wait	half	an	hour	to	see	the	widgets	update	itself,	but	in	the	next	section	you	add	a
button	that	manually	triggers	an	update.

The	automatic	update	interval	is	timed	from	the	first	instance	of	the	widget	you	placed
on	the	home	screen.	Once	that	first	widget	receives	an	update	request,	then	all	the
widget	instances	are	updated	at	the	same	time.

3.2	Add	an	update	button

In	this	last	task,	you	add	a	button	to	the	widget	that	explicitly	requests	a	widget	update	with	a
broadcast	intent.	With	this	button	you	can	update	your	widgets	on	request	without	waiting	for
the	widget	manager	to	get	around	to	updating	your	widgets.

1.	 In	the	widget	layout	file,	add	a		Button		element	just	below	the	second		LinearLayout	,
and	give	it	these	attributes:

Attribute Value
	android:id	 	"@+id/button_update"	

	android:layout_width	 	"wrap_content"	

	android:layout_height	 	"wrap_content"	

	android:layout_below	 	"@+id/section_update"	

	android:layout_centerHorizontal	 	"true"	

	android:text	 	"Update	now"	

	style	 	"@style/AppWidgetButton"	

Introduction

67

Again,	you	may	need	to	enlarge	the	widget	in	the	Design	tab.

2.	 In		styles.xml	,	add	this	style	for	the	button:

	<style	name="AppWidgetButton"	parent="Base.Widget.AppCompat.Button">

				<item	name="android:layout_marginTop">12dp</item>

	</style>

3.	 In	your		AppWidgetProvider		class,	in	the		updateAppWidget()		method,	create	an	intent
and	set	that	intent's	action	to		AppWidgetManager.ACTION_APPWIDGET_UPDATE	.	Add	these
lines	just	after	you	save	the	count	to	the	shared	preferences,	and	before	the	final	call	to
	appWidgetManager.updateAppWidget()	.

		Intent	intentUpdate	=	new	Intent(context,	NewAppWidget.class);

		intentUpdate.setAction(AppWidgetManager.ACTION_APPWIDGET_UPDATE);

The	new	intent	is	an	explicit	intent	with	the	widget-provider	class	(NewAppWidget.class)
as	the	target	component.

4.	 After	the	lines	to	create	the	intent,	create	an	array	of	integers	with	only	one	element:	the
current	app	widget	ID.

	int[]	idArray	=	new	int[]{appWidgetId};

5.	 Add	an	intent	extra	with	the	key		AppWidgetManager.EXTRA_APPWIDGET_IDS	,	and	the	array
you	just	created.

	intentUpdate.putExtra(AppWidgetManager.EXTRA_APPWIDGET_IDS,	idArray);

The	intent	needs	an	array	of	app	widget	IDs	to	update.	In	this	case	there's	only	the
current	widget	ID,	but	that	ID	still	needs	to	be	wrapped	in	an	array.

6.	 Use	the		PendingIntent.getBroadcast()		method	to	wrap	the	intent	as	a	pending	intent
that	will	perform	a	broadcast.

	PendingIntent	pendingUpdate	=	PendingIntent.getBroadcast(

				context,	appWidgetId,	intentUpdate,	

				PendingIntent.FLAG_UPDATE_CURRENT);

You	use	a	pending	intent	here	because	the	app	widget	manager	sends	the	broadcast
intent	on	your	behalf.

Introduction

68

https://developer.android.com/reference/android/appwidget/AppWidgetManager.html#ACTION_APPWIDGET_UPDATE
https://developer.android.com/reference/android/appwidget/AppWidgetManager.html#EXTRA_APPWIDGET_IDS
https://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context,%20int,%20android.content.Intent,%20int)

7.	 Set	the		onClick		listener	for	the	button	to	send	the	pending	intent.	Specifically	for	this
action,	the		RemoteViews		class	provides	a	shortcut	method	called
	setOnClickPendingIntent()	.

	views.setOnClickPendingIntent(R.id.button_update,	pendingUpdate);

TIP:	In	this	step,	a	single	view	(the	button)	sends	a	pending	intent.	To	have	the	entire
widget	send	a	pending	intent,	give	an	ID	to	the	top-level	widget	layout	view.	Specify	that
ID	as	the	first	argument	in	the		setOnClickPendingIntent()		method.

8.	 Compile	and	run	the	app.	Remove	all	existing	app	widgets	from	the	home	screen,	and
add	a	new	widget.	When	you	tap	the	Update	now	button,	both	the	update	count	and

the	time	update.	

9.	 Add	a	second	widget.	Confirm	that	tapping	the	Update	now	button	in	one	widget	only
updates	that	particular	widget	and	not	the	other	widget.

Solution	code
Android	Studio	project:	AppWidgetSample

Coding	challenge
Note:	All	coding	challenges	are	optional.
Challenge:	Update	the	widget	preview	image	with	a	screenshot	of	the	actual	app	widget.

TIP:	The	Android	emulator	includes	an	app	called	"Widget	Preview"	that	helps	create	a
preview	image.

Summary
An	app	widget	is	a	miniature	app	view	that	appears	on	the	Android	home	screen.	App

Introduction

69

https://developer.android.com/reference/android/widget/RemoteViews.html#setOnClickPendingIntent(int,%20android.app.PendingIntent)
https://github.com/google-developer-training/android-advanced/tree/master/AppWidgetSample

widgets	can	be	updated	periodically	with	new	data.	To	add	app	widgets	to	your	app	in
Android	Studio,	use	File	>	New	>	Widget	>	AppWidget.	Android	Studio	generates	all
the	template	files	you	need	for	your	app	widget.
The	app	widget	provider-info	file	is	in		res/xml/	.	This	file	defines	several	properties	of
your	app	widget,	including	its	layout	file,	default	size,	configuration	activity	(if	any),
preview	image,	and	periodic	update	frequency.
The	app	widget	provider	is	a	Java	class	that	extends		AppWidgetProvider	,	and
implements	the	behavior	for	your	widget—primarily	handling	managing	widget	update
requests.	The		AppWidgetProvider		class	in	turn	inherits	from		BroadcastReceiver	.
Because	widgets	are	broadcast	receivers,	the	widget	provider	is	defined	as	a	broadcast
receiver	in	the		AndroidManifest.xml		file	with	the		<receiver>		tag.
App	widget	layouts	are	based	on	remote	views	,	which	are	view	hierarchies	that	can	be
displayed	outside	an	app.	Remote	views	provide	a	limited	subset	of	the	available
Android	layouts	and	views.
When	placed	on	the	home	screen,	app	widgets	take	up	a	certain	number	of	cells	on	a
grid.	The	cells	correspond	to	a	specific	minimum	width	and	height	defined	in	the	widget
provider	file.	The	rule	for	how	many	dp	fit	into	a	grid	cell	is	based	on	the	equation	70	×
	grid_size		−	30,	where		grid_size		is	the	number	of	cells	you	want	your	widget	to	take
up.	In	general,	cells	correspond	to	these	dp	values:

#	of	columns	or	rows 	minWidth		or		minHeight	

1 40	dp

2 110	dp

3 180	dp

4 250	dp

App	widgets	can	receive	periodic	requests	to	be	updated	through	a	broadcast	intent.	An
app	widget	provider	is	a	broadcast	receiver	which	accepts	those	intents.	To	update	an
app	widget,	implement	the		onUpdate()		method	in	your	widget	provider.

The	user	may	have	multiple	instances	of	your	widget	installed.	The		onUpdate()		method
should	update	all	the	available	widgets	by	iterating	over	an	array	of	widget	IDs.
The	app	widget	layout	is	updated	for	new	data	in	the		onUpdate()		method	by	rebuilding
the	widget's	layout	views	(RemoteViews),	and	passing	that		RemoteViews		object	to	the
app	widget	manager.
App	widget	actions	are	pending	intents.	Use	the		onClickPendingIntent()		method	to
attach	an	app	widget	action	to	a	view.
Widget	updates	can	be	requested	with	a	pending	intent	whose	intent	has	the	action
	AppWidgetManager.ACTION_APPWIDGET_UPDATE	.	An	extra,
	AppWidgetManager.EXTRA_APPWIDGET_IDS	,	contains	an	array	of	app	widget	IDs	to	update.

Introduction

70

https://developer.android.com/reference/android/widget/RemoteViews.html

Related	concept
The	related	concept	documentation	is	in	App	Widgets.

Learn	more
App	Widgets
App	widget	design	guidelines
Determining	a	size	for	your	widget
	AppWidgetProvider		class
	AppWidgetProviderInfo		class
	AppWidgetManager		class
	BroadcastReceiver		class
	RemoteViews		class

Introduction

71

https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-1-expand-the-user-experience/lesson-2-app-widgets/2-1-c-app-widgets/2-1-c-app-widgets.html
https://developer.android.com/guide/topics/appwidgets/index.html
https://developer.android.com/design/patterns/widgets.html
https://developer.android.com/guide/practices/ui_guidelines/widget_design.html#anatomy_determining_size
https://developer.android.com/reference/android/appwidget/AppWidgetProvider.html
https://developer.android.com/reference/android/appwidget/AppWidgetProviderInfo.html
https://developer.android.com/reference/android/appwidget/AppWidgetManager.html
https://developer.android.com/reference/android/content/BroadcastReceiver.html
https://developer.android.com/reference/android/widget/RemoteViews.html

3.1:	Working	with	sensor	data
Contents:

Introduction
What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	List	the	available	sensors
Task	2.	Get	sensor	data
Solution	code
Coding	challenge
Summary
Related	concept
Learn	more

Many	Android-powered	devices	include	built-in	sensors	that	measure	motion,	orientation,
and	environmental	conditions	such	as	ambient	light	or	temperature.	These	sensors	can
provide	data	to	your	app	with	high	precision	and	accuracy.	Sensors	can	be	used	to	monitor
three-dimensional	device	movement	or	positioning,	or	to	monitor	changes	in	the
environment	near	a	device,	such	as	changes	to	temperature	or	humidity.	For	example,	a
game	might	track	readings	from	a	device's	accelerometer	sensor	to	infer	complex	user
gestures	and	motions,	such	as	tilt,	shake,	or	rotation.

In	this	practical	you	learn	about	the	Android	sensor	framework,	which	is	used	to	find	the
available	sensors	on	a	device	and	retrieve	data	from	those	sensors.

The	device	camera,	fingerprint	sensor,	microphone,	and	GPS	(location)	sensor	all	have	their
own	APIs	and	are	not	considered	part	of	the	Android	sensor	framework.

What	you	should	already	KNOW
You	should	be	familiar	with:

Creating,	building,	and	running	apps	in	Android	Studio.
Running	and	testing	apps	with	the	Android	emulator.

What	you	will	LEARN

Introduction

72

You	will	learn	how	to:

Query	the	sensor	manager	for	available	sensors,	and	retrieve	information	about	specific
sensors.
Register	listeners	for	sensor	data.
React	to	incoming	sensor	data.

What	you	will	DO
Create	an	app	that	lists	the	available	device	sensors.
Run	the	app	on	a	device	and	on	the	emulator	to	view	sensors.
Create	a	second	app	that	gets	data	from	the	light	and	proximity	sensors,	and	displays
that	data.
Interact	with	the	device	and	note	the	changes	in	sensor	data.
Run	the	app	in	the	emulator	and	learn	about	the	emulator's	virtual	sensors.

App	overview
You	will	build	two	apps	in	this	practical.	The	first	app	lists	the	available	sensors	on	the	device
or	emulator.	The	list	of	sensors	is	scrollable,	if	it	is	too	big	to	fit	the	screen.

Introduction

73

Introduction

74

The	second	app,	modified	from	the	first,	gets	data	from	the	ambient	light	and	proximity
sensors,	and	displays	that	data.	Light	and	proximity	sensors	are	some	of	the	most	common
Android	device	sensors.

Introduction

75

Introduction

76

Task	1.	List	the	available	sensors
In	this	task,	you	build	a	simple	app	that	queries	the	sensor	manager	for	the	list	of	sensors
available	on	the	device.

1.1	Build	the	app

1.	 Create	a	new	Android	project.	Call	it	SensorSurvey	and	use	the	Empty	activity	template.
2.	 Open		res/layout/activity_main.xml	.
3.	 Add	a	margin	of	16	dp	to	the	constraint	layout.

	android:layout_margin="16dp"

4.	 Delete	the	existing		TextView	.
5.	 Add	a		ScrollView		element	inside	the	constraint	layout.	Give	it	these	attributes:

Attribute Value
	android:layout_width	 	"match_parent"	

	android:layout_height	 	"match_parent"	

	app:layout_constraintBottom_toBottomOf	 	"parent"	

	app:layout_constraintTop_toTopOf	 	"parent"	

	app:layout_constraintLeft_toLeftOf	 	"parent"	

	app:layout_constraintRight_toRightOf	 	"parent"	

The		ScrollView		is	here	to	allow	the	list	of	sensors	to	scroll	if	it	is	longer	than	the
screen.

6.	 Add	a		TextView		element	inside	the		ScrollView		and	give	it	these	attributes:

Attribute Value
	android:id	 	"@+id/sensor_list"	

	android:layout_width	 	"wrap_content"	

	android:layout_height	 	"wrap_content"	

	android:text	 	"(placeholder)"	

This		TextView		holds	the	list	of	sensors.	The	placeholder	text	is	replaced	at	runtime	by
the	actual	sensor	list.	The	layout	for	your	app	should	look	like	this	screenshot:

Introduction

77

https://developer.android.com/reference/android/widget/ScrollView.html

Introduction

78

7.	 Open		MainActivity		and	add	a	variable	at	the	top	of	the	class	to	hold	an	instance	of
	SensorManager	:

	private	SensorManager	mSensorManager;

The	sensor	manager	is	a	system	service	that	lets	you	access	the	device	sensors.

8.	 In	the		onCreate()		method,	below	the		setContentView()		method,	get	an	instance	of	the
sensor	manager	from	system	services,	and	assign	it	to	the		mSensorManager		variable:

	mSensorManager	=	

				(SensorManager)	getSystemService(Context.SENSOR_SERVICE);

9.	 Get	the	list	of	all	sensors	from	the	sensor	manager.	Store	the	list	in	a		List		object
whose	values	are	of	type		Sensor	:

	List<Sensor>	sensorList		=	

					mSensorManager.getSensorList(Sensor.TYPE_ALL);

The		Sensor		class	represents	an	individual	sensor	and	defines	constants	for	the
available	sensor	types.	The		Sensor.TYPE_ALL		constant	indicates	all	the	available
sensors.

10.	 Iterate	over	the	list	of	sensors.	For	each	sensor,	get	that	sensor's	official	name	with	the
	getName()		method,	and	append	that	name	to	the		sensorText		string.	Each	line	of	the
sensor	list	is	separated	by	the	value	of	the		line.separator		property,	typically	a	newline
character:

StringBuilder	sensorText	=	new	StringBuilder();

for	(Sensor	currentSensor	:	sensorList)	{

									sensorText.append(currentSensor.getName()).append(

												System.getProperty("line.separator"));

}

11.	 Get	a	reference	to	the		TextView		for	the	sensor	list,	and	update	the	text	of	that	view	with
the	string	containing	the	list	of	sensors:

TextView	sensorTextView	=	(TextView)	findViewById(R.id.sensor_list);

sensorTextView.setText(sensorText);

1.2	Run	the	app	on	a	device	and	in	the	emulator

Introduction

79

https://developer.android.com/reference/java/util/List.html
https://developer.android.com/reference/android/hardware/Sensor.html
https://developer.android.com/reference/android/hardware/Sensor.html
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ALL
https://developer.android.com/reference/android/hardware/Sensor.html#getName()

Different	Android	devices	have	different	sensors	available,	which	means	the	SensorSurvey
app	shows	different	results	for	each	device.	In	addition,	the	Android	emulator	includes	a
small	set	of	simulated	sensors.

1.	 Run	the	app	on	a	physical	device.	The	output	of	the	app	looks	something	like	this
screenshot:

Introduction

80

Introduction

81

In	this	list,	lines	that	begin	with	a	letter/number	code	represent	physical	hardware	in	the
device.	The	letters	and	numbers	indicate	sensor	manufacturers	and	model	numbers.	In
most	devices	the	accelerometer,	gyroscope,	and	magnetometer	are	physical	sensors.

Lines	without	letter/number	codes	are	virtual	or	composite	sensors,	that	is,	sensors	that
are	simulated	in	software.	These	sensors	use	the	data	from	one	or	more	physical
sensors.	So,	for	example,	the	gravity	sensor	may	use	data	from	the	accelerometer,
gyroscope,	and	magnetometer	to	provide	the	direction	and	magnitude	of	gravity	in	the
device's	coordinate	system.

2.	 Run	the	app	in	an	emulator.	The	output	of	the	app	looks	something	like	this	screenshot:	

Because	the	Android	emulator	is	a	simulated	device,	all	the	available	sensors	are	virtual
sensors.	"Goldfish"	is	the	name	of	the	emulator's	Linux	kernel.

3.	 Click	the	More	button	(three	horizontal	dots)	on	the	emulator's	control	panel.	The
Extended	Controls	window	appears.

Introduction

82

4.	 Click	Virtual	Sensors.	

This	window	shows	the	settings	and	current	values	for	the	emulator's	virtual	sensors.
Drag	the	image	of	the	device	to	simulate	motion	and	acceleration	with	the
accelerometer.	Dragging	the	device	image	may	also	rotate	the	main	emulator	window.

5.	 Click	the	Additional	Sensors	tab.	

Introduction

83

This	tab	shows	the	other	available	virtual	sensors	for	the	emulator,	including	the	light,
temperature,	and	proximity	sensors.	You	use	more	of	these	sensors	in	the	next	task.

Task	2.	Get	sensor	data
The	Android	sensor	framework	provides	the	ability	for	your	app	to	register	for	and	react	to
changes	in	sensor	data.	In	this	task	you	modify	your	existing	app	to	listen	to	and	report
values	from	the	proximity	and	light	sensors.

The	light	sensor	measures	ambient	light	in	lux,	a	standard	unit	of	illumination.	The	light
sensor	typically	is	used	to	automatically	adjust	screen	brightness.
The	proximity	sensor	measures	when	the	device	is	close	to	another	object.	The
proximity	sensor	is	often	used	to	turn	off	touch	events	on	a	phone's	screen	when	you
answer	a	phone	call,	so	that	touching	your	phone	to	your	face	does	not	accidentally
launch	apps	or	otherwise	interfere	with	the	device's	operation.

2.1	Modify	the	layout

1.	 Open		res/layout/activity_main.xml	.
2.	 Delete	the		ScrollView		and		TextView		elements	from	the	previous	app.
3.	 Add	a		TextView		and	give	it	the	attributes	in	the	following	table.	Extract	the	string	into	a

resource	called		"label_light"	.	This	text	view	will	print	the	current	value	from	the	light
sensor.

Attribute Value
	android:id	 	"@+id/label_light"	

	android:layout_width	 	"wrap_content"	

	android:layout_height	 	"wrap_content"	

	android:text	 	"Light	Sensor:	%1$.2f"	

	app:layout_constraintLeft_toLeftOf	 	"parent"	

	app:layout_constraintTop_toBottomOf	 	"parent"	

The		"%1$.2f"		part	of	the	text	string	is	a	placeholder	code.	This	code	will	be	replaced	in
the	Java	code	for	your	app	with	the	placeholder	filled	in	with	an	actual	numeric	value.	In
this	case	the	placeholder	code	has	three	parts:

	%1	:	The	first	placeholder.	You	could	include	multiple	placeholders	in	the	same
string	with		%2	,		%3	,	and	so	on.
	$.2	:	The	number	format.	In	this	case,		.2		indicates	that	the	value	should	be
formatted	with	only	two	digits	after	the	decimal	point.
	f	:	Indicates	that	the	value	to	display	is	a	floating-point	number.	Use		s		for	string

Introduction

84

https://www.google.com/url?q=https://en.wikipedia.org/wiki/Lux&sa=D&ust=1503084804609000&usg=AFQjCNFUzNgexsW9khE5Cp84b8YZ56viVQ

values	and		d		for	decimal	values.
The	part	of	the	string	that	is	not	made	up	of	placeholders	("Light	Sensor:	")	is	passed
through	to	the	new	string.	You	can	find	out	more	about	placeholders	and	formatting
codes	in	the	Formatter	documentation.

4.	 Copy	and	paste	the		TextView		element.	Change	the	attributes	in	the	following	table.
Extract	the	string	into	a	resource	called		"label_proximity"	.	This	text	view	will	print
values	from	the	proximity	sensor.

Attribute Value
	android:id	 	"@+id/label_proximity"	

	android:text	 	"Proximity	Sensor:	%1$.2f"	

	app:layout_constraintTop_toBottomOf	 	"@+id/label_light"	

The	layout	for	your	app	should	look	like	this	screenshot:

Introduction

85

https://developer.android.com/reference/java/util/Formatter.html#syntax

Introduction

86

5.	 Open		res/values/strings.xml		and	add	this	line:

	<string	name="error_no_sensor">No	sensor</string>

You'll	use	this	message	in	the	next	task	when	you	test	if	a	sensor	is	available.

2.2	Get	the	sensors

In	this	task,	you	modify	the	activity's		onCreate()		method	to	gain	access	to	the	light	and
proximity	sensors.

1.	 Open		MainActivity		and	add	private	member	variables	at	the	top	of	the	class	to	hold
	Sensor		objects	for	the	light	and	proximity	sensors.	Also	add	private	member	variables
to	hold	the		TextView		objects	from	the	layout:

	//	Individual	light	and	proximity	sensors.	

	private	Sensor	mSensorProximity;

	private	Sensor	mSensorLight;

	//	TextViews	to	display	current	sensor	values			

	private	TextView	mTextSensorLight;

	private	TextView	mTextSensorProximity;

2.	 In	the		onCreate()	method,	delete	all	the	existing	code	after	the	line	to	get	the	sensor
manager.

3.	 Add	code	to		onCreate()		to	get	the	two		TextView		views	and	assign	them	to	their
respective	variables:

	mTextSensorLight	=	(TextView)	findViewById(R.id.label_light);

	mTextSensorProximity	=	(TextView)	findViewById(R.id.label_proximity);

4.	 Get	instances	of	the	default	light	and	proximity	sensors.	These	will	be	instances	of	the
	Sensor		class.	Assign	them	to	their	respective	variables:

	mSensorProximity	=	

				mSensorManager.getDefaultSensor(Sensor.TYPE_PROXIMITY);

	mSensorLight	=	mSensorManager.getDefaultSensor(Sensor.TYPE_LIGHT);

The		getDefaultSensor()	method	is	used	to	query	the	sensor	manager	for	sensors	of	a
given	type.	The	sensor	types	are	defined	by	the		Sensor		class.	If	there	is	no	sensor
available	for	the	given	type,	the		getDefaultSensor()		method	returns		null	.

5.	 Get	the	error	string	you	defined	earlier	from	the		strings.xml		resource:

Introduction

87

https://developer.android.com/reference/android/hardware/Sensor.html
https://developer.android.com/reference/android/hardware/SensorManager.html#getDefaultSensor(int)

	String	sensor_error	=	getResources().getString(R.string.error_no_sensor);

6.	 Test	that	there	is	an	available	light	sensor.	If	the	sensor	is	not	available	(that	is,	if
	getDefaultSensor()		returned		null),	set	the	display	text	for	the	light	sensor's
	TextView		to	the	error	string.

	if	(mSensorLight	==	null)	{

				mTextSensorLight.setText(sensor_error);

	}

Different	devices	have	different	sensors,	so	it	is	important	that	your	app	check	that	a
sensor	exists	before	using	the	sensor.	If	a	sensor	is	not	available,	your	app	should	turn
off	features	that	use	that	sensor	and	provide	helpful	information	to	the	user.	If	your	app's
functionality	relies	on	a	sensor	that	is	not	available,	your	app	should	provide	a	message
and	gracefully	quit.	Do	not	assume	that	any	device	will	have	any	given	sensor.

7.	 Test	for	the	existence	of	the	proximity	sensor.

	if	(mSensorProximity	==	null)	{

				mTextSensorProximity.setText(sensor_error);

	}

2.3	Listen	for	new	sensor	data

When	sensor	data	changes,	the	Android	sensor	framework	generates	an	event	(a
	SensorEvent)	for	that	new	data.	Your	app	can	register	listeners	for	these	events,	then
handle	the	new	sensor	data	in	an		onSensorChanged()		callback.	All	of	these	tasks	are	part	of
the		SensorEventListener		interface.

In	this	task,	you	register	listeners	for	changes	to	the	light	and	proximity	sensors.	You
process	new	data	from	those	sensors	and	display	that	data	in	the	app	layout.

1.	 At	the	top	of	the	class,	modify	the	class	signature	to	implement	the
	SensorEventListener		interface.

	public	class	MainActivity	

				extends	AppCompatActivity	implements	SensorEventListener	{

2.	 Click	the	red	light	bulb	icon,	select	"implement	methods,"	and	select	all	methods.

The		SensorEventListener		interface	includes	two	callback	methods	that	enable	your	app
to	handle	sensor	events:

Introduction

88

https://developer.android.com/reference/android/hardware/SensorEvent.html
https://developer.android.com/reference/android/hardware/SensorEventListener.html#onSensorChanged(android.hardware.SensorEvent)
https://developer.android.com/reference/android/hardware/SensorEventListener.html

	onSensorChanged()	:	Called	when	new	sensor	data	is	available.	You	will	use	this
callback	most	often	to	handle	new	sensor	data	in	your	app.
	onAccuracyChanged()	:	Called	if	the	sensor's	accuracy	changes,	so	your	app	can
react	to	that	change.	Most	sensors,	including	the	light	and	proximity	sensors,	do	not
report	accuracy	changes.	In	this	app,	you	leave		onAccuracyChanged()		empty.

3.	 Override	the		onStart()		activity	lifecycle	method	to	register	your	sensor	listeners.
Listening	to	incoming	sensor	data	uses	device	power	and	consumes	battery	life.	Don't
register	your	listeners	in		onCreate()	,	as	that	would	cause	the	sensors	to	be	on	and
sending	data	(using	device	power)	even	when	your	app	was	not	in	the	foreground.	Use
the		onStart()		and		onStop()		methods	to	register	and	unregister	your	sensor	listeners.

	@Override

	protected	void	onStart()	{

				super.onStart();

				if	(mSensorProximity	!=	null)	{

							mSensorManager.registerListener(this,	mSensorProximity,

										SensorManager.SENSOR_DELAY_NORMAL);

				}

				if	(mSensorLight	!=	null)	{

							mSensorManager.registerListener(this,	mSensorLight,

										SensorManager.SENSOR_DELAY_NORMAL);

				}

	}

Note:	The		onStart()		and		onStop()		methods	are	preferred	over		onResume()		and
	onPause()		to	register	and	unregister	listeners.	As	of	Android	7.0	(API	24),	apps	can	run
in	multi-window	mode	(split-screen	or	picture-in-picture	mode).	Apps	running	in	this
mode	are	paused,	but	still	visible	on	screen.	Use		onStart()		and		onStop()		to	ensure
that	sensors	continue	running	even	if	the	app	is	in	multi-window	mode.
Each	sensor	that	your	app	uses	needs	its	own	listener,	and	you	should	make	sure	that
those	sensors	exist	before	you	register	a	listener	for	them.	Use	the		registerListener()	
method	from	the		SensorManager		to	register	a	listener.	This	method	takes	three
arguments:

An	app	or	activity		Context	.	You	can	use	the	current	activity	(this)	as	the	context.
The		Sensor		object	to	listen	to.
A	delay	constant	from	the		SensorManager		class.	The	delay	constant	indicates	how
quickly	new	data	is	reported	from	the	sensor.	Sensors	can	report	a	lot	of	data	very
quickly,	but	more	reported	data	means	that	the	device	consumes	more	power.
Make	sure	that	your	listener	is	registered	with	the	minimum	amount	of	new	data	it
needs.	In	this	example	you	use	the	slowest	value
(SensorManager.SENSOR_DELAY_NORMAL).	For	more	data-intensive	apps	such	as

Introduction

89

https://developer.android.com/reference/android/hardware/SensorEventListener.html#onSensorChanged(android.hardware.SensorEvent)
https://developer.android.com/reference/android/hardware/SensorEventListener.html#onAccuracyChanged(android.hardware.Sensor,%20int)
https://developer.android.com/reference/android/hardware/SensorManager.html#registerListener(android.hardware.SensorEventListener,%20android.hardware.Sensor,%20int)
https://developer.android.com/reference/android/content/Context.html
https://developer.android.com/reference/android/hardware/SensorManager.html#SENSOR_DELAY_NORMAL

games,	you	may	need	a	faster	rate	such	as		SENSOR_DELAY_GAME		or
	SENSOR_DELAY_FASTEST	.

4.	 Implement	the		onStop()		lifecycle	method	to	unregister	your	sensor	listeners	when	the
app	pauses:

	@Override

	protected	void	onStop()	{

				super.onStop();

				mSensorManager.unregisterListener(this);

	}

A	single	call	to	the		SensorManager.		unregisterListener()		method	unregisters	all	the
registered	listeners.	Unregistering	the	sensor	listeners	in	the		onStop()		method
prevents	the	device	from	using	power	when	the	app	is	not	visible.

5.	 In	the		onSensorChanged()		method,	get	the	sensor	type.

int	sensorType	=	event.sensor.getType();

The		onSensorChanged()		method	is	called	with	a		SensorEvent		object.	The		SensorEvent	
object	includes	important	properties	of	the	event,	such	as	which	sensor	is	reporting	new
data,	and	the	new	data	values.	Use	the		sensor		property	of	the		SensorEvent		to	get	a
	Sensor		object,	and	then	use		getType()		to	get	the	type	of	that	sensor.	Sensor	types
are	defined	as	constants	in	the		Sensor		class,	for	example,		Sensor.TYPE_LIGHT	.

6.	 Also	in		onSensorChanged()	,	get	the	sensor	value.

	float	currentValue	=	event.values[0];

The	sensor	event	stores	the	new	data	from	the	sensor	in	the		values		array.	Depending
on	the	sensor	type,	this	array	may	contain	a	single	piece	of	data	or	a	multidimensional
array	full	of	data.	For	example,	the	accelerometer	reports	data	for	the	x	-axis,	y	-axis,
and	z	-axis	for	every	change	in	the		values[0]	,		values[1]	,	and		values[2]		positions.
Both	the	light	and	proximity	sensors	only	report	one	value,	in		values[0]	.

7.	 Add	a		switch		statement	for	the		sensorType		variable.	Add	a		case		for
	Sensor.TYPE_LIGHT		to	indicate	that	the	event	was	triggered	by	the	light	sensor.

Introduction

90

https://developer.android.com/reference/android/hardware/SensorManager.html#SENSOR_DELAY_GAME
https://developer.android.com/reference/android/hardware/SensorManager.html#SENSOR_DELAY_FASTEST
https://developer.android.com/reference/android/hardware/SensorManager.html#unregisterListener(android.hardware.SensorEventListener)
https://developer.android.com/reference/android/hardware/SensorEventListener.html#onSensorChanged(android.hardware.SensorEvent)
https://developer.android.com/reference/android/hardware/SensorEvent.html
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_LIGHT

	switch	(sensorType)	{

				//	Event	came	from	the	light	sensor.

				case	Sensor.TYPE_LIGHT:

							//	Handle	light	sensor

							break;

				default:

								//	do	nothing

	}

8.	 Inside	the	light	sensor		case	,	get	the	template	string	from	the	resources,	and	update
the	value	in	the	light	sensor's		TextView	.

	mTextSensorLight.setText(getResources().getString(

				R.string.label_light,	currentValue));

When	you	defined	this		TextView		in	the	layout,	the	original	string	resource	included	a
placeholder	code,	like	this:

Light	Sensor:	%1$.2f

When	you	call		getString()		to	get	the	string	from	the	resources,	you	include	values	to
substitute	into	the	string	where	the	placeholder	codes	are.	The	part	of	the	string	that	is
not	made	up	of	placeholders	("Light	Sensor:	")	is	passed	through	to	the	new	string.

9.	 Add	a	second		case		for	the	proximity	sensor	(Sensor.TYPE_PROXIMITY).

	case	Sensor.TYPE_PROXIMITY:

				mTextSensorProximity.setText(getResources().getString(

								R.string.label_proximity,	currentValue));

				break;

2.4	Run	the	app	on	a	device	and	in	the	emulator

1.	 Run	the	app	on	a	physical	device.	The	output	of	the	app	looks	something	like	this
screenshot:

Introduction

91

https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_PROXIMITY

Introduction

92

2.	 Move	the	device	towards	a	light	source,	or	shine	a	flashlight	on	it.	Move	the	device
away	from	the	light	or	cover	the	device	with	your	hand.	Note	how	the	light	sensor
reports	changes	in	the	light	level.

TIP:	The	light	sensor	is	often	placed	on	the	top	right	of	the	device's	screen.

The	light	sensor's	value	is	generally	measured	in	lux,	a	standard	unit	of	illumination.
However,	the	lux	value	that	a	sensor	reports	may	differ	across	different	devices,	and	the
maximum	may	vary	as	well.	If	your	app	requires	a	specific	range	of	values	for	the	light
sensor,	you	must	translate	the	raw	sensor	data	into	something	your	app	can	use.

3.	 Move	your	hand	toward	the	device,	and	then	move	it	away	again.	Note	how	the
proximity	sensor	reports	values	indicating	"near"	and	"far."	Depending	on	how	the
proximity	sensor	is	implemented,	you	may	get	a	range	of	values,	or	you	may	get	just
two	values	(for	example,	0	and	5)	to	represent	near	and	far.

TIP:	The	proximity	sensor	is	often	a	virtual	sensor	that	gets	its	data	from	the	light
sensor.	For	that	reason,	covering	the	light	sensor	may	produce	changes	to	the	proximity
value.

As	with	the	light	sensor,	the	sensor	data	for	the	proximity	sensor	can	vary	from	device	to
device.	Proximity	values	may	be	a	range	between	a	minimum	and	a	maximum.	More
often	there	are	only	two	proximity	values,	one	to	indicate	"near,"	and	one	to	indicate
"far."	All	these	values	may	vary	across	devices.

4.	 Run	the	app	in	an	emulator,	and	click	the	More	button	(three	horizontal	dots)	on	the
emulator's	control	panel	to	bring	up	the	Extended	controls	window.

Introduction

93

5.	 Click	Virtual	sensors,	and	then	click	the	Additional	sensors	tab.	

The	sliders	in	this	window	enable	you	to	simulate	changes	to	sensor	data	that	would
normally	come	from	the	hardware	sensors.	Changes	in	this	window	generate	sensor
events	in	the	emulator	that	your	app	can	respond	to.

6.	 Move	the	sliders	for	the	light	and	proximity	sensors	and	observe	that	the	values	in	the
app	change	as	well.

Solution	code
Android	Studio	projects:

SensorSurvey
SensorListeners

Coding	challenge
Note:	All	coding	challenges	are	optional.
Challenge:	Modify	the	SensorListeners	app	such	that:

The	background	color	of	the	app	changes	in	response	to	the	light	level.

TIP:	You	can	use		getWindow().getDecorView().setBackgroundColor()		to	set	the	app's
background	color.

Introduction

94

https://github.com/google-developer-training/android-advanced/tree/master/SensorSurvey
https://github.com/google-developer-training/android-advanced/tree/master/SensorListeners

Place	an		ImageView		or		Drawable		in	the	layout.	Make	the	image	larger	or	smaller	based
on	the	value	that	the	app	receives	from	the	proximity	sensor.

Summary
The	Android	sensor	framework	provides	access	to	data	coming	from	a	set	of	device
sensors.	These	sensors	include	accelerometers,	gyroscopes,	magnetometers,
barometers,	humidity	sensors,	light	sensors,	proximity	sensors,	and	so	on.
The		SensorManager		service	lets	your	app	access	and	list	sensors	and	listen	for	sensor
events	(SensorEvent).	The	sensor	manager	is	a	system	service	you	can	request	with
	getSystemService()	.
The		Sensor		class	represents	a	specific	sensor	and	contains	methods	to	indicate	the
properties	and	capabilities	of	a	given	sensor.	It	also	provides	constants	for	sensor	types,
which	define	how	the	sensors	behave	and	what	data	they	provide.
Use		getSensorList(Sensor.TYPE_ALL)		to	get	a	list	of	all	the	available	sensors.
Use		getDefaultSensor()		with	a	sensor	type	to	gain	access	to	a	particular	sensor	as	a
	Sensor		object.
Sensors	provide	data	through	a	series	of	sensor	events.	A		SensorEvent		object	includes
information	about	the	sensor	that	generated	it,	the	time,	and	new	data.	The	data	a
sensor	provides	depends	on	the	sensor	type.	Simple	sensors	such	as	light	and
proximity	sensors	report	only	one	data	value,	whereas	motion	sensors	such	as	the
accelerometer	provide	multidimensional	arrays	of	data	for	each	event.
Your	app	uses	sensor	listeners	to	receive	sensor	data.	Implement	the
	SensorEventListener		interface	to	listen	for	sensor	events.
Use	the		onSensorChanged()		method	to	handle	individual	sensor	events.	From	the
	SensorEvent		object	passed	into	that	method,	you	can	get	the	sensor	that	generated	the
event	and	the	new	data.
Register	the	sensor	listeners	in	the		onResume()		lifecycle	method,	and	unregister	them
in		onPause()	.	Doing	this	prevents	your	app	from	drawing	system	resources	when	your
app	is	not	in	the	foreground.
Use	the		registerListener()		method	to	listen	to	sensor	events.	Listener	registration
includes	both	the	type	of	sensor	your	app	is	interested	in,	and	the	rate	at	which	your
app	prefers	to	receive	data.	A	higher	data	rate	provides	more	data	events,	but	uses
more	system	resources.
Use	the		unregisterListener()		method	to	stop	listening	to	sensor	events.

Related	concept
The	related	concept	documentation	is	in	Sensor	Basics.

Introduction

95

https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-1-expand-the-user-experience/lesson-3-sensors/3-1-c-sensor-basics/3-1-c-sensor-basics.html

Learn	more
Android	developer	documentation:

Sensors	Overview

Android	API	Reference:

	Sensor	

	SensorEvent	

	SensorManager	

	SensorEventListener	

Introduction

96

https://developer.android.com/guide/topics/sensors/sensors_overview.html
https://developer.android.com/reference/android/hardware/Sensor.html
https://developer.android.com/reference/android/hardware/SensorEvent.html
https://developer.android.com/reference/android/hardware/SensorManager.html
https://developer.android.com/reference/android/hardware/SensorEventListener.html

3.2:	Working	with	sensor-based
orientation
Contents:

Introduction
What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Build	the	TiltSpot	app
Task	2.	Add	the	spots
Task	3.	Handle	activity	rotation
Solution	code
Coding	challenge
Summary
Related	concept
Learn	more

The	Android	platform	provides	several	sensors	that	enable	your	app	to	monitor	the	motion	or
position	of	a	device,	in	addition	to	other	sensors	such	as	the	light	sensor.

Motion	sensors	such	as	the	accelerometer	or	gyroscope	are	useful	for	monitoring	device
movement	such	as	tilt,	shake,	rotation,	or	swing.	Position	sensors	are	useful	for	determining
a	device's	physical	position	in	relation	to	the	Earth.	For	example,	you	can	use	a	device's
geomagnetic	field	sensor	to	determine	its	position	relative	to	the	magnetic	north	pole.

A	common	use	of	motion	and	position	sensors,	especially	for	games,	is	to	determine	the
orientation	of	the	device,	that	is,	the	device's	bearing	(north/south/east/west)	and	tilt.	For
example,	a	driving	game	could	allow	the	user	to	control	acceleration	with	a	forward	tilt	or
backward	tilt,	and	control	steering	with	a	left	tilt	or	right	tilt.

Early	versions	of	Android	included	an	explicit	sensor	type	for	orientation
(Sensor.TYPE_ORIENTATION).	The	orientation	sensor	was	software-only,	and	it	combined	data
from	other	sensors	to	determine	bearing	and	tilt	for	the	device.	Because	of	problems	with	the
accuracy	of	the	algorithm,	this	sensor	type	was	deprecated	in	API	8	and	may	be	unavailable
in	current	devices.	The	recommended	way	to	determine	device	orientation	involves	using
both	the	accelerometer	and	geomagnetic	field	sensor	and	several	methods	in	the
	SensorManager		class.	These	sensors	are	common,	even	on	older	devices.	This	is	the
process	you	learn	in	this	practical.

Introduction

97

https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ORIENTATION
https://developer.android.com/reference/android/hardware/SensorManager.html

What	you	should	already	KNOW
You	should	be	familiar	with:

Creating,	building,	and	running	apps	in	Android	Studio.
Using	the	Android	sensor	framework	to	gain	access	to	available	sensors	on	the	device,
and	to	register	and	unregister	listeners	for	those	sensors.
Using	the		onSensorChanged()		method	from	the		SensorEventListener		interface	to	handle
changes	to	sensor	data.

What	you	will	LEARN
What	the	accelerometer	and	magnetometer	sensors	do.
The	differences	between	the	device-coordinate	system	and	the	Earth	coordinate
system,	and	which	sensors	use	which	systems.
Orientation	angles	(azimuth,	pitch,	roll),	and	how	they	relate	to	other	coordinate
systems.
How	to	use	methods	from	the	sensor	manager	to	get	the	device	orientation	angles.
How	activity	rotation	(portrait	or	landscape)	affects	sensor	input.

What	you	will	DO
Download	and	explore	a	starter	app.
Get	the	orientation	angles	from	the	accelerometer	and	magnetometer,	and	update	text
views	in	the	activity	to	display	those	values.
Change	the	color	of	a	shape	drawable	to	indicate	which	edge	of	the	device	is	tilted	up.
Handle	changes	to	the	sensor	data	when	the	device	is	rotated	from	portrait	to
landscape.

App	overview
The	TiltSpot	app	displays	the	device	orientation	angles	as	numbers	and	as	colored	spots
along	the	four	edges	of	the	device	screen.	There	are	three	components	to	device
orientation:

Azimuth	:	The	direction	(north/south/east/west)	the	device	is	pointing.	0	is	magnetic
north.
Pitch	:	The	top-to-bottom	tilt	of	the	device.	0	is	flat.
Roll	:	The	left-to-right	tilt	of	the	device.	0	is	flat.

Introduction

98

https://developer.android.com/reference/android/hardware/SensorEventListener.html#onSensorChanged(android.hardware.SensorEvent)
https://developer.android.com/reference/android/hardware/SensorEventListener.html

When	you	tilt	the	device,	the	spots	along	the	edges	that	are	tilted	up	become	darker.

Task	1.	Build	the	TiltSpot	app
In	this	task	you	download	and	open	the	starter	app	for	the	project	and	explore	the	layout	and
activity	code.	Then	you	implement	the		onSensorChanged()		method	to	get	data	from	the
sensors,	convert	that	data	into	orientation	angles,	and	report	updates	to	sensor	data	in
several	text	views.

1.1	Download	and	explore	the	starter	app

1.	 Download	the	TiltSpot_start	app	and	open	it	in	Android	Studio.
2.	 Open		res/layout/activity_main.xml	.

The	initial	layout	for	the	TiltSpot	app	includes	several	text	views	to	display	the	device
orientation	angles	(azimuth,	pitch,	and	roll)—you	learn	more	about	how	these	angles
work	later	in	the	practical.	All	those	textviews	are	nested	inside	their	own	constraint

Introduction

99

https://developer.android.com/reference/android/hardware/SensorEventListener.html#onSensorChanged(android.hardware.SensorEvent)
https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/TiltSpot_start

layout	to	center	them	both	horizontally	and	vertically	within	in	the	activity.	You	need	the
nested	constraint	layout	because	later	in	the	practical	you	add	the	spots	around	the
edges	of	the	screen	and	around	this	inner	text	view.

3.	 Open		MainActivity	.

	MainActivity		in	this	starter	app	contains	much	of	the	skeleton	code	for	managing	sensors
and	sensor	data	as	you	learned	about	in	the	last	practical.

1.	 Examine	the		onCreate()		method.

This	method	gets	an	instance	of	the		SensorManager		service,	and	then	uses	the
	getDefaultSensor()		method	to	retrieve	specific	sensors.	In	this	app	those	sensors	are
the	accelerometer	(Sensor.TYPE_ACCELEROMETER)	and	the	magnetometer
(Sensor.TYPE_MAGNETIC_FIELD).

The	accelerometer	measures	acceleration	forces	on	the	device;	that	is,	it	measures	how
fast	the	device	is	accelerating,	and	in	which	direction.	Acceleration	force	includes	the
force	of	gravity.	The	accelerometer	is	sensitive,	so	even	when	you	think	you're	holding
the	device	still	or	leaving	it	motionless	on	a	table,	the	accelerometer	is	recording	minute
forces,	either	from	gravity	or	from	the	environment.	This	makes	the	data	generated	by
the	accelerometer	very	"noisy."

The	magnetometer	,	also	known	as	the	geomagnetic	field	sensor	,	measures	the
strength	of	magnetic	fields	around	the	device,	including	Earth's	magnetic	field.	You	can
use	the	magnetometer	to	find	the	device's	position	with	respect	to	the	external	world.
However,	magnetic	fields	can	also	be	generated	by	other	devices	in	the	vicinity,	by
external	factors	such	as	your	location	on	Earth	(because	the	magnetic	field	is	weaker
toward	the	equator),	or	even	by	solar	winds.

Neither	the	accelerometer	nor	the	magnetometer	alone	can	determine	device	tilt	or
orientation.	However,	the	Android	sensor	framework	can	combine	data	from	both
sensors	to	get	a	fairly	accurate	device	orientation—accurate	enough	for	the	purposes	of
this	app,	at	least.

2.	 At	the	top	of		onCreate()	,	note	this	line:

	setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);

This	line	locks	the	activity	in	portrait	mode,	to	prevent	the	app	from	automatically
rotating	the	activity	as	you	tilt	the	device.	Activity	rotation	and	sensor	data	can	interact	in
unexpected	ways.	Later	in	the	practical,	you	explicitly	handle	sensor	data	changes	in
your	app	in	response	to	activity	rotation,	and	remove	this	line.

Introduction

100

https://developer.android.com/reference/android/hardware/SensorManager.html
https://developer.android.com/reference/android/hardware/SensorManager.html#getDefaultSensor(int)
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ACCELEROMETER
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_MAGNETIC_FIELD

3.	 Examine	the		onStart()		and		onStop()		methods.	The		onStart()		method	registers	the
listeners	for	the	accelerometer	and	magnetometer,	and	the		onStop()		method
unregisters	them.

4.	 Examine		onSensorChanged()		and		onAccuracyChanged()	.	These	are	the	methods	from
the		SensorEventListener		interface	that	you	have	to	implement.	The
	onAccuracyChanged()		method	is	empty	because	it	is	unused	in	this	class.	You
implement		onSensorChanged()		in	the	next	task.

1.2	Get	sensor	data	and	calculate	orientation	angles

In	this	task	you	implement	the		onSensorChanged()		method	to	get	raw	sensor	data,	use
methods	from	the		SensorManager		to	convert	that	data	to	device	orientation	angles,	and
update	the	text	views	with	those	values.

1.	 Open		MainActivity	.
2.	 Add	member	variables	to	hold	copies	of	the	accelerometer	and	magnetometer	data.

	private	float[]	mAccelerometerData	=	new	float[3];

	private	float[]	mMagnetometerData	=	new	float[3];

When	a	sensor	event	occurs,	both	the	accelerometer	and	the	magnetometer	produce
arrays	of	floating-point	values	representing	points	on	the	x	-axis,	y	-axis,	and	z	-axis	of
the	device's	coordinate	system.	You	will	combine	the	data	from	both	these	sensors,	and
over	several	calls	to		onSensorChanged()	,	so	you	need	to	retain	a	copy	of	this	data	each
time	it	changes.

3.	 Scroll	down	to	the		onSensorChanged()		method.	Add	a	line	to	get	the	sensor	type	from
the	sensor	event	object:

	int	sensorType	=	sensorEvent.sensor.getType();

4.	 Add	tests	for	the	accelerometer	and	magnetometer	sensor	types,	and	clone	the	event
data	into	the	appropriate	member	variables:

Introduction

101

https://developer.android.com/reference/android/hardware/SensorEventListener.html#onSensorChanged(android.hardware.SensorEvent)
https://developer.android.com/reference/android/hardware/SensorEventListener.html#onAccuracyChanged(android.hardware.Sensor,%20int)
https://developer.android.com/reference/android/hardware/SensorEventListener.html

	switch	(sensorType)	{

				case	Sensor.TYPE_ACCELEROMETER:

								mAccelerometerData	=	sensorEvent.values.clone();

								break;

				case	Sensor.TYPE_MAGNETIC_FIELD:

								mMagnetometerData	=	sensorEvent.values.clone();

								break;

				default:

								return;

	}

You	use	the		clone()		method	to	explicitly	make	a	copy	of	the	data	in	the		values		array.
The		SensorEvent		object	(and	the	array	of	values	it	contains)	is	reused	across	calls	to
	onSensorChanged()	.	Cloning	those	values	prevents	the	data	you're	currently	interested
in	from	being	changed	by	more	recent	data	before	you're	done	with	it.

5.	 After	the		switch		statement,	use	the		SensorManager.getRotationMatrix()		method	to
generate	a	rotation	matrix	(explained	below)	from	the	raw	accelerometer	and
magnetometer	data.	The	matrix	is	used	in	the	next	step	to	get	the	device	orientation,
which	is	what	you're	really	interested	in.

	float[]	rotationMatrix	=	new	float[9];

	boolean	rotationOK	=	SensorManager.getRotationMatrix(rotationMatrix,

				null,	mAccelerometerData,	mMagnetometerData);

A	rotation	matrix	is	a	linear	algebra	term	that	translates	the	sensor	data	from	one
coordinate	system	to	another—in	this	case,	from	the	device's	coordinate	system	to	the
Earth's	coordinate	system.	That	matrix	is	an	array	of	nine		float		values,	because	each
point	(on	all	three	axes)	is	expressed	as	a	3D	vector.

The	device-coordinate	system	is	a	standard	3-axis	(x	,	y	,	z)	coordinate	system	relative
to	the	device's	screen	when	it	is	held	in	the	default	or	natural	orientation.	Most	sensors
use	this	coordinate	system.	In	this	orientation:

The	x	-axis	is	horizontal	and	points	to	the	right	edge	of	the	device.
The	y	-axis	is	vertical	and	points	to	the	top	edge	of	the	device.
The	z	-axis	extends	up	from	the	surface	of	the	screen.	Negative	z	values	are

Introduction

102

https://developer.android.com/reference/java/lang/Object.html#clone()
https://developer.android.com/reference/android/hardware/SensorEvent.html
https://developer.android.com/reference/android/hardware/SensorManager.html#getRotationMatrix(float[],%20float[],%20float[],%20float[])
https://en.wikipedia.org/wiki/Rotation_matrix

behind	the	screen.	
The	Earth's	coordinate	system	is	also	a	3-axis	system,	but	relative	to	the	surface	of	the
Earth	itself.	In	the	Earth's	coordinate	system:

The	y	-axis	points	to	magnetic	north	along	the	surface	of	the	Earth.
The	x	-axis	is	90	degrees	from	y	,	pointing	approximately	east.
The	z	-axis	extends	up	into	space.	Negative	z	extends	down	into	the	ground.	

A	reference	to	the	array	for	the	rotation	matrix	is	passed	into	the		getRotationMatrix()	
method	and	modified	in	place.	The	second	argument	to		getRotationMatrix()		is	an
inclination	matrix,	which	you	don't	need	for	this	app.	You	can	use	null	for	this	argument.

The		getRotationMatrix()		method	returns	a	boolean	(the		rotationOK		variable),	which
is		true		if	the	rotation	was	successful.	The	boolean	might	be		false		if	the	device	is
free-falling	(meaning	that	the	force	of	gravity	is	close	to	0),	or	if	the	device	is	pointed
very	close	to	magnetic	north.	The	incoming	sensor	data	is	unreliable	in	these	cases,
and	the	matrix	can't	be	calculated.	Although	the	boolean	value	is	almost	always		true	,
it's	good	practice	to	check	that	value	anyhow.

6.	 Call	the		SensorManager.getOrientation()		method	to	get	the	orientation	angles	from	the
rotation	matrix.	As	with		getRotationMatrix()	,	the	array	of		float		values	containing
those	angles	is	supplied	to	the		getOrientation()		method	and	modified	in	place.

Introduction

103

https://developer.android.com/reference/android/hardware/SensorManager.html#getOrientation(float[],%20float[])

	float	orientationValues[]	=	new	float[3];

	if	(rotationOK)	{

					SensorManager.getOrientation(rotationMatrix,	orientationValues);

	}

The	angles	returned	by	the		getOrientation()		method	describe	how	far	the	device	is
oriented	or	tilted	with	respect	to	the	Earth's	coordinate	system.	There	are	three
components	to	orientation:

Azimuth	:	The	direction	(north/south/east/west)	the	device	is	pointing.	0	is	magnetic
north.
Pitch	:	The	top-to-bottom	tilt	of	the	device.	0	is	flat.
Roll	:	The	left-to-right	tilt	of	the	device.	0	is	flat.

All	three	angles	are	measured	in	radians,	and	range	from	-π	(-3.141)	to	π.

7.	 Create	variables	for	azimuth,	pitch,	and	roll,	to	contain	each	component	of	the
	orientationValues		array.	You	adjust	this	data	later	in	the	practical,	which	is	why	it	is
helpful	to	have	these	separate	variables.

	float	azimuth	=	orientationValues[0];

	float	pitch	=	orientationValues[1];

	float	roll	=	orientationValues[2];

8.	 Get	the	placeholder	strings,	from	the	resources,	fill	the	placeholder	strings	with	the
orientation	angles	and	update	all	the	text	views.

	mTextSensorAzimuth.setText(getResources().getString(

				R.string.value_format,	azimuth));

	mTextSensorPitch.setText(getResources().getString(

				R.string.value_format,	pitch));

	mTextSensorRoll.setText(getResources().getString(

				R.string.value_format,	roll));

The	string	(value_format		in		strings.xml)	contains	placeholder	code	("%1$.2f")	that
formats	the	incoming	floating-point	value	to	two	decimal	places.

<string	name="value_format">%1$.2f</string>

1.3	Build	and	run	the	app

Introduction

104

1.	 Run	the	app.	Place	your	device	flat	on	the	table.	The	output	of	the	app	looks	something

like	this:	

Even	a	motionless	device	shows	fluctuating	values	for	the	azimuth,	pitch,	and	roll.	Note
also	that	even	though	the	device	is	flat,	the	values	for	pitch	and	roll	may	not	be	0.	This
is	because	the	device	sensors	are	extremely	sensitive	and	pick	up	even	tiny	changes	to
the	environment,	both	changes	in	motion	and	changes	in	ambient	magnetic	fields.

2.	 Turn	the	device	on	the	table	from	left	to	right,	leaving	it	flat	on	the	table.	

Note	how	the	value	of	the	azimuth	changes.	An	azimuth	value	of	0	indicates	that	the
device	is	pointing	(roughly)	north.

Introduction

105

Note	that	even	if	the	value	of	the	azimuth	is	0,	the	device	may	not	be	pointing	exactly
north.	The	device	magnetometer	measures	the	strength	of	any	magnetic	fields,	not	just
that	of	the	Earth.	If	you	are	in	the	presence	of	other	magnetic	fields	(most	electronics
emit	magnetic	fields,	including	the	device	itself),	the	accuracy	of	the	magnetometer	may
not	be	exact.

Note:	If	the	azimuth	on	your	device	seems	very	far	off	from	actual	north,	you	can
calibrate	the	magnetometer	by	waving	the	device	a	few	times	in	the	air	in	a	figure-eight

motion.	
3.	 Lift	the	bottom	edge	of	the	device	so	the	screen	is	tilted	away	from	you.	Note	the

change	to	the	pitch	value.	Pitch	indicates	the	top-to-bottom	angle	of	tilt	around	the

device's	horizontal	axis.	

Introduction

106

https://physics.stackexchange.com/questions/17587/what-is-reason-for-electronic-compass-calibration

4.	 Lift	the	left	side	of	the	device	so	that	it	is	tilted	to	the	right.	Note	the	change	to	the	roll
value.	Roll	indicates	the	left-to-right	tilt	along	the	device's	vertical	axis.	

5.	 Pick	up	the	device	and	tilt	it	in	various	directions.	Note	the	changes	to	the	pitch	and	roll
values	as	the	device's	tilt	changes.	What	is	the	maximum	value	you	can	find	for	any	tilt
direction,	and	in	what	device	position	does	that	maximum	occur?

Task	2.	Add	the	spots
In	this	task	you	update	the	layout	to	include	spots	along	each	edge	of	the	screen,	and
change	the	opaqueness	of	the	spots	so	that	they	become	darker	when	a	given	edge	of	the
screen	is	tilted	up.

The	color	changes	in	the	spots	rely	on	dynamically	changing	the	alpha	value	of	a	shape
drawable	in	response	to	new	sensor	data.	The	alpha	determines	the	opacity	of	that
drawable,	so	that	smaller	alpha	values	produce	a	lighter	shape,	and	larger	values	produce	a
darker	shape.

2.1	Add	the	spots	and	modify	the	layout

1.	 Add	a	new	file	called		spot.xml		to	the	project,	in	the		res/drawable		directory.	(Create
the	directory	if	needed.)

2.	 Replace	the	selector	tag	in		spot.xml		with	an	oval	shape	drawable	whose	color	is	solid
black	("@android:color/black"):

	<shape

				xmlns:android="http://schemas.android.com/apk/res/android"

				android:shape="oval">

				<solid	android:color="@android:color/black"/>

	</shape>

3.	 Open		res/values/dimens.xml	.	Add	a	dimension	for	the	spot	size:

	<dimen	name="spot_size">84dp</dimen>

Introduction

107

4.	 In		activity_layout.xml	,	add	an		ImageView		after	the	inner		ConstraintLayout	,	and
before	the	outer	one.	Use	these	attributes:

Attribute Value
	android:id	 	"@+id/spot_top"	

	android:layout_width	 	"@dimen/spot_size"	

	android:layout_height	 	"@dimen/spot_size"	

	android:layout_margin	 	"@dimen/base_margin"	

	app:layout_constraintLeft_toLeftOf	 	"parent"	

	app:layout_constraintRight_toRightOf	 	"parent"	

	app:layout_constraintTop_toTopOf	 	"parent"	

	app:srcCompat	 	"@drawable/spot"	

	tools:ignore	 	"ContentDescription"		

This	view	places	a	spot	drawable	the	size	of	the		spot_size		dimension	at	the	top	edge
of	the	screen.	Use	the		app:srcCompat		attribute	for	a	vector	drawable	in	an		ImageView	
(versus		android:src		for	an	actual	image.)	The		app:srcCompat		attribute	is	available	in
the	Android	Support	Library	and	provides	the	greatest	compatibility	for	vector
drawables.

The		tools:ignore		attribute	is	used	to	suppress	warnings	in	Android	Studio	about	a
missing	content	description.	Generally		ImageView		views	need	alternate	text	for	sight-
impaired	users,	but	this	app	does	not	use	or	require	them,	so	you	can	suppress	the
warning	here.

5.	 Add	the	following	code	below	that	first		ImageView	.	This	code	adds	the	other	three	spots
along	the	remaining	edges	of	the	screen.

Introduction

108

https://developer.android.com/reference/android/support/v7/appcompat/R.attr.html?utm_campaign=android_launch_supportlibrary23.2_022216#srcCompa
https://android-developers.googleblog.com/2016/02/android-support-library-232.html
https://developer.android.com/studio/write/tool-attributes.html

	<ImageView

				android:id="@+id/spot_bottom"

				android:layout_width="@dimen/spot_size"

				android:layout_height="@dimen/spot_size"

				android:layout_marginBottom="@dimen/base_margin"

				app:layout_constraintBottom_toBottomOf="parent"

				app:layout_constraintLeft_toLeftOf="parent"

				app:layout_constraintRight_toRightOf="parent"

				app:srcCompat="@drawable/spot"

				tools:ignore="ContentDescription"	/>

	<ImageView

				android:id="@+id/spot_right"

				android:layout_width="@dimen/spot_size"

				android:layout_height="@dimen/spot_size"

				android:layout_marginEnd="@dimen/base_margin"

				android:layout_marginRight="@dimen/base_margin"

				app:layout_constraintBottom_toBottomOf="parent"

				app:layout_constraintRight_toRightOf="parent"

				app:layout_constraintTop_toTopOf="parent"

				app:srcCompat="@drawable/spot"

				tools:ignore="ContentDescription"/>

	<ImageView

				android:id="@+id/spot_left"

				android:layout_width="@dimen/spot_size"

				android:layout_height="@dimen/spot_size"

				android:layout_marginLeft="@dimen/base_margin"

				android:layout_marginStart="@dimen/base_margin"

				app:layout_constraintBottom_toBottomOf="parent"

				app:layout_constraintLeft_toLeftOf="parent"

				app:layout_constraintTop_toTopOf="parent"

				app:srcCompat="@drawable/spot"

				tools:ignore="ContentDescription"	/>

Introduction

109

The	layout	preview	should	now	look	like	this:	

6.	 Add	the		android:alpha		attribute	to	all	four		ImageView		elements,	and	set	the	value	to
	"0.05"	.	The	alpha	is	the	opacity	of	the	shape.	Smaller	values	are	less	opaque	(less
visible).	Setting	the	value	to	0.05	makes	the	shape	very	nearly	invisible,	but	you	can	still
see	them	in	the	layout	view.

2.2	Update	the	spot	color	with	new	sensor	data

Next	you	modify	the		onSensorChanged()	method	to	set	the	alpha	value	of	the	spots	in
response	to	the	pitch	and	roll	values	from	the	sensor	data.	A	higher	sensor	value	indicates	a
larger	degree	of	tilt.	The	higher	the	sensor	value,	the	more	opaque	(the	darker)	you	make
the	spot.

1.	 In		MainActivity	,	add	member	variables	at	the	top	of	the	class	for	each	of	the	spot
	ImageView		objects:

	private	ImageView	mSpotTop;

	private	ImageView	mSpotBottom;

	private	ImageView	mSpotLeft;

	private	ImageView	mSpotRight;

2.	 In		onCreate()	,	just	after	initializing	the	text	views	for	the	sensor	data,	initialize	the	spot
views:

	mSpotTop	=	(ImageView)	findViewById(R.id.spot_top);

	mSpotBottom	=	(ImageView)	findViewById(R.id.spot_bottom);

	mSpotLeft	=	(ImageView)	findViewById(R.id.spot_left);

	mSpotRight	=	(ImageView)	findViewById(R.id.spot_right);

Introduction

110

https://developer.android.com/reference/android/support/v7/appcompat/R.attr.html#alpha

3.	 In		onSensorChanged()	,	right	after	the	lines	that	initialize	the	azimuth,	pitch,	and	roll
variables,	reset	the	pitch	or	roll	values	that	are	close	to	0	(less	than	the	value	of	the
	VALUE_DRIFT		constant)	to	be	0:

	if	(Math.abs(pitch)	<	VALUE_DRIFT)	{

					pitch	=	0;

	}

	if	(Math.abs(roll)	<	VALUE_DRIFT)	{

					roll	=	0;

	}

When	you	initially	ran	the	TiltSpot	app,	the	sensors	reported	very	small	non-zero	values
for	the	pitch	and	roll	even	when	the	device	was	flat	and	stationary.	Those	small	values
can	cause	the	app	to	flash	very	light-colored	spots	on	all	the	edges	of	the	screen.	In	this
code	if	the	values	are	close	to	0	(in	either	the	positive	or	negative	direction),	you	reset
them	to	0.

4.	 Scroll	down	to	the	end	of		onSensorChanged()	,	and	add	these	lines	to	set	the	alpha	of	all
the	spots	to	0.	This	resets	all	the	spots	to	be	invisible	each	time		onSensorChanged()		is
called.	This	is	necessary	because	sometimes	if	you	tilt	the	device	too	quickly,	the	old
values	for	the	spots	stick	around	and	retain	their	darker	color.	Resetting	them	each	time
prevents	these	artifacts.

	mSpotTop.setAlpha(0f);

	mSpotBottom.setAlpha(0f);

	mSpotLeft.setAlpha(0f);

	mSpotRight.setAlpha(0f);

5.	 Update	the	alpha	value	for	the	appropriate	spot	with	the	values	for	pitch	and	roll.

	if	(pitch	>	0)	{

				mSpotBottom.setAlpha(pitch);

	}	else	{

				mSpotTop.setAlpha(Math.abs(pitch));

	}

	if	(roll	>	0)	{

				mSpotLeft.setAlpha(roll);

	}	else	{

				mSpotRight.setAlpha(Math.abs(roll));

	}

Note	that	the	pitch	and	roll	values	you	calculated	in	the	previous	task	are	in	radians,	and
their	values	range	from	-π	to	+π.	Alpha	values,	on	the	other	hand,	range	only	from	0.0
to	1.0.	You	could	do	the	math	to	convert	radian	units	to	alpha	values,	but	you	may	have

Introduction

111

noted	earlier	that	the	higher	pitch	and	roll	values	only	occur	when	the	device	is	tilted
vertical	or	even	upside	down.	For	the	TiltSpot	app	you're	only	interested	in	displaying
dots	in	response	to	some	device	tilt,	not	the	full	range.	This	means	that	you	can
conveniently	use	the	radian	units	directly	as	input	to	the	alpha.

6.	 Build	and	run	the	app.

You	should	now	be	able	to	tilt	the	device	and	have	the	edge	facing	"up"	display	a	dot
which	becomes	darker	the	further	up	you	tilt	the	device.

Task	3.	Handle	activity	rotation
The	Android	system	itself	uses	the	accelerometer	to	determine	when	the	user	has	turned	the
device	sideways	(from	portrait	to	landscape	mode,	for	a	phone).	The	system	responds	to
this	rotation	by	ending	the	current	activity	and	recreating	it	in	the	new	orientation,	redrawing
your	activity	layout	with	the	"top,"	"bottom,"	"left,"	and	"right"	edges	of	the	screen	now
reflecting	the	new	device	position.

You	may	assume	that	with	TiltSpot,	if	you	rotate	the	device	from	landscape	to	portrait,	the
sensors	will	report	the	correct	data	for	the	new	device	orientation,	and	the	spots	will	continue
to	appear	on	the	correct	edges.	That's	not	the	case.	When	the	activity	rotates,	the	activity
drawing	coordinate	system	rotates	with	it,	but	the	sensor	coordinate	system	remains	the
same.	The	sensor	coordinate	system	never	changes	position,	regardless	of	the	orientation
of	the	device.

The	second	tricky	point	for	handling	activity	rotation	is	that	the	default	or	natural	orientation
for	your	device	may	not	be	portrait.	The	default	orientation	for	many	tablet	devices	is
landscape.	The	sensor's	coordinate	system	is	always	based	on	the	natural	orientation	of	a
device.

The	TiltSpot	starter	app	included	a	line	in		onCreate()	to	lock	the	orientation	to	portrait
mode:

setRequestedOrientation	(ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);

Locking	the	screen	to	portrait	mode	in	this	way	solves	one	problem—it	prevents	the
coordinate	systems	from	getting	out	of	sync	on	portrait-default	devices.	But	on	landscape-
default	devices,	the	technique	forces	an	activity	rotation,	which	causes	the	device	and
sensor-coordinate	systems	to	get	out	of	sync.

Introduction

112

Here's	the	right	way	to	handle	device	and	activity	rotation	in	sensor-based	drawing:	First,
use	the		Display.getRotation()		method	to	query	the	current	device	orientation.	Then	use	the
	SensorManager.remapCoordinateSystem()		method	to	remap	the	rotation	matrix	from	the	sensor
data	onto	the	correct	axes.	This	is	the	technique	you	use	in	the	TiltSpot	app	in	this	task.

The		getRotation()		method	returns	one	of	four	integer	constants,	defined	by	the		Surface	
class:

	ROTATION_0	:	The	default	orientation	of	the	device	(portrait	for	phones).
	ROTATION_90	:	The	"sideways"	orientation	of	the	device	(landscape	for	phones).	Different
devices	may	report	90	degrees	either	clockwise	or	counterclockwise	from	0.
	ROTATION_180	:	Upside-down	orientation,	if	the	device	allows	it.
	ROTATION_270	:	Sideways	orientation,	in	the	opposite	direction	from	ROTATION_90.

Note	that	many	devices	do	not	have		ROTATION_180		at	all	or	return		ROTATION_90		or
	ROTATION_270		regardless	of	which	direction	the	device	was	rotated	(clockwise	or
counterclockwise).	It	is	best	to	handle	all	possible	rotations	rather	than	to	make	assumptions
for	any	particular	device.

3.1	Get	the	device	rotation	and	remap	the	coordinate
system

1.	 In		MainActivity	,	edit		onCreate()		to	remove	or	comment	out	the	call	to
	setRequestedOrientation()	.

	//setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);

2.	 In		MainActivity	,	add	a	member	variable	for	the		Display		object.

	private	Display	mDisplay;

3.	 At	the	end	of		onCreate()	,	get	a	reference	to	the	window	manager,	and	then	get	the
default	display.	You	use	the	display	to	get	the	rotation	in		onSensorChanged()	.

	WindowManager	wm	=	(WindowManager)	getSystemService(WINDOW_SERVICE);

	mDisplay	=	wm.getDefaultDisplay();

4.	 In		onSensorChanged()	,	just	after	the	call	to		getRotationMatrix()	,	add	a	new	array	of
	float		values	to	hold	the	new	adjusted	rotation	matrix.

	float[]	rotationMatrixAdjusted	=	new	float[9];

5.	 Get	the	current	device	rotation	from	the	display	and	add	a		switch		statement	for	that

Introduction

113

https://developer.android.com/reference/android/view/Display.html#getRotation()
https://developer.android.com/reference/android/hardware/SensorManager.html#remapCoordinateSystem(float[],%20int,%20int,%20float[])
https://developer.android.com/reference/android/view/Surface.html#ROTATION_0
https://developer.android.com/reference/android/view/Surface.html#ROTATION_90
https://developer.android.com/reference/android/view/Surface.html#ROTATION_180
https://developer.android.com/reference/android/view/Surface.html#ROTATION_270
https://developer.android.com/reference/android/view/Display.html

value.	Use	the	rotation	constants	from	the		Surface		class	for	each	case	in	the	switch.
For		ROTATION_0	,	the	default	orientation,	you	don't	need	to	remap	the	coordinates.	You
can	just	clone	the	data	in	the	existing	rotation	matrix:

	switch	(mDisplay.getRotation())	{

				case	Surface.ROTATION_0:

							rotationMatrixAdjusted	=	rotationMatrix.clone();

							break;

	}

6.	 Add	additional	cases	for	the	other	rotations,	and	call	the
	SensorManager.remapCoordinateSystem()		method	for	each	of	these	cases.

This	method	takes	as	arguments	the	original	rotation	matrix,	the	two	new	axes	on	which
you	want	to	remap	the	existing	x	-axis	and	y	-axis,	and	an	array	to	populate	with	the
new	data.	Use	the	axis	constants	from	the		SensorManager		class	to	represent	the
coordinate	system	axes.

case	Surface.ROTATION_90:

SensorManager.remapCoordinateSystem(rotationMatrix,

			SensorManager.AXIS_Y,	SensorManager.AXIS_MINUS_X,

			rotationMatrixAdjusted);

break;

case	Surface.ROTATION_180:

SensorManager.remapCoordinateSystem(rotationMatrix,

			SensorManager.AXIS_MINUS_X,	SensorManager.AXIS_MINUS_Y,

			rotationMatrixAdjusted);

break;

case	Surface.ROTATION_270:

SensorManager.remapCoordinateSystem(rotationMatrix,

			SensorManager.AXIS_MINUS_Y,	SensorManager.AXIS_X,

			rotationMatrixAdjusted);

break;

7.	 Modify	the	call	to		getOrientation()		to	use	the	new	adjusted	rotation	matrix	instead	of
the	original	matrix.

	SensorManager.getOrientation(rotationMatrixAdjusted,	

				orientationValues);

8.	 Build	and	run	the	app	again.	The	colors	of	the	spots	should	now	change	on	the	correct
edges	of	the	device,	regardless	of	how	the	device	is	rotated.

Solution	code

Introduction

114

Android	Studio	project:	TiltSpot

Coding	challenge
Note:	All	coding	challenges	are	optional.
Challenge:	A	general	rule	is	to	avoid	doing	a	lot	of	work	in	the		onSensorChanged()		method,
because	the	method	runs	on	the	main	thread	and	may	be	called	many	times	per	second.	In
particular,	the	changes	to	the	colors	of	the	spot	can	look	jerky	if	you're	trying	to	do	too	much
work	in		onSensorChanged()	.	Rewrite		onSensorChanged()		to	use	an		AsyncTask		object	for	all
the	calculations	and	updates	to	views.

Summary
Motion	sensors	such	as	the	accelerometer	measure	device	movement	such	as	tilt,
shake,	rotation,	or	swing.
Position	sensors	such	as	the	geomagnetic	field	sensor	(magnetometer)	can	determine
the	device's	position	relative	to	the	Earth.
The	accelerometer	measures	device	acceleration,	that	is,	how	much	the	device	is
accelerating	and	in	which	direction.	Acceleration	forces	on	the	device	include	the	force
of	gravity.
The	magnetometer	measures	the	strength	of	magnetic	fields	around	the	device.	This
includes	Earth's	magnetic	field,	although	other	fields	nearby	may	affect	sensor	readings.
You	can	use	combined	data	from	motion	and	position	sensors	to	determine	the	device's
orientation	(its	position	in	space)	more	accurately	than	with	individual	sensors.
The	3-axis	device-coordinate	system	that	most	sensors	use	is	relative	to	the	device
itself	in	its	default	orientation.	The	y	-axis	is	vertical	and	points	toward	the	top	edge	of
the	device,	the	x	-axis	is	horizontal	and	points	to	the	right	edge	of	the	device,	and	the	z	-
axis	extends	up	from	the	surface	of	the	screen.
The	Earth's	coordinate	system	is	relative	to	the	surface	of	the	Earth,	with	the	y	-axis
pointing	to	magnetic	north,	the	x	-axis	90	degrees	from	y	and	pointing	east,	and	the	z	-
axis	extending	up	into	space.
Orientation	angles	describe	how	far	the	device	is	oriented	or	tilted	with	respect	to	the
Earth's	coordinate	system.	There	are	three	components	to	orientation:
Azimuth	:	The	direction	(north/south/east/west)	the	device	is	pointing.	0	is	magnetic
north.
Pitch	:	The	top-to-bottom	tilt	of	the	device.	0	is	flat.
Roll	:	The	left-to-right	tilt	of	the	device.	0	is	flat.
To	determine	the	orientation	of	the	device:
Use	the		SensorManager.getRotationMatrix()		method.	The	method	combines	data	from

Introduction

115

https://github.com/google-developer-training/android-advanced/tree/master/TiltSpot

the	accelerometer	and	magnetometer	and	translates	the	data	into	the	Earth's
coordinate	system.
Use	the		SensorManager.getOrientation()		method	with	a	rotation	matrix	to	get	the
orientation	angles	of	the	device.
The	alpha	value	determines	the	opacity	of	a	drawable	or	view.	Lower	alpha	values
indicate	more	transparency.	Use	the		setAlpha()		method	to	programmatically	change
the	alpha	value	for	a	view.
When	Android	automatically	rotates	the	activity	in	response	to	device	orientation,	the
activity	coordinate	system	also	rotates.	However,	the	device-coordinate	system	that	the
sensors	use	remains	fixed.
The	default	device-coordinate	system	sensors	use	is	also	based	on	the	natural
orientation	of	the	device,	which	may	not	be	"portrait"	or	"landscape."
Query	the	current	device	orientation	with	the		Display.getRotation()		method.
Use	the	current	device	orientation	to	remap	the	coordinate	system	in	the	right
orientation	with	the		SensorManager.remapCoordinateSystem()		method.

Related	concept
The	related	concept	documentation	is	in	Motion	and	position	sensors.

Learn	more
Android	developer	documentation:

Sensors	Overview
Motion	Sensors
Position	Sensors

Android	API	reference	documentation:

	Sensor	

	SensorEvent	

	SensorManager	

	SensorEventListener	

	Surface	

	Display	

Other:

Accelerometer	Basics
Sensor	fusion	and	motion	prediction	(written	for	VR,	but	many	of	the	basic	concepts

Introduction

116

https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-1-expand-the-user-experience/lesson-3-sensors/3-2-c-motion-and-position-sensors/3-2-c-motion-and-position-sensors.html
https://developer.android.com/guide/topics/sensors/sensors_overview.html
https://developer.android.com/guide/topics/sensors/sensors_motion.html
https://developer.android.com/guide/topics/sensors/sensors_position.html
https://developer.android.com/reference/android/hardware/Sensor.html
https://developer.android.com/reference/android/hardware/SensorEvent.html
https://developer.android.com/reference/android/hardware/SensorManager.html
https://developer.android.com/reference/android/hardware/SensorEventListener.html
https://developer.android.com/reference/android/view/Surface.html
https://developer.android.com/reference/android/view/Display.html
https://learn.sparkfun.com/tutorials/accelerometer-basics
http://smus.com/sensor-fusion-prediction-webvr/

apply	to	basic	apps	as	well)
Android	phone	orientation	overview
One	Screen	Turn	Deserves	Another

Introduction

117

https://stackoverflow.com/questions/4819626/android-phone-orientation-overview-including-compass
https://android-developers.googleblog.com/2010/09/one-screen-turn-deserves-another.html

4.1A:	Using	the	Profile	GPU	Rendering	tool
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Run	the	Profile	GPU	Rendering	tool
Task	2.	Run	the	Profile	GPU	Rendering	tool	on	an	app	with	performance	issues
Solution	code
Summary
Related	concept
Learn	more

Every	app	is	different	and	could	have	different	performance	issues.	While	there	are	best
practices,	you	need	to	analyze	the	unique	configuration	of	your	app	to	find	and	fix
performance	issues.

To	discover	what	causes	your	app's	specific	performance	problems,	use	tools	to	collect	data
about	your	app's	execution	behavior.	Understand	and	analyze	what	you	see,	then	improve
your	code.	Android	Studio	and	your	device	provide	profiling	tools	to	record	and	visualize	the
rendering,	compute,	memory,	and	battery	performance	of	your	app.

In	this	practical,	you	use	the	Profile	GPU	Rendering	tool	on	your	device	to	visualize	how
long	it	takes	an	app	to	draw	frames	to	the	screen.

Important:	To	run	the	Profile	GPU	Rendering	tool	and	complete	this	practical	exercise,	you
need	a	physical	or	virtual	device	running	at	least	Android	4.1	(API	level	16)	with	Developer
Options	turned	on.
Your	app	must	consistently	draw	the	screen	fast	enough	for	your	users	to	see	smooth,	fluid
motions,	transitions,	and	responses.	To	this	end,	typically,	modern	devices	strive	to	display
60	frames	per	second	(a	frame	rate	of	60	FPS),	making	16	milliseconds	available	to	each
frame.	Therefore,	your	app	has	to	do	its	work	in	16	milliseconds	or	less	for	every	screen
refresh.

Important:	For	real-world	performance	tuning,	run	your	app	and	the	tools	on	a	physical
device,	not	an	emulator,	as	the	data	you	get	from	running	on	an	emulator	may	not	be
accurate.	Always	test	on	the	lowest-end	device	that	your	app	is	targeting.	If	you	do	not	have
a	physical	device,	you	can	use	an	emulator	to	get	an	idea	of	how	your	app	is	performing,
even	though	some	performance	data	from	the	emulator	may	not	be	accurate.

Introduction

118

https://developer.android.com/studio/profile/dev-options-rendering.html
https://developer.android.com/studio/debug/dev-options.html

What	you	should	already	KNOW
You	should	be	able	to	download	an	app	from	GitHub,	open	it	with	Android	Studio,	and
run	it.
It	helps	to	be	familiar	with	the	following	concepts	and	terminology:
CPU:	A	central	processing	unit	(CPU)	is	the	electronic	circuitry	within	a	computer	that
carries	out	the	instructions	of	a	computer	program	by	performing	the	basic	arithmetic,
logical,	control,	and	input/output	(I/O)	operations	specified	by	the	instructions.
GPU:	A	graphics	processing	unit	(GPU)	is	a	specialized	electronic	circuit	designed	to
rapidly	manipulate	and	display	images.
Frame	rate:	Frame	rate	(expressed	in	frames	per	second,	or	FPS)	is	the	frequency
(rate)	at	which	consecutive	images,	called	frames	,	are	displayed	in	an	animated
display.	Mobile	devices	typically	display	60	frames	per	second,	which	appears	as
smooth	motion	to	the	human	eye.
Display	list:	A	display	list	(or	display	file)	is	a	series	of	graphics	commands	that	define
an	output	image	as	a	series	of	primitives	(such	as	lines	and	basic	shapes).
Rendering	pipeline:	A	conceptual	model	that	describes	the	steps	that	a	graphics	system
performs	when	it	renders	graphical	information	on	the	screen.	At	the	highest	level,	the
pipeline	creates	a	display	list	from	program	instructions	in	the	CPU,	passes	the	display
list	to	the	GPU,	and	the	GPU	executes	the	display	list	to	draw	the	screen.

As	a	refresher,	watch	the	Invalidation,	Layouts,	and	Performance	video	for	an	overview	of
the	Android	rendering	pipeline.	Read	the	Rendering	and	Layout	concept	chapter	as	well	as
How	Android	Draws	Views.

What	you	will	LEARN
You	will	learn	how	to:

Use	the	Profile	GPU	Rendering	tool	to	visualize	Android	drawing	the	screen.

What	you	will	DO
Run	the	Profile	GPU	Rendering	tool	on	the	RecyclerView	app	and	examine	the	results.
Create	a	simple	app	that	has	performance	problems	and	run	the	Profile	GPU	Rendering
tool	on	it.

App	overview

Introduction

119

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Frame_rate
https://en.wikipedia.org/wiki/Display_list
https://en.wikipedia.org/wiki/Graphics_pipeline
https://www.youtube.com/watch?v=we6poP0kw6E
https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-2-make-your-apps-fast-and-small/lesson-4-performance/4-2-c-rendering-and-layout/4-2-c-rendering-and-layout.html
https://developer.android.com/guide/topics/ui/how-android-draws.html

For	the	first	part	of	this	practical,	use	the	RecyclerView	app.
For	the	second	part	of	this	practical,	you	build	an	app	that	loads	images,	LargeImages,
to	see	how	image	size	affects	performance.	In	a	later	practical,	you	learn	more	about
using	images	correctly.

The	following	screenshot	shows	one	way	of	implementing	the	LargeImages	app.

Introduction

120

https://github.com/google-developer-training/android-fundamentals/tree/master/RecyclerView
https://github.com/google-developer-training/android-advanced/tree/master/LargeImages

Introduction

121

Task	1.	Run	the	Profile	GPU	Rendering	tool
Putting	pixels	on	the	screen	involves	four	primary	pieces	of	hardware:

The	CPU	computes	display	lists.	Each	display	list	is	a	series	of	graphics	commands	that
define	an	output	image.
The	GPU	(graphics	processing	unit)	renders	images	to	the	display.
The	memory	stores	your	app's	images	and	data,	among	other	things.
The	battery	provides	electrical	power	for	all	the	hardware	on	the	device.

Each	of	these	pieces	of	hardware	has	constraints.	Stressing	or	exceeding	those	constraints
can	cause	your	app	to	be	slow,	have	bad	display	performance,	or	exhaust	the	battery.

The	Profile	GPU	Rendering	tool	gives	you	a	quick	visual	representation	of	how	much	time	it
takes	to	render	the	frames	of	a	UI	window	relative	to	the	16-ms-per-frame	benchmark.	The
tool	shows	a	colored	bar	for	each	frame.	Each	bar	has	colored	segments	indicating	the
relative	time	that	each	stage	of	the	rendering	pipeline	takes,	as	shown	in	the	screenshot
below.

Introduction

122

https://en.wikipedia.org/wiki/Display_list
https://developer.android.com/studio/profile/dev-options-rendering.html

Introduction

123

What	it's	good	for:

Quickly	seeing	how	screens	perform	against	the	16-ms-per-frame	target.
Identifying	whether	the	time	taken	by	any	part	of	the	rendering	pipeline	stands	out.
Looking	for	spikes	in	frame	rendering	time	associated	with	user	or	program	actions.

1.1	Disable	Instant	Run

Note:	While	profiling	an	app,	disable	Instant	Run	inAndroidStudio.	There	is	a	small
performance	impact	when	using	Instant	Run.	This	performance	impact	could	interfere	with
information	provided	by	performance	profiling	tools.	Additionally,	the	stub	methods
generated	while	using	Instant	Run	can	complicate	stack	traces.	See	About	Instant	Run	for
details.
In	Android	Studio,	turn	off	Instant	Run	for	the	physical	and	virtual	devices	you	want	to	profile.

1.	 Open	the	Settings	or	Preferences	dialog:	On	Windows	or	Linux,	select	File	>	Settings
from	the	menu	bar.	On	Mac	OSX,	select	Android	Studio	>	Preferences	from	the	menu
bar.

2.	 Navigate	to	Build,	Execution,	Deployment	>	Instant	Run.
3.	 Deselect	the	Restart	activity	on	code	changes	checkbox.

1.2	Install	and	run	the	RecyclerView	app

For	this	tool	walkthrough,	use	the	RecyclerView	app	from	the	Android	Developer
Fundamentals	course.

1.	 Download	the	RecyclerView	app.
2.	 Open	the	app	in	Android	Studio	and	run	it.	You	may	need	to	uninstall	previous	versions

of	the	app.
3.	 Interact	with	the	app.	Does	the	app	scroll	smoothly?
4.	 Press	the	+	button	and	add	words	to	the	list.	Does	this	change	how	you	perceive	the

performance	of	the	app?

	RecyclerView		is	an	efficient	way	of	displaying	information,	and	on	most	devices	and	recent
versions	of	Android,	the	app	performs	smoothly.	What	users	perceive	and	how	they
experience	the	app	are	your	ultimate	benchmarks	for	performance.

1.3	Turn	on	the	Profile	GPU	Rendering	tool

Ensure	that	developer	options	is	turned	on,	and	allow	USB	Debugging	if	prompted.

Introduction

124

https://developer.android.com/tools/building/building-studio.html#disable-ir
https://developer.android.com/tools/building/building-studio.html#disable-ir
https://developer.android.com/tools/building/building-studio.html#disable-ir
https://developer.android.com/tools/building/building-studio.html#disable-ir
https://developer.android.com/tools/building/building-studio.html#disable-ir
https://developer.android.com/tools/building/building-studio.html#disable-ir
https://developer.android.com/tools/building/building-studio.html#disable-ir
https://developer.android.com/tools/building/building-studio.html#disable-ir
https://developer.android.com/tools/building/building-studio.html#instant-run
https://developer.android.com/studio/run/index.html#instant-run
https://developers.google.com/training/courses/android-fundamentals
https://github.com/google-developer-training/android-fundamentals/tree/master/RecyclerView
http://developer.android.com/tools/device.html#developer-device-options

Go	to	Settings	>	Developer	options	and	follow	the	steps	as	illustrated	in	the	screenshot
below.

1.	 Scroll	down	to	the	Monitoring	section.
2.	 Select	Profile	GPU	rendering.
3.	 Choose	On	screen	as	bars	in	the	dialog	box.	Immediately,	you	see	colored	bars	on

your	screen.	The	bars	vary	depending	on	your	device	and	version	of	Android,	so	they
may	not	look	exactly	as	illustrated.	

4.	 Switch	to	the	RecyclerView	app	and	interact	with	it.

Note	the	following:

Each	bar	represents	one	frame	rendered.
If	a	bar	goes	above	the	green	line,	the	frame	took	more	than	16ms	to	render.	Ideally,
most	of	the	bars	stay	below	the	green	line	most	of	the	time.

This	is	not	an	absolute	requirement.	For	example,	when	you	first	load	an	image,	the	bar
may	go	above	the	green	line,	but	users	may	not	notice	a	problem,	because	they	may
expect	to	wait	a	moment	for	an	image	to	load.	Having	some	tall	bars	does	not	mean
your	app	has	a	performance	problem.	However,	if	your	app	does	have	a	performance
problem,	tall	bars	can	give	you	a	hint	as	to	where	to	start	looking.

Introduction

125

The	colors	in	each	bar	represent	the	different	stages	in	rendering	the	frame.	The
colored	sections	visualize	the	stages	and	their	relative	times.	The	table	below	gives	an
explanation.

The	image	below	shows	the	bars	and	color	legend	for	a	device	that	is	running	Android	6.0	or
higher.	The	bars	for	older	versions	use	different	coloring.	See	the	Profile	GPU	Rendering
Walkthrough	for	the	bar	legend	for	older	versions.

The	following	table	shows	the	component	bars	in	Android	6.0	and	higher.

Introduction

126

https://developer.android.com/studio/profile/dev-options-rendering.html

Color Rendering
stage Description

Swap
buffers

Represents	the	time	the	CPU	is	waiting	for	the	GPU	to	finish	its
work.	If	this	part	of	the	bar	is	tall,	the	app	is	doing	too	much
work	on	the	GPU.

Command
issue

Represents	the	time	spent	by	Android's	2-D	renderer	as	it
issues	commands	to	OpenGL	to	draw	and	redraw	display	lists.
The	height	of	this	part	of	the	bar	is	directly	proportional	to	the
sum	of	the	time	it	takes	for	all	the	display	lists	to	execute—
more	display	lists	equals	a	taller	red	segment	of	the	bar.

Sync	and
upload

Represents	the	time	it	take	to	upload	bitmap	information	to	the
GPU.	If	this	part	of	the	bar	is	tall,	the	app	is	taking	considerable
time	loading	large	amounts	of	graphics.

Draw
Represents	the	time	used	to	create	and	update	the	view's
display	lists.	If	this	part	of	the	bar	is	tall,	there	may	be	a	lot	of
custom	view	drawing,	or	a	lot	of	work	in		onDraw		methods.

Measure
and	layout

Represents	the	amount	of	time	spent	on	onLayout	and
onMeasure	callbacks	in	the	view	hierarchy.	A	large	segment
indicates	that	the	view	hierarchy	is	taking	a	long	time	to
process.

Animation

Represents	the	time	spent	evaluating	animators.	If	this	part	of
the	bar	is	tall,	your	app	could	be	using	a	custom	animator	that's
not	performing	well,	or	unintended	work	is	happening	as	a
result	of	properties	being	updated.

Input
handling

Represents	the	time	that	the	app	spent	executing	code	inside
of	an	input	event	callback.	If	this	part	of	the	bar	is	tall,	the	app	is
spending	too	much	time	processing	user	input.	Consider
offloading	such	processing	to	a	different	thread.

Misc.	time
/	Vsync
delay

Represents	the	time	that	the	app	spends	executing	operations
between	consecutive	frames.	It	might	indicate	too	much
processing	happening	in	the	UI	thread	that	could	be	offloaded
to	a	different	thread.	(Vsync	is	a	display	option	found	in	some
3-D	apps.)

For	example,	if	the	green	Input	handling	portion	of	the	bar	is	tall,	your	app	spends	a	lot	of
time	handling	input	events,	executing	code	called	as	a	result	of	input	event	callbacks.	To
improve	this,	consider	when	and	how	your	app	requests	user	input,	and	whether	you	can
handle	it	more	efficiently.

Note	that		RecyclerView		scrolling	can	show	up	in	the	Input	handling	portion	of	the	bar.
	RecyclerView		scrolls	immediately	when	it	processes	the	touch	event.	For	this	reason,
processing	the	touch	event	needs	to	be	as	fast	as	possible.

Introduction

127

https://developer.android.com/reference/android/view/View.html#onLayout(boolean,%20int,%20int,%20int,%20int)
https://developer.android.com/reference/android/view/View.html#onMeasure(int,%20int)

If	you	spend	time	using	the	Profile	GPU	Rendering	tool	on	your	app,	it	will	help	you	identify
which	parts	of	the	UI	interaction	are	slower	than	expected,	and	then	you	can	take	action	to
improve	the	speed	of	your	app's	UI.

Important:	As	the	Android	system	and	tools	improve,	recommendations	may	change.	Your
best	and	most	up-to-date	source	of	information	on	performance	is	the	Android	developer
documentation.

Task	2.	Run	the	Profile	GPU	Rendering	tool	on
an	app	with	performance	issues
Important:	We	do	not	want	to	teach	you	how	to	write	bad	apps.	We	don't	even	want	to	show
you	the	code.	However,	we	can	simulate	a	slow	app	by	using	images	that	are	too	large;	in	a
different	chapter,	you	learn	how	to	improve	performance	by	using	the	right	image	sizes	and
types	for	your	app.

2.1	Create	an	app	with	image	backgrounds

Build	a	LargeImages	app	that	has	performance	problems.	(You	re-use	this	app	in	a	later
practical.)

Introduction

128

Introduction

129

One	way	to	implement	the	LargeImages	app	is	to	show	simple	instructions	in	a		TextView	
and	the	large	background	image	that	is	provided	with	the	solution	code.

Do	the	following:

1.	 Create	an	app	named	LargeImages	using	the	Empty	Template.
2.	 Choose	5.1,	Lollipop	(API	22)	as	the	minimum	SDK.	(Lossless	and	transparent	WebP

images	that	you	use	later	in	this	app	are	supported	in	Android	4.3,	API	level	18	and
higher,	and	API	22	is	recommended.)

3.	 Put	at	least	one	small	and	one	large	image	into	the	drawables	resource	folder.

You	can	copy	images	from	the	solution	code	in	GitHub.
Small	images	should	be	around	12KB.
The	largest	image	should	be	a	few	hundred	KB.	The	dinosaur_medium.jpg	supplied
with	the	solution	code	is	495KB	and	a	good	starting	point.	The	max	size	of	the
image	you	can	load	depends	on	the	amount	of	device	memory	available	to	your
app.	You	can	look	at	the	specifications	for	a	phone	model	to	find	out	how	much
RAM	it	has.	Not	all	of	this	is	available	to	a	single	app,	so	you	may	have	to
experiment	a	bit.	You	may	need	to	try	different	size	images	to	find	the	largest	image
that	won't	crash	your	app.

4.	 Add	an		Activity	.

5.	 Create	a	layout	with	a		LinearLayout		with	a		TextView	.	Set	the	height	and	width	of	the
	TextView		to		match_parent	.

6.	 Set	the	background	(android:background)	on	the		TextView		to	the	small	image.
7.	 Add	this	text	to	this	to	the		TextView	:	"Click	to	swap	image."
8.	 Add	a	click	handler	to	the		TextView		that	changes	the	background	when	the	screen	is

tapped.	Use	the	following	code	snippet	as	a	template.	The	code	uses	a	numeric	toggle
so	that	you	can	experiment	with	any	number	of	images.

	private	int	toggle	=	0;

	...

	public	void	changeImage(View	view){	

						if	(toggle	==	0)	{

								view.setBackgroundResource(R.drawable.dinosaur_medium);

								toggle	=	1;

				}	else	{

								view.setBackgroundResource(R.drawable.ankylo);

								toggle	=	0;

				}

	}

9.	 Run	the	app	with	Profile	GPU	Rendering	turned	on	and	tap	to	swap	pictures.	When	you
load	the	small	image,	you	should	see	relatively	short	bars.	When	you	load	the	large

Introduction

130

https://github.com/google-developer-training/android-advanced/tree/master/LargeImages/app/src/main/res/drawable
https://developer.android.com/reference/android/view/View.html

image,	there	should	be	relatively	tall	bars,	similar	to	the	ones	shown	below.	

Profile	GPU	Rendering	bars	for	the	large	image	app	are	shown	in	the	previous	screenshots.
The	detail	on	the	left	shows	the	faint	short	bars	for	the	small	image	(1)	staying	below	the
green	line	(2).	The	screenshot	on	the	right	show	the	bars	as	they	appear	on	your	device
emphasizing	the	bars	that	cross	the	green	line	(3,4).

1.	 The	narrow,	faint	bar	for	the	small	image	is	below	the	green	line,	so	there	is	no
performance	issue.

2.	 The	green	horizontal	line	indicates	the	16	millisecond	rendering	time.	Ideally,	most	bars
should	be	close	to	or	below	this	line.

3.	 After	the	small	image	is	replaced	by	the	large	image,	the	red	bar	segment	is	huge.	This
Command	issue	segment	represents	the	time	spent	by	Android's	2D	renderer	issuing
commands	to	draw	and	redraw	display	lists.

4.	 The	large	image	also	has	a	huge	orange	segment.	This	Swap	buffers	segment
represents	the	time	the	CPU	is	waiting	for	the	GPU	to	finish	its	work.

The	GPU	works	in	parallel	with	the	CPU.	The	Android	system	issues	draw	commands
to	the	GPU,	and	then	moves	on	to	its	next	task.	The	GPU	reads	those	draw	commands
from	a	queue.	When	the	CPU	issues	commands	faster	than	the	GPU	consumes	them,
the	queue	between	the	processors	becomes	full,	and	the	CPU	blocks.	The	CPU	waits
until	there	is	space	in	the	queue	to	place	the	next	command.

Introduction

131

To	mitigate	this	problem,	reduce	the	complexity	of	work	occurring	on	the	GPU,	similar	to
what	you	would	do	for	the	"Command	issue"	phase.

See	Analyzing	with	Profile	GPU	Rendering	for	details	on	each	stage.

To	fix	the	app,	you	would	use	a	different	or	smaller	image.	Finding	problems	can	be	as
straightforward	as	this,	or	it	can	take	additional	analysis	to	pinpoint	what	is	happening	in
your	app's	code.

Troubleshooting

If	your	app	crashes	with	the	images	provided	for	the	sample	app,	you	may	need	to	use
smaller	images	for	your	device.
If	your	app	crashes	on	the	emulator,	edit	the	emulator	configuration	in	the	AVD
Manager.	Use	your	computer's	graphics	card	instead	of	simulating	the	device's	graphic
software	by	selecting	"Graphics:	Hardware	-	GLES"	on	the	configuration	screen.
If	you	get	a		failed	to	find	style	'textviewstyle'	in	current	theme		or	other	rendering
error	in	the	Design	view	in	Android	Studio,	click	the	refresh	link	provided	with	the	error
message.

2.2	Simulate	long	input	processing

To	demonstrate	how	doing	too	much	work	on	the	UI	thread	slows	down	your	app,	slow	down
drawing	by	putting	the	app	to	sleep:

1.	 Add	code	to	the	click	handler	of	the	LargeImages	app	to	let	your	app	sleep	for	two
screen	refreshes	before	switching	the	background	to	the	smaller	image.	This	means
that	instead	of	refreshing	the	screen	every	16	ms,	your	app	now	refreshes	every	48	ms
with	new	content.	This	will	be	reflected	in	the	bars	displayed	by	the	Profile	GPU
Rendering	tool.

	public	void	changeImage(View	view){

				if	(toggle	==	0)	{

								view.setBackgroundResource(R.drawable.dinosaur_large);

								toggle	=	1;

				}	else	{

								try	{

												Thread.sleep(32);	//	two	refreshes

								}	catch	(InterruptedException	e)	{

												e.printStackTrace();

								}

								view.setBackgroundResource(R.drawable.ankylo);

								toggle	=	0;

				}

	}

Introduction

132

https://developer.android.com/topic/performance/rendering/profile-gpu.html

2.	 Run	your	app.	The	previously	short	bars	for	the	small	image	should	now	be	much	taller.
Wait	a	while	before	clicking	the		TextView		to	get	the	next	image;	otherwise,	the	Android
system	may	display	an	ANR.

If	your	app	is	only	swapping	backgrounds,	the	impact	from	this	change	may	not	be
significant	for	the	user.	However,	if	you	are	running	animated	content,	skipping	two	out	of
three	frames	will	result	in	a	stuttering	and	jagged	animation.

While	Profile	GPU	Rendering	cannot	tell	you	exactly	what	to	fix	in	your	code,	it	can	hint	at
where	you	should	start	looking.	And	let's	admit	it,	the	on-screen	bars	are	pretty	cool!

Solution	code
Android	Studio	project:	LargeImages.

Summary
You	can	use	the	Profile	GPU	Rendering	tool	on	your	device	to	visualize	the	relative
times	it	takes	for	your	app	to	render	frames	on	screen.
Because	it	can	be	turned	on	quickly	and	its	results	are	immediate	and	graphical,	this
tool	is	a	good	first	step	when	analyzing	potential	app	performance	issues	related	to
rendering.
The	sections	of	the	colored	bars	can	indicate	where	in	your	app	you	might	look	for
performance	problems.
Common	reasons	for	slow	drawing	are	an	app	taking	too	long	to	process	user	input	on
the	UI	thread,	and	backgrounds	and	images	that	are	unnecessary	or	too	large.

Related	concepts
The	related	concept	documentation	is	in	Rendering	and	layout.

Learn	more
Profile	GPU	Rendering	Walkthrough
Analyzing	with	Profile	GPU	Rendering
How	Android	Draws	Views
Video:	Invalidation,	Layouts,	and	Performance

Introduction

133

https://github.com/google-developer-training/android-advanced/tree/master/LargeImages
https://developer.android.com/studio/profile/dev-options-rendering.html
https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-2-make-your-apps-fast-and-small/lesson-4-performance/4-0-c-performance/4-0-c-performance.html
https://developer.android.com/studio/profile/dev-options-rendering.html
https://developer.android.com/topic/performance/rendering/profile-gpu.html
https://developer.android.com/guide/topics/ui/how-android-draws.html
https://www.youtube.com/watch?v=we6poP0kw6E

Introduction

134

4.1B:	Using	the	Debug	GPU	Overdraw	and
Layout	Inspector	tools
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Visualize	overdraw	with	Debug	GPU	Overdraw
Task	2.	Inspect	the	view	hierarchy
Solution	code
Summary
Related	concept
Learn	more

You	can	make	your	apps	interesting	and	visually	compelling	by	following	Material	Design
guidelines,	creating	nested	hierarchies	of	layouts,	and	using	drawables	as	background
elements	for	your	views.	However,	with	increasing	complexity	come	performance
challenges,	and	layouts	draw	faster	and	use	less	power	and	battery	if	you	spend	time
designing	them	in	the	most	efficient	way.	For	example:

Overlapping	views	result	in	overdraw	,	where	the	app	wastes	time	drawing	the	same
pixel	multiple	times,	and	only	the	final	rendition	is	visible	to	the	user.	Size	and	organize
your	views	so	that	every	pixel	is	only	drawn	once	or	twice.
Deeply	nested	layouts	force	the	Android	system	to	perform	more	passes	to	lay	out	all
the	views	than	if	your	view	hierarchy	is	flat.
To	simplify	your	view	hierarchy,	combine,	flatten,	or	eliminate	views.

What	you	should	already	KNOW
You	should	be	able	to:

Create	apps	with	Android	Studio	and	run	them	on	a	mobile	device.
Work	with	the	Developer	options	settings	on	a	mobile	device.

What	you	will	LEARN

Introduction

135

https://developer.android.com/design/material/index.html

You	will	learn	how	to:

Run	the	Debug	GPU	Overdraw	tool	to	visualize	Android	drawing	to	the	screen.
Use	the	Layout	Inspector	tool	to	inspect	the	view	hierarchy	of	an	app.

What	you	will	DO
Create	a	testing	app,	StackedViews,	to	illustrate	overdraw.
Run	the	Debug	GPU	Overdraw	tool	on	the	StackedViews	app.
Fix	the	StackedViews	app	to	reduce	overdraw.
Use	the	Layout	Inspector	tool	to	identify	how	you	could	simplify	the	view	hierarchy.

App	overview
The	StackedViews	app	arranges	three	overlapping		TextView		objects	inside	a
	ConstraintLayout		to	demonstrate	overdraw.	While	this	is	a	contrived	and	simplistic
example,	overlapping	views	can	easily	happen	during	development	as	you	add	more
features	and	complexity	to	your	app.	The	screenshot	below	shows	an	arrangement	of	three
overlapping	views.	View	1	fills	the	screen.	View	2	fills	the	bottom	two	thirds	of	the	screen.
View	3	fills	the	bottom	third	of	the	screen	to	create	progressively	more	overlap.

Introduction

136

Introduction

137

Task	1.	Visualize	overdraw	with	Debug	GPU
Overdraw
One	possible	cause	for	slow	rendering	performance	is	overdraw,	which	is	when	your	app
draws	over	the	same	area	multiple	times,	but	the	user	sees	only	what	has	been	drawn	last.
This	can	result	in	performance	problems,	especially	for	older	or	less	powerful	devices.

Learn	more	about	overdraw	in	the	Rendering	and	layout	concept	chapter.

1.1	Create	an	app	to	illustrate	overdraw

Create	an	app	called	StackedViews	that	stacks	views	on	top	of	each	other.

1.	 Create	an	app	using	the	Empty	template,	which	uses		ConstraintLayout	.
2.	 Set	a	light	gray	background	on	the		ConstraintLayout	.
3.	 Add	a		TextView		element	where	the	width	and	height	match	the	parent.	Set	a	light	gray

background,	such	as		#fafafa	.
4.	 Add	a	second,	overlapping,		TextView		element.	Make	the	width	match	the	parent.	Make

the	height	about	three	quarters	of	the	height	from	the	bottom.	You	can	do	this	by	making
the	height	match	the	parent,	then	use		layout_marginTop		to	add	space	at	the	top.	Use	a
darker	gray	background,	such	as	#	e0e0e0.	

5.	 In	the	same	way,	add	a	third,	overlapping		TextView		element	that	fills	the	width	of	the
parent	and	about	half	of	the	height	from	the	bottom.	Use	an	even	darker	gray
background,	such	as		#bdbdbd.	

6.	 Optionally,	use	a	large	font	such	as		@style/TextAppearance.AppCompat.Display1		for	the
	TextViews	.

7.	 Run	the	app	on	your	device.	It	should	look	similar	to	the	screenshot	below,	with	three
progressively	more	overlapping	views.

Introduction

138

https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-2-make-your-apps-fast-and-small/lesson-4-performance/4-1-c-rendering-and-layout/4-1-c-rendering-and-layout.html

Introduction

139

Your	final	code	should	look	similar	to	this:

<android.support.constraint.ConstraintLayout

				xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:app="http://schemas.android.com/apk/res-auto"

				xmlns:tools="http://schemas.android.com/tools"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				tools:context="com.example.android.stackedviews.MainActivity"

				android:background="@android:color/background_light">

				<TextView

								android:id="@+id/view1"

								android:layout_width="match_parent"

								android:layout_height="match_parent"

								android:background="@color/very_light_gray"

								android:text="@string/view1"

								android:textAppearance="@style/TextAppearance.AppCompat.Display1"

								app:layout_constraintBottom_toBottomOf="parent"

								app:layout_constraintLeft_toLeftOf="parent"

								app:layout_constraintRight_toRightOf="parent"

								app:layout_constraintTop_toTopOf="parent"	/>

				<TextView

								android:id="@+id/view2"

								android:layout_width="match_parent"

								android:layout_height="match_parent"

								android:layout_marginTop="156dp"

								android:background="@color/light_gray"

								android:text="@string/view2"

								android:textAppearance="@style/TextAppearance.AppCompat.Display1"

								app:layout_constraintBottom_toBottomOf="parent"

								app:layout_constraintLeft_toLeftOf="parent"

								app:layout_constraintRight_toRightOf="parent"

								app:layout_constraintTop_toTopOf="parent"	/>

				<TextView

								android:id="@+id/view3"

								android:layout_width="match_parent"

								android:layout_height="match_parent"

								android:layout_marginTop="300dp"

								android:background="@color/medium_gray"

								android:text="@string/view3"

								android:textAppearance="@style/TextAppearance.AppCompat.Display1"

								app:layout_constraintBottom_toBottomOf="parent"

								app:layout_constraintLeft_toLeftOf="parent"

								app:layout_constraintRight_toRightOf="parent"

								app:layout_constraintTop_toTopOf="parent"	/>

</android.support.constraint.ConstraintLayout>

Introduction

140

1.2	Turn	on	Debug	GPU	Overdraw	on	your	device

Make	sure	developer	options	is	turned	on.	Turn	on	USB	Debugging,	and	allow	it	when
prompted.

Turn	on	Debug	GPU	Overdraw	on	your	mobile	device:

1.	 Go	to	Settings	>	Developer	options.
2.	 In	the	Hardware	accelerated	rendering	section,	select	Debug	GPU	Overdraw.
3.	 In	the	Debug	GPU	overdraw	dialog,	select	Show	overdraw	areas.
4.	 Watch	your	device	turn	into	a	rainbow	of	colors.	The	colors	hint	at	the	amount	of

overdraw	on	your	screen	for	each	pixel.

The	following	key	shows	which	colors	indicate	how	much	overdraw.

True	color	has	no	overdraw.

Purple/blue	is	overdrawn	once.

Green	is	overdrawn	twice.

Pink	is	overdrawn	three	times.

Red	is	overdrawn	four	or	more	times.

An	app	with	too	much	overdraw	will	have	a	lot	of	pink	and	red	coloring,	as	shown	in	the

screenshot	below.	

Introduction

141

http://developer.android.com/tools/device.html#developer-device-options

A	properly	laid	out	app	has	little	overdraw	and	primarily	show	true	and	purple	coloring,	as
shown	in	the	screenshot	below.	Some	overdraw	is	unavoidable,	for	example,	when	drawing

text	onto	a	background.	

1.	 Run	the	StackedViews	app.	The	screen	should	look	similar	to	the	one	below,	with
green,	pink,	and	red	colors	that	indicate	significant	areas	of	overdraw	where	the
	TextView		objects	overlap.

Introduction

142

Introduction

143

Important:	If	it's	hard	for	you	to	see	the	difference	between	the	colors	that	the	tool	shows,
try	adjusting	the	tool	for	deuteranomaly:

1.	 Go	to	Settings	>	Developer	options.
2.	 In	the	Hardware	accelerated	rendering	section,	select	Debug	GPU	Overdraw.
3.	 In	the	Debug	GPU	overdraw	dialog,	select	Show	areas	for	Deuteranomaly	to	show

overdraw	using	adjusted	colors.	

Compare	the	colors	of	the	views	in	this	app	with	the	color	key	shown	above,	and	you	see
that	View	3	and	View	2	are	colored	for	3x	and	4x	overdraw.	This	is	because	as	laid	out	in
the	XML	file,	you	stacked	the	views	on	top	of	each	other.	A		ConstraintLayout		with	a
background	is	the	bottom	layer,	and	View	1	is	drawn	on	top	of	that,	so	View	1	is	overdrawn
twice,	and	so	on.

In	a	real-world	app,	you	would	not	use	a	layout	like	this,	but	remember	that	this	is	a	simple
example	to	demonstrate	the	tool.	Common,	realistic	examples	that	produce	overdraw
include:

Lists	with	items	that	contain	thumbnails,	text,	and	controls.
Custom	views,	such	as	custom	menus	or	drawers.
Views	that	overlap	with	other	views	for	any	reason.

1.3	Fix	overdraw

Introduction

144

Fixing	overdraw	can	be	as	basic	as	removing	invisible	views,	and	as	complex	as	re-
architecting	your	view	hierarchy.	To	fix	overdraw,	you	usually	need	to	take	one	or	more	of	the
following	actions.

Eliminate	unnecessary	backgrounds,	for	example,	when	a		View		displays	an	image	that
fills	it,	the	background	is	completely	covered,	so	it	can	be	removed.
Remove	invisible	views.	That	is,	remove	views	that	are	completely	covered	by	other
views.
In	custom	views,	clip	generously.	(See	Rendering	and	Layout.	You	learn	about	custom
views	in	another	chapter.)
Reduce	the	use	of	transparency.	For	example,	instead	of	using	transparency	to	create	a
color,	find	a	color.	Instead	of	using	transparency	to	create	a	shine-through	effect	for	two
overlapping	images,	preprocess	the	two	images	into	one.
Flatten	and	reorganize	the	view	hierarchy	to	reduce	the	number	of	views.	See	the
Rendering	and	Layout	concept	chapter	for	examples	and	best	practices.
Resize	or	rearrange	views	so	they	do	not	overlap.

To	reduce	overdraw	for	the	StackedViews	app,	rearrange	the	views	in	the	app	so	that	they
do	not	overlap.	In	the	XML	code:

1.	 Remove	the	background	of	the		ConstraintLayout	,	because	it's	invisible.
2.	 Set	the		layout_width		and		layout_height		of	each	view	to		0dp	.
3.	 Remove		layout_marginTop		for	view2	and	view3,	or	set	it	to		0dp	.
4.	 Use	constraints	to	lay	out	the	views	relative	to	each	other.

The	following	code	shows	the	constraints	for	each	view:

Introduction

145

https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-2-make-your-apps-fast-and-small/lesson-4-performance/4-2-c-rendering-and-layout/4-2-c-rendering-and-layout.html
https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-2-make-your-apps-fast-and-small/lesson-4-performance/4-2-c-rendering-and-layout/4-2-c-rendering-and-layout.html

			<TextView

								android:id="@+id/view1"

						...

								app:layout_constraintBottom_toTopOf="@+id/view2"

								app:layout_constraintLeft_toLeftOf="parent"

								app:layout_constraintRight_toRightOf="parent"

								app:layout_constraintTop_toTopOf="parent"	/>

				<TextView

								android:id="@+id/view2"

							...

								app:layout_constraintBottom_toTopOf="@+id/view3"

								app:layout_constraintLeft_toLeftOf="parent"

								app:layout_constraintRight_toRightOf="parent"

								app:layout_constraintTop_toBottomOf="@+id/view1"	/>

				<TextView

								android:id="@+id/view3"

								...

								app:layout_constraintBottom_toBottomOf="parent"

								app:layout_constraintLeft_toLeftOf="parent"

								app:layout_constraintRight_toRightOf="parent"

								app:layout_constraintTop_toBottomOf="@+id/view2"	/>

Your	final	layout	should	produce	output	from	Debug	GPU	Overdraw	similar	to	one	of	the
images	below.	(The	second	image	shows	overdraw	for	deuteranomaly.)	You	draw	once	for
the	background,	and	on	top	of	that,	the	text.

Introduction

146

Introduction

147

Introduction

148

Introduction

149

In	a	realistic	setting	without	custom	views,	overdraw	may	not	be	a	huge	performance
problem	for	your	app	since	the	Android	framework	optimizes	drawing	the	screen.	However,
since	overdraw	is	usually	straightforward	to	find	and	fix,	you	should	always	minimize	it	so	it
does	not	pollute	your	other	performance	data.

Task	2.	Inspect	the	view	hierarchy
The	process	of	rendering	views	to	the	screen	includes	a	measure-and-layout	stage,	during
which	the	system	appropriately	positions	the	relevant	items	in	your	view	hierarchy.	The
"measure"	part	of	this	stage	determines	the	sizes	and	boundaries	of		View		objects.	The
"layout"	part	determines	where	on	the	screen	to	position	the		View		objects.

The	following	recommendations	cover	the	most	common	cases:

Remove	views	that	do	not	contribute	to	the	final	image.

Eliminate	from	your	code	the	views	that	are	completely	covered,	never	displayed,	or	outside
the	screen.	This	seems	obvious,	but	during	development,	views	that	later	become
unnecessary	can	accumulate.

Flatten	the	view	hierarchy	to	reduce	nesting

Android	Layouts	allow	you	to	nest	UI	objects	in	the	view	hierarchy.	This	nesting	can	impose
a	cost.	When	your	app	processes	an	object	for	layout,	the	app	performs	the	same	process
on	all	children	of	the	layout	as	well.

Keep	your	view	hierarchy	flat	and	efficient	by	using		ConstraintLayout		wherever	possible.

Reduce	the	number	of	views

If	your	UI	has	many	simple	views,	you	may	be	able	to	combine	some	of	them	without
diminishing	the	user	experience.

Combining	views	may	affect	how	you	present	information	to	the	user	and	will	include
design	trade-offs.	Opt	for	simplicity	wherever	you	can.
Reduce	the	number	of	views	by	combining	them	into	fewer	views.	For	example,	you
may	be	able	to	combine		TextView		objects	if	you	reduce	the	number	of	fonts	and	styles.

Simplify	nested	layouts	that	trigger	multiple	layout	passes

Some	layout	containers,	such	a		RelativeLayout	,	require	two	layout	passes	in	order	to
finalize	the	positions	of	their	child	views.	As	a	result,	their	children	also	require	two	layout
passes.	When	you	nest	these	types	of	layout	containers,	the	number	of	layout	passes

Introduction

150

https://developer.android.com/guide/topics/ui/declaring-layout.html
https://developer.android.com/training/constraint-layout/index.html

increases	exponentially	with	each	level	of	the	hierarchy.	See	the	Optimizing	View
Hierarchies	documentation	and	the	Double	Layout	Taxation	video.

Be	conscious	of	layout	passes	when	using:

	RelativeLayout	

	LinearLayout		that	also	use		measureWithLargestChild	
	GridView		that	also	use		gravity	
Custom	view	groups	that	are	subclasses	of	the	above
Weights	in		LinearLayout	,	which	can	sometimes	trigger	multiple	layout	passes

Using	any	of	the	above	view	groups	as	the	root	of	a	complex	view	hierarchy,	the	parent	of	a
deep	subtree,	or	using	many	of	them	in	your	layout,	can	hurt	performance.	Consider	whether
you	can	achieve	the	same	layout	using	a	view	group	configuration	that	does	not	result	in
these	exponential	numbers	of	layout	passes,	such	as	a		ConstraintLayout	.

2.1	Inspect	your	app's	layout	with	Layout	Inspector

The	Layout	Inspector	is	a	tool	in	Android	Studio	that	allows	you	see	your	view	hierarchy	at
runtime.

Design	view	shows	you	the	static	layout	of	an	activity	as	defined	in	your	XML	files,	but	it
does	not	include	any	views	that	you	might	create,	destroy,	or	move	at	runtime.

Inspecting	the	view	hierarchy	can	show	you	where	you	might	simplify	your	view	hierarchy.	In
addition,	the	Layout	Inspector	can	also	help	you	identify	overlapping	views.	If	Debug	GPU
Overdraw	shows	that	your	app	has	overdraw,	you	may	need	to	run	Layout	Inspector	to
identify	the	exact	views	involved,	or	to	help	you	determine	which	views	you	might	be	able	to
rearrange.

With	Layout	Inspector	you	take	a	snapshot	of	the	view	hierarchy	of	a	running	app	and
display	it	for	inspection.

2.2	Find	overlapping	views

If	your	layout	includes	completely	overlapping	views,	then	by	default,	only	the	front-most
view	is	clickable	in	the	screenshot.	To	make	the	view	behind	clickable,	right-click	the	front-
most	view	in	the	View	Tree	panel	and	uncheck	Show	in	preview,	as	follows:

1.	 In	your	code,	change	the	size	of	View	2	to	completely	cover	View	3.	In	the	layout	for
	@id/view3	,	set		android:layout_marginTop="156dp"	

2.	 Run	the	app.
3.	 Open	the	Layout	Inspector.	Tools	>	Android	>	Layout	Inspector.

Introduction

151

https://developer.android.com/topic/performance/rendering/optimizing-view-hierarchies.html
https://www.youtube.com/watch?v=dB3_vgS-Uqo
https://developer.android.com/reference/android/support/constraint/ConstraintLayout.html
http://tools.android.com/tech-docs/layout-inspector

In	the	preview,	you	can	only	see	outlines	around	View	1	and	View	3,	which	are	on	top.

4.	 In	the	Tree	View,	right-click	View	3	and	deselect	Show	in	preview.

5.	 In	the	Tree	View,	right-click	View	1	and	deselect	Show	in	preview.
6.	 Click		ConstraintLayout		in	the	Tree	View.	Now	if	you	mouse	over	the	preview,	the	only

outline	you	see	is	around	the	hidden	View	2,	and	View	2	is	highlighted	in	Tree	View.	

Layout	Inspector	does	not	connect	to	your	running	app.	It	creates	a	static	capture	based	on
your	code.

You	can	find	the	captures	Android	Studio	made	in	the	captures	folder	of	your	Android	Studio
project.	The	files	use	the	package	name	and	the	date,	and	have	a		.li		extension	(for
example,		com.example.android.largimages_2017.4.12_12.01.li).	In	Project	view,	expand	the
captures	folder	and	double-click	any	capture	file	to	show	its	contents.

Inspecting	the	view	hierarchy,	the	view	arrangement	and	boundaries,	and	the	properties	of
each	view	can	help	you	determine	how	to	optimize	your	app's	view	hierarchy.

Solution	code
Android	Studio	projects:

StackedViews_with_overdraw	–	initial	version	of	the	StackedViews	app	with	overdraw
issues.

Introduction

152

https://github.com/google-developer-training/android-advanced/tree/master/StackedViews_with_overdraw

StackedViews_fixed	–	final	version	of	the	StackedViews	app	after	the	overdraw	issues
have	been	fixed.

Summary
Use	the	Debug	GPU	Overdraw	tool	to	identify	overlapping	views.
Reduce	overdraw	by	removing	unused	backgrounds	and	invisible	views;	use	clipping	to
reduce	overlapping	of	views.
Use	the	Layout	Inspector	to	investigate	your	view	hierarchy.
Simplify	your	view	hierarchy	by	flattening	the	hierarchy,	combining	views,	eliminating
invisible	views,	or	rearranging	your	layout.

Related	concept
The	related	concept	documentation	is	in	Rendering	and	layout.

Learn	more
Debug	GPU	Overdraw	Walkthrough
Layout	Inspector
Reducing	Overdraw
Optimizing	Layout	Hierarchies
Performance	and	View	Hierarchies
Optimizing	Your	UI

Introduction

153

https://github.com/google-developer-training/android-advanced/tree/master/StackedViews_fixed
https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-2-make-your-apps-fast-and-small/lesson-4-performance/4-1-c-rendering-and-layout/4-1-c-rendering-and-layout.html
https://developer.android.com/studio/profile/dev-options-overdraw.html
http://tools.android.com/tech-docs/layout-inspector
https://developer.android.com/topic/performance/rendering/overdraw.html
https://www.google.com/url?q=https://developer.android.com/training/improving-layouts/optimizing-layout.html&sa=U&ved=0ahUKEwjDiJ3Klt7SAhWEeSYKHQNQBAUQFggMMAQ&client=internal-uds-cse&usg=AFQjCNEvC_h4Tmnbtr20ZQiWtH9gzzozYA
https://www.google.com/url?q=https://developer.android.com/topic/performance/rendering/optimizing-view-hierarchies.html&sa=U&ved=0ahUKEwjDiJ3Klt7SAhWEeSYKHQNQBAUQFggOMAU&client=internal-uds-cse&usg=AFQjCNFXebpSaYXBTCe3r9-5nS9jnLKHhQ
https://developer.android.com/studio/profile/optimize-ui.html

4.1C:	Using	the	Systrace	and	dumpsys
tools
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Run	the	Systrace	tool	to	analyze	the	WordListSQL	app
Task	2.	Run	the	Systrace	tool	to	analyze	the	LargeImages	app
Task	3.	Run	the	dumpsys	tool
Coding	challenge
Summary
Related	concept
Learn	more

Systrace	(Android	System	Trace)	captures	and	displays	execution	times	of	your	app's
processes	and	other	Android	system	processes,	which	helps	you	analyze	the	performance
of	your	app.	The	tool	combines	data	from	the	Android	kernel	such	as	the	CPU	scheduler,
disk	activity,	and	app	threads.	The	tool	uses	this	data	to	generate	an	HTML	report	that
shows	an	overall	picture	of	an	Android-powered	device's	system	processes	for	a	given
period	of	time.

Systrace	is	particularly	useful	in	diagnosing	display	problems	when	an	app	is	slow	to	draw	or
stutters	while	displaying	motion	or	animation.

	dumpsys		is	an	Android	tool	that	runs	on	the	device	and	dumps	interesting	information	about
the	status	of	system	services.

Both	of	these	powerful	tools	let	you	take	a	detailed	look	at	what	is	happening	when	your	app
runs.	They	produce	a	huge	amount	of	detailed	information	about	the	system	and	apps.	This
information	helps	you	create,	debug,	and	improve	the	performance	of	your	apps.

This	practical	will	help	you	get	started,	but	fully	analyzing	Systrace	and		dumpsys		output
takes	a	lot	of	experience	and	is	beyond	the	scope	of	this	practical.

What	you	should	already	KNOW
You	should	be	able	to:

Introduction

154

https://developer.android.com/studio/profile/systrace.html
https://source.android.com/devices/tech/debug/dumpsys.html

Create	apps	with	Android	Studio	and	run	them	on	a	mobile	device.
Work	with	Developer	Options	on	a	mobile	device.

What	you	will	LEARN
You	will	learn	how	to:

Use	Systrace	to	collect	data	about	your	app	and	view	its	reports.
Run		dumpsys		to	get	a	snapshot	of	information	about	app	performance.

What	you	will	DO
Use	Systrace	to	capture	information	about	the	WordListSQL	app	on	your	device.
View	and	navigate	the	trace	output	for	WordLIstSQL.
Find	the	Frames	section	in	the	Systrace	output	and	get	more	information	about	specific
frames.
Examine	the	alerts,	which	show	potential	performance	issues	with	your	code.
Run	a	trace	of	the	LargeImages	app	and	identify	a	problem	with	the	app.	Correlate	what
you	find	with	the	earlier	Profile	GPU	Rendering	tool	output.
Run	the		dumpsys		tool	to	get	additional	information	about	frames.

App	overview
You	will	not	build	a	new	app	in	this	practical.	Instead	you	will	use	apps	from	other	practicals.

You	need	the	WordListSQL	app.	Use	the	version	of	the	WordListSQL	app	that	you	built
in	the	Android	Fundamentals	Course,	or	download	the	app	from	the
WordListSql_finished	folder	from	GitHub.
You	also	need	the	LargeImages	app	from	a	previous	practical,	or	you	can	download	the
course	version	of	the	app	from	GitHub.

Task	1.	Run	the	Systrace	tool	to	analyze	the
WordListSQL	app
Systrace	(Android	System	Trace)	helps	you	analyze	how	the	execution	of	your	app	fits	into
the	many	running	systems	on	an	Android	device.	It	puts	together	system	and	application
thread	execution	on	a	common	timeline.

Introduction

155

https://github.com/google-developer-training/android-fundamentals/tree/master/WordListSql%20finished
https://github.com/google-developer-training/android-advanced/tree/master/LargeImages

To	analyze	your	app	with	Systrace,	you	first	collect	a	trace	log	of	your	app	and	the	system
activity.	The	generated	trace	allows	you	to	view	highly	detailed,	interactive	reports	showing
everything	happening	in	the	system	for	the	traced	duration.

You	can	run	the	Systrace	tool	from	one	of	the	Android	SDK's	graphical	user	interface	tools,
or	from	the	command	line.	The	following	sections	describe	how	to	run	the	tool	using	either	of
these	methods.

1.1	Prerequisites

To	run	Systrace,	you	need:

Android	SDK	Tools	20.0.0	or	higher,	which	you	already	have	if	you've	followed	this
course.
A	mobile	device	running	at	least	Android	4.1	with	USB	Debugging	enabled	in	Developer
Options.	You	already	have	this,	if	you've	followed	this	course.

You	can	run	on	an	emulator	for	practice,	but	your	trace	data	may	not	be	accurate.
Some	devices	do	not	have	Systrace	enabled	on	the	kernel	they	are	running,	and
you	will	get	an	error	while	generating	the	trace.	In	this	case,	you	will	need	to	use	an
emulator.	See	this	Stack	Overflow	post	if	you	want	to	explore	deeper.

Python	language	installed	and	included	in	your	development	computer's	execution	path.
Check	your	Python	installation	from	a	command-line	window:

Mac	and	Linux:		python	-v	
Windows:		python	

If	you	do	not	have	Python	installed,	follow	the	instructions	for	your	platform	at	python.org.
You	can	also	find	instructions	in	this	Check	for	Python	documentation.

1.2a	Run	Systrace	from	Android	Device	Monitor

The	following	instructions	are	for	Android	4.2	and	higher.	If	you	are	running	on	an	older
version	of	Android,	follow	the	instructions	on	the	Analyze	UI	Performance	with	Systrace
page.

1.	 If	you	don't	already	have	the	WordListSQL	app,	download	the	WordListSQL	app	from
the		WordListSql_finished		folder	on	GitHub.	Open	the	app	in	Android	Studio	and	run	it
on	your	device.

2.	 From	Android	Studio,	choose	Tools	>	Android	>	Android	Device	Monitor.	If	you	have
instant	run	enabled,	you	may	be	asked	to	Disable	ADB	Integration.	Click	Yes.

Android	Device	Monitor	launches	in	a	separate	window.

Introduction

156

http://developer.android.com/tools/device.html#developer-device-options
https://stackoverflow.com/questions/17223244/android-ddms-v22-0-1-unable-to-generate-a-systrace-using-droid-razor-4-1-2
http://www.python.org/
http://www.python.org/
https://edu.google.com/openonline/course-builder/docs/1.10/set-up-course-builder/check-for-python.html
https://developer.android.com/studio/profile/systrace.html
https://github.com/google-developer-training/android-fundamentals/tree/master/WordListSql%20finished

Important:	If	you	run	your	app	on	an	emulator,	you	must	restart		adb		as		root		in	order	to
get	a	trace.	Type		adb	root		at	the	command	line.
Follow	the	steps	as	illustrated	in	the	screenshot	below:

1.	 Click	 	DDMS	if	it	is	not	already	selected.	(1)	in	the	screenshot	below.

2.	 Select	your	app	by	package	name	in	the	Devices	tab.	(2)	in	the	screenshot	below.

3.	 Click	the	Systrace	button	 	to	initiate	the	trace.	(3)	in	the	screenshot	below.	

4.	 In	the	Systrace	(Android	System	Trace)	pop-up,	choose	your	settings	for	the	trace.

Destination	File:	Where	the	trace	is	stored	as	an	HTML	file.	Default	is	in	your
home	directory	with	the	filename		trace.html	.
Trace	duration:	Default	is	5	seconds,	and	15-30	seconds	is	a	good	time	to	choose.
Trace	Buffer	Size:	Start	with	the	default.
Enable	Application	Traces	from:	Make	sure	your	app	is	visible	and	selected.
Now	select	tags	to	enable.	Choose	all	the	Commonly	Used	Tags.	In	the
Advanced	Options,	choose	Power	Management	and	Database.	Use	fewer	tags
to	limit	the	size	and	complexity	of	the	trace	output.	

Introduction

157

5.	 Click	OK	to	start	tracing.	A	pop-up	appears,	indicating	that	tracing	is	active.

6.	 Interact	with	the	WordListSQL	app	on	your	device.	Create,	edit,	and	delete	an	item.
7.	 When	time	is	up,	the	pop-up	closes,	and	your	trace	is	done.

1.2b	[Optional]	Run	Systrace	from	the	command	line

If	you	prefer,	you	can	run	Systrace	from	the	command	line	of	any	terminal	window	in	Android
Studio	or	on	your	desktop.	The	following	steps	use	a	terminal	in	Android	Studio.

The	following	instructions	are	for	Android	4.3	and	higher.	If	you	are	running	on	an	older
version	of	Android,	follow	the	instructions	in	the	systrace	user	guide.

Introduction

158

https://developer.android.com/studio/profile/systrace.html

To	run	Systrace	from	the	command	line:

1.	 In	Android	Studio,	open	the	Terminal	pane,	for	example,	by	selecting	View	>	Tool
Windows	>	Terminal.

2.	 In	the	terminal,	change	directory	to	where	Systrace	is	located	in	the	Android	SDK:		cd
<			android-sdk			>/platform-tools/systrace	

If	you	need	to	find	the	directory	where	the	Android	SDK	is	installed:	In	Android	Studio,
choose	Android	Studio	>	Preferences	and	search	for	"sdk".	Alternatively,	open	Tools
>	Android	>	SDK	Manager.	The	top	of	the	pane	has	a	text	field	that	shows	the	Android
SDK	location.

3.	 Start	Systrace:		python	systrace.py	--time=10	

This	runs	systrace	for	10	seconds,	with	default	category	tags,	and	saves	the	output
HTML	file	to	the		systrace		directory,	which	is	the	current	directory.
Systrace	is	written	in	the	Python	language.
The		time		argument	is	the	time	to	run,	in	seconds.
See	the	Systrace	documentation	for	versions	and	options.
If	you	get	an	error	about		serial		not	being	installed,	install		serial		using	this
command:		sudo	pip	install	pyserial	

4.	 Interact	with	the	WordListSQL	app	on	your	device	until	the	trace	stops,	which	happens
when	time	is	up.	Create,	edit,	and	delete	an	item.	If	you	need	more	time	to	perform
these	actions,	run	the	command	with		--time=30	,	as	you	did	with	the	Android	Device
Monitor	example	above.

Here	is	an	example	command-line	command	and	results:

$		cd	android-sdk/platform-tools/systrace	

$python	systrace.py	--time=10

These	categories	are	unavailable:	disk

Starting	tracing	(10	seconds)

Tracing	completed.	Collecting	output...

Outputting	Systrace	results...

Tracing	complete,	writing	results

Wrote	trace	HTML	file:	file:///Users/<you>/sdk/platform-tools/systrace/trace.html

1.3	View	and	explore	the	Systrace	output

Analyzing	the	whole	trace	file	is	beyond	the	scope	of	this	practical.	Systrace	is	a	powerful
tool,	and	the	best	way	to	learn	is	by	using	it	a	lot,	by	spending	time	looking	at	all	the	outputs.
In	this	task,	you	learn	to	navigate	the	trace	output	and	look	at	the	Frames	section.

Introduction

159

https://developer.android.com/studio/profile/systrace-commandline.html#options-4.3

The	file	generated	for	WordListSQL	is	large,	and	for	a	more	complex	app	will	be	even	larger.
Practice	navigating	around	the	file	to	find	information	about	your	app.

1.	 Open	one	of	your	saved		trace.html		files	in	your	Chrome	browser.	At	this	time,	you
must	use	Chrome.	Using	a	different	browser	may	show	a	blank	page.	The	file	should
look	similar	to	the	one	shown	below.	

The	groupings	are	in	the	order	Kernel,	SurfaceFlinger	(the	Android	compositor	process),
followed	by	apps,	each	labeled	by	package	name.	Each	app	process	contains	all	of	the
tracing	signals	from	each	thread	it	contains,	including	a	hierarchy	of	high	level	tracing	events
based	on	the	enabled	tracing	categories.

You	can	navigate	the	file	using	these	keyboard	controls:

w—Zoom	into	the	trace	timeline.
s—Zoom	out	of	the	trace	timeline.
a—Pan	left	on	the	trace	timeline.
d—Pan	right	on	the	trace	timeline.
e—Center	the	trace	timeline	on	the	current	mouse	location.
g—Show	grid	at	the	start	of	the	currently	selected	task.
Shift+g—Show	grid	at	the	end	of	the	currently	selected	task.
Right	Arrow—Select	the	next	event	on	the	currently	selected	timeline.
Left	Arrow—Select	the	previous	event	on	the	currently	selected	timeline.
m—Mark	this	location	with	a	vertical	line	so	you	can	examine	concurrent	events	in	the
trace.	

Introduction

160

The	image	shows	part	of	the	Systrace	output	for	WordListSQL.	The	numbers	have	the
following	meanings:

1.	 Section	for	each	process
2.	 Frames	section
3.	 Frame	indicator	for	frame	that	rendered	successfully
4.	 Frame	indicator	for	frame	that	did	not	complete	rendering
5.	 Method	calls	for	rendering	selected	frame

To	explore	the	Systrace	output:

1.	 The	page	has	one	section	for	each	process	that	was	running	when	the	trace	was
recorded.	Scroll	through	the	very	long	file	and	find	the	section	for	the	WordListSQL	app,
which	is	called		ple.wordlistsql	(pid	The	results	will	look	different	depending	on
how	you	interacted	with	your	app,	what	device	you	used,	and	what	configuration	you
used.	You	may	need	to	scroll	down	quite	a	bit.	If	you	get	lost,	close	the	tab	and	reopen
the	file	to	start	afresh.	Tip:	Instead	of	scrolling,	you	can	use	the	search	function	of	your
browser	to	search	for	Frames	until	you	find	the	correct	one.

2.	 Inside	the		ple.wordlistsql		section,	find	Frames.
3.	 In	the	Frames	line,	in	the	graph	to	the	right,	you	should	see	circles	that	are	either	green

or	red	and	are	labeled	with	the	letter	F	for	Frame.	You	may	need	to	zoom	in	(w	on	the
keyboard)	and	pan	right	(d	on	the	keyboard)	to	see	individual,	labeled	circles.

Select	a	green	circle.	This	frame	is	green	because	it	completed	rendering	in	the	allotted
16	milliseconds	per	frame.

4.	 Select	a	red	circle.	This	frame	is	red	because	it	did	not	complete	rendering	within	16
milliseconds.

Introduction

161

5.	 In	the	left-hand	pane,	scroll	down	if	necessary	until	you	find	Render	Thread.	On
devices	running	Android	5.0	(API	level	21)	or	higher,	this	work	is	split	between	the	UI
Thread	and	RenderThread.	On	prior	versions,	all	work	in	creating	a	frame	is	done	on
the	UI	thread.	If	you	do	not	see	Render	Thread,	select	UI	Thread	instead.

6.	 Click	on	the	black	triangle	to	the	right	of	Render	Thread	to	expand	the	graph.	This
expands	the	bars	that	show	you	how	much	time	was	spent	in	each	system	action
involved	in	rendering	this	frame.

7.	 Click	on	a	system	action	to	show	more	timing	information	in	the	pane	below	the	graph.
Systrace	analyzes	the	events	in	the	trace	and	highlights	many	performance	problems
as	alerts,	suggesting	what	to	do	next.	Below	is	an	example	of	a	frame	that	was	not
scheduled,	perhaps	because	the	frame	was	waiting	for	other	work	to	be	completed.	

8.	 Open	the	Alerts	tab	on	the	right	edge	of	the	trace	window.	Click	on	an	Alert	type	to	see
a	list	of	all	alerts	in	the	bottom	pane.	Click	an	alert	to	see	details,	a	description	of	what
may	be	the	problem,	and	links	to	further	resources.

Introduction

162

Think	of	the	alerts	panel	as	a	list	of	bugs	to	be	fixed.	Often	a	tiny	change	or
improvement	in	one	area	can	eliminate	an	entire	class	of	alerts	from	your	app!	

Task	2.	Run	the	Systrace	tool	to	analyze	the
LargeImages	app

2.1	Run	Systrace	on	the	LargeImages	app

LargeImages	is	a	smaller	demo	app	and	the	Systrace	output	will	be	easier	to	analyze.	In	the
previous	practical,	Profile	GPU	Rendering	identified	a	problem	with	rendering	some	of	the
frames	for	this	app.	Use	Systrace	to	get	more	information	about	possible	causes	of	the
problem.	In	this	case,	you	may	already	have	guessed	what	the	problem	may	be.	When
doing	performance	analysis,	guessing	is	a	valid	method	of	narrowing	down	your	first
approach.	Be	open	to	having	guessed	wrong!

1.	 Open	the	LargeImages	app	in	Android	Studio	and	run	it	on	your	connected	device.
2.	 Start	a	Systrace	trace	that	is	10	seconds	long	either	from	the	command	line	or	Android

Device	Monitor.
3.	 Flip	a	few	times	between	the	images	of	the	running	LargeImages	app,	going	through	at

Introduction

163

https://github.com/google-developer-training/android-advanced/tree/master/LargeImages

least	two	cycles.
4.	 When	it	has	finished,	open	the	trace	in	your	Chrome	browser.	This	trace	should	be

easier	to	navigate	than	the	trace	from	the	WordListSQL,	because	this	trace	is	a	lot
smaller.

5.	 Find	the	section	for	the	largeimages	process.
6.	 Find	the	Frames	section	for	LargeImages	and	expand	the	UI	Thread.
7.	 If	necessary,	zoom	(w	and	s	keys	on	the	keyboard)	and	pan	(a	and	d	keys	on	the

keyboard)	to	see	individual	frames.	

8.	 Notice	the	pattern	of	green	and	red	frames.	This	pattern	corresponds	with	the	pattern	of
tall	and	short	bars	shown	by	Profile	GPU	Rendering	in	the	Profile	GPU	Rendering
practical.	Turn	on	Profile	GPU	Rendering	to	refresh	your	memory,	if	necessary.

9.	 Click	the	red	circle	frame	to	get	more	information.
10.	 Looking	at	the	alert	information	does	not	tell	you	specifics	about	possible	causes.
11.	 In	the	Frames	section,	zoom	in	so	that	you	can	see	the	system	actions	on	the	UI	thread

that	are	involved	in	displaying	this	frame.	

12.	 Notice		decodeBitmap		and	above	it,	the	name	of	the	resource	that	is	being	decoded.
Decoding	the	image	is	taking	up	all	the	time	AND	this	decoding	is	being	done	on	the	UI
Thread.

Now	you	know	the	cause	of	the	problem.	In	a	real	app,	you	could	address	this	problem
by,	for	example,	using	a	smaller	or	lower	resolution	image.

Important:	Your	trace	may	look	different,	and	you	may	need	to	explore	to	find	the
information	you	need.	Use	the	above	steps	as	a	guideline.
Important:	Systrace	is	a	powerful	tool	that	gathers	enormous	amounts	of	systems	data	that
you	can	use	to	learn	more	about	the	Android	system	and	your	app's	performance.	See	the
systrace	documentation.	Explore	on	your	own!

Task	3.	Run	the	dumpsys	tool
	dumpsys		is	an	Android	tool	that	runs	on	the	device	and	dumps	information	about	the	status
of	system	services	since	the	app	started.	You	can	use		dumpsys		to	generate	diagnostic
output	for	all	system	services	running	on	a	connected	device.	Passing	the		gfxinfo	

Introduction

164

https://developer.android.com/studio/profile/systrace-commandline.html
https://source.android.com/devices/tech/debug/dumpsys.html

command	to		dumpsys		provides	output	in	Android	Studio's		logcat		pane.	The	output
includes	performance	information	that	relates	to	frames	of	animation.

The	purpose	of	this	practical	is	to	get	you	started	with	this	powerful	tool.	The		dumpsys		tool
has	many	other	options	that	you	can	explore	in	the	dumpsys	developer	documentation.

3.1	Run	dumpsys	from	the	command	line

1.	 Run	the	following	command	to	get	information	about	frames.

		adb	shell	dumpsys	gfxinfo	<PACKAGE_NAME>

For	example:

adb	shell	dumpsys	gfxinfo	com.example.android.largeimages

2.	 Starting	with	Android	6.0,	you	can	get	even	more	detailed	information	using	the
	framestats		command	with		dumpsys	.	For	example,	run	the	following	command	against
a	device	with	Android	6.0	or	later:

	adb	shell	dumpsys	gfxinfo	com.example.android.largeimages	framestats

Learn	more	about	how	to	use	the	data	generated	by	this	command	in	the	Testing	UI
Performance	and		dumpsys		documentation.

Important:	This	practical	has	only	given	you	the	first	steps	in	using	Systrace	and		dumpsys	.
Systrace	and		dumpsys		are	powerful	debugging	tools	that	provide	you	with	a	lot	of
information.	Making	efficient	use	of	this	information	takes	practice.

Coding	challenge
The	tracing	signals	defined	by	the	system	do	not	have	visibility	into	everything	your	app
is	doing,	so	you	may	want	to	add	your	own	signals.	In	Android	4.3	(API	level	18)	and
higher,	you	can	use	the	methods	of	the		Trace		class	to	add	signals	to	your	code.	This
technique	can	help	you	see	what	work	your	app's	threads	are	doing	at	any	given	time.
Learn	more	at	Instrument	your	app	code.

Summary
Systrace	is	a	powerful	tool	for	collection	runtime	information	about	your	app,	for	a	slice
of	time.	Use	alerts	generated	by	the	tool	to	find	potential	performance	issues.	Use	the

Introduction

165

https://developer.android.com/studio/command-line/dumpsys.html
https://developer.android.com/training/testing/performance.html
https://source.android.com/devices/tech/debug/dumpsys.html
https://developer.android.com/reference/android/os/Trace.html
https://developer.android.com/studio/profile/systrace.html#app-trace

following	command.	The	output	is	stored	in		trace.html		in	the		systrace		directory.

$cd	android-sdk/platform-tools/systrace

$python	systrace.py	--time=10

The		dumpsys		tool	collects	comprehensive	statistics	about	your	app	since	its	start	time,
including	frame	rendering	statistics.	Use	these	commands:

	adb	shell	dumpsys	gfxinfo	<PACKAGE_NAME>	adb	shell	dumpsys	gfxinfo	<PACKAGE_NAME>

framestats	

Related	concept
The	related	concept	documentation	is	Rendering	and	layout.

Learn	more
Android	developer	documentation:

	systrace	,	including	a	walkthrough	and	a	description	of	command-line	options	that	are
not	covered	in	this	practical
Android	Profiler
Testing	UI	Performance
	dumpsys	

Instrument	your	app	code
	Trace		class	and		trace.h		File	Reference
Reading	Bug	Reports
	FrameStats	

Introduction

166

https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-2-make-your-apps-fast-and-small/lesson-4-performance/4-1-c-rendering-and-layout/4-1-c-rendering-and-layout.html
https://developer.android.com/studio/profile/systrace-commandline.html
https://developer.android.com/studio/preview/features/android-profiler.html
https://developer.android.com/training/testing/performance.html
https://source.android.com/devices/tech/debug/dumpsys.html
https://developer.android.com/studio/profile/systrace.html#app-trace
https://developer.android.com/reference/android/os/Trace.html
https://developer.android.com/ndk/reference/trace_8h.html
https://source.android.com/source/read-bug-reports
https://developer.android.com/reference/android/view/FrameStats.html

4.2:	Using	the	Memory	Profiler	tool
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Run	the	Memory	Profiler	tool
Task	2.	Dump	and	inspect	the	app	heap
Task	3.	Record	memory	allocations
Solution	code
Summary
Related	concept
Learn	more

All	processes,	services,	and	apps	require	memory	to	store	their	instructions	and	data.	As
your	app	runs,	it	allocates	memory	for	objects	and	processes	in	its	assigned	memory	heap.
This	heap	has	a	limited	but	somewhat	flexible	size.	The	Android	system	manages	this
limited	resource	for	you	by	increasing	or	decreasing	allocatable	memory	size.	The	system
also	frees	memory	for	reuse	by	removing	objects	that	are	no	longer	used.	If	your	app	uses
more	memory	than	the	system	can	make	available,	the	system	can	terminate	the	app,	or	the
app	may	crash.

Memory	allocation	is	the	process	of	reserving	memory	for	your	app's	objects	and
processes.
Garbage	collection	is	an	automatic	process	where	the	system	frees	space	in	a
computer's	memory	by	removing	data	that	is	no	longer	required,	or	no	longer	in	use.

Android	provides	a	managed	memory	environment.	When	the	system	determines	that	your
app	is	no	longer	using	some	objects,	the	garbage	collector	releases	the	unused	memory
back	to	the	heap.	How	Android	finds	unused	memory	is	constantly	being	improved,	but	on
all	Android	versions,	the	system	must	at	some	point	briefly	pause	your	code.	Most	of	the
time,	the	pauses	are	imperceptible.	However,	if	your	app	allocates	memory	faster	than	the
system	can	collect	unused	memory,	your	app	might	be	delayed	while	the	collector	frees
memory.	The	delay	could	cause	your	app	to	skip	frames	and	look	slow.

Even	if	your	app	doesn't	seem	slow,	if	your	app	leaks	memory,	it	can	retain	that	memory
even	while	in	the	background.	This	behavior	can	slow	the	rest	of	the	system's	memory
performance	by	forcing	unnecessary	garbage-collection	events.	Eventually,	the	system	is

Introduction

167

https://developer.android.com/topic/performance/memory-overview.html

forced	to	stop	your	app	process	to	reclaim	the	memory.	When	the	user	returns	to	your	app,
the	app	must	restart	completely.

To	help	prevent	these	problems,	use	the	Memory	Profiler	tool	to	do	the	following:

Look	for	undesirable	memory-allocation	patterns	in	the	timeline.	These	patterns	might
be	causing	performance	problems.
Dump	the	Java	heap	to	see	which	objects	are	using	memory	at	any	given	time.
Dumping	the	heap	several	times	over	an	extended	period	can	help	you	identify	memory
leaks.
Record	memory	allocations	during	normal	and	extreme	user	interactions.	Use	this
information	to	identify	where	your	code	is	allocating	too	many	or	large	objects	in	a	short
time,	or	where	your	code	is	not	freeing	the	allocating	objects	and	causing	a	memory
leak.

For	information	about	programming	practices	that	can	reduce	your	app's	memory	use,	read
Manage	Your	App's	Memory.

What	you	should	already	KNOW
You	should	be	able	to:

Create	apps	with	Android	Studio	and	run	them	on	a	mobile	device.

What	you	will	LEARN
You	will	learn	how	to:

Use	Memory	Profiler	to	collect	data	about	your	app.
View	Memory	Profiler	reports.
Dump	the	Java	heap	and	inspect	it.
Record	memory	allocation	data	for	your	app.

What	you	will	DO
Run	Memory	Profiler	and	generate,	save,	and	inspect	data.

App	overview
You	will	run	the	LargeImages	and	RecyclerView	apps	from	previous	practicals,	using

Introduction

168

https://developer.android.com/topic/performance/memory.html
https://github.com/google-developer-training/android-advanced/tree/master/LargeImages
https://github.com/google-developer-training/android-fundamentals/tree/master/RecyclerView

the	Memory	Profiler.
You	will	run	the	MemoryOverload	app,	which	creates	thousands	of	views,	eventually
using	up	all	available	memory.	

Introduction

169

https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/MemoryOverload

Task	1.	Run	the	Memory	Profiler	tool
Android	Profiler	is	a	set	of	tools	that	provide	real-time	information	about	your	app,	such	as
memory	allocation	and	network	usage.	You	can	capture	and	view	data	as	your	app	runs,
and	store	data	in	a	file	that	you	can	analyze	in	various	viewers.

In	this	practical,	you	learn	the	basics	of	using	Memory	Profiler	to	track	down	performance
problems	and	crashes	related	to	your	app's	memory	usage.

If	you	did	any	of	the	previous	performance	tools	practicals,	your	environment	is	already	set
up	for	debugging	with	the	Android	Profiler.	Otherwise,	see	the	Prerequisites.

1.1	Start	the	Memory	Profiler	tool	with	the	LargeImages	app

1.	 Open	the	LargeImages	app	in	Android	Studio.
2.	 Run	LargeImages	on	a	device	with	Developer	options	and	USB	Debugging	enabled.

If	you	connect	a	device	over	USB	but	don't	see	the	device	listed,	ensure	that	you	have
enabled	USB	debugging	on	the	device.

For	the	next	steps,	use	the	screenshot	below	as	a	reference.

1.	 To	open	the	Android	Profiler,	at	the	bottom	of	Android	Studio	click	the	Android	Profiler
tab	(shown	as	1	in	the	screenshot).

2.	 Select	your	device	and	app,	if	they	are	not	automatically	selected	(2	in	the	screenshot).

The	Memory	graph	starts	to	display.	The	graph	shows	real-time	memory	use	(3).	The	x	-
axis	shows	time	elapsed,	and	the	y	-axis	shows	the	amount	of	memory	used	by	your
app	(4).

Introduction

170

https://developer.android.com/studio/preview/features/android-profiler.html
https://developer.android.com/studio/profile/memory-profiler.html
https://developer.android.com/studio/profile/am-basics.html#byb
https://github.com/google-developer-training/android-advanced/tree/master/LargeImages
https://developer.android.com/studio/debug/dev-options.html#enable

3.	 In	the	app,	swap	the	images	to	see	the	Memory	graph	change.	

4.	 Click	in	the	Memory	graph,	and	the	graph	expands	and	separates	into	memory	types.
Each	memory	type	(such	as	Java,	Native,	and	Graphics)	is	indicated	with	a	different
color	in	a	stacked	graph.	Check	the	key	along	the	top	of	the	graph	to	match	colors	and
memory	types.	

1.2	Read	about	the	Memory	Profiler	tool

Familiarize	yourself	with	the	Memory	Profiler	user	interface,	panes,	and	features	with	the
help	of	the	annotated	screenshot	below.	Not	all	of	these	tools	are	open	when	you	start
Memory	Profiler.

Introduction

171

https://developer.android.com/studio/profile/memory-profiler.html

The	Memory	Profiler	panes	and	features	that	you	use	in	this	practical	are	shown	in	the
screenshot,	as	follows:

(1)	Force	garbage	collection.	Small	Trash	icons	in	the	graph	indicate	garbage-collection
events	that	you	or	the	system	triggered.
(2)	Capture	a	heap	dump	and	display	its	contents.
(3)	Record	memory	allocations	and	display	the	recorded	data.
(4)	The	highlighted	portion	of	the	graph	shows	allocations	that	have	been	recorded.	The
purple	dots	above	the	graph	indicate	user	actions.
(5)	Allocation-recording	and	heap-dump	results	appear	in	a	pane	below	the	timeline.
This	example	shows	the	memory	allocation	results	during	the	time	indicated	in	the
timeline.
(5	and	6)	When	you	view	either	a	heap	dump	or	memory	allocations,	you	can	select	a
class	name	from	this	list	(5)	to	view	the	list	of	instances	on	the	right	(6).
(7)	Click	an	instance	to	open	an	additional	pane.	When	you	are	viewing	the	allocation
record,	the	additional	pane	shows	the	stack	trace	for	where	that	memory	was	allocated.
When	you	are	viewing	the	heap	dump,	the	additional	pane	shows	the	remaining
references	to	that	object.

See	the	Memory	Profiler	documentation	for	a	full	list	of	controls	and	features.

1.3	Run	Memory	Profiler	for	the	MemoryOverload	app

A	memory	leak	is	when	an	app	allocates	memory	that	is	never	freed,	even	after	the	memory
is	no	longer	needed.	A	memory	leak	can	happen	when	an	app	allocates	many	objects	and
does	not	free	unused	or	dereferenced	objects.	Memory	leaks	can	slow	down	an	app	or	in

Introduction

172

https://developer.android.com/studio/profile/memory-profiler.html#overview

the	worst	case,	eventually	make	the	app	crash.	Finding	and	fixing	memory	leaks	is	a	lot
easier	if	you	have	a	tool	that	shows	you	what's	happening	with	the	memory	that	your	app	is
using.

To	demonstrate	a	memory	leak,	the	MemoryOverload	app	creates	and	loads	hundreds	of
	TextView		objects	at	the	tap	of	a	button.	When	you	run	the	app	and	monitor	it	with	Memory
Profiler,	you	see	a	graph	that	shows	more	and	more	memory	being	allocated.	Eventually,	the
app	runs	out	of	memory	and	crashes.

1.	 Download	the	MemoryOverload	app.
2.	 Run	the	app.
3.	 In	Android	Studio,	open	the	Android	Profiler.	Click	in	the	Memory	graph	to	see	the	detail

view	for	Memory	Profiler.
4.	 In	the	app,	tap	the	floating	action	button	(+).	Wait	until	the	app	is	done	adding	the	views

to	the	screen.	This	may	take	a	while.	In	Memory	Profiler,	observe	how	the	app	is	using
more	memory	as	views	are	added.

5.	 Tap	the	+	button	a	few	more	times.	Your	app	will	generate	a	graph	similar	to	the	one
shown	below.	The	graph	shows	more	and	more	memory	used	and	few,	small,	or	no
garbage-collection	events.	This	allocation-graph	pattern	can	indicate	a	memory	leak.
(The	graph	can	look	very	different	for	different	devices.)

Note:	You	may	notice	a	delay	between	tapping	the	plus	button	and	the	next	batch	of
views	being	added.	To	see	just	how	long	it	takes,	run	the	Profile	GPU	Rendering	tool,
which	you	enable	from	within	your	device's	Developer	options	settings.

6.	 Keep	adding	views	until	the	app	crashes	and	shows	an	Application	Not	Responding
(ANR)	dialog.	Logcat	displays	a	message	like	this	one:

		03-24	13:05:05.226	10057-10057/com.example.android.memoryoverload	A/libc:	Fatal	

signal	6	(SIGABRT),	code	-6	in	tid	10057	(.memoryoverload)

	SIGABRT		is	the	signal	to	initiate		abort()		and	is	usually	called	by	library	functions	that
detect	an	internal	error	or	some	seriously	broken	constraint.

Introduction

173

https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/MemoryOverload
https://developer.android.com/studio/profile/dev-options-rendering.html

7.	 After	overloading	and	crashing	your	device,	it	is	a	good	idea	to	remove	the	app	from
your	device	and	restart	your	device.

The	MemoryOverload	app	is	a	made-up	example	to	show	a	pattern,	and	it	does	not	follow
best	practices!	However,	allocating	and	not	releasing	views	is	a	common	cause	of	memory
problems.	See	the	Memory	and	Threading	video	for	more	on	this	topic.

One	fix	for	the	MemoryOverload	app	would	be	to	not	create	views	that	are	not	visible	on	the
screen.	A	second	solution	would	be	to	combine	views.	Instead	of	creating	a	view	for	each
rectangle	in	a	row,	you	could	create	a	patterned	background	of	rectangles	and	show	multiple
rectangles	in	one	view.

1.4	Run	Memory	Profiler	for	RecyclerView

1.	 Run	the	RecyclerView	app.
2.	 In	the	app,	scroll	through	the	items	while	Memory	Profiler	is	open.
3.	 Click	the	floating	action	button	(+)	to	add	a	lot	more	list	items	You	may	see	changes	in

memory	allocations	and	some	spikes	in	the	graph.
4.	 Scroll	through	all	of	the	items	again.	Notice	that	the	memory	bar	is	flat	when	you	are

scrolling.		RecyclerView		is	an	efficient	way	of	displaying	lists,	because	views	that
become	invisible	are	reused	to	display	new	content	as	the	list	is	scrolled.	

Task	2.	Dump	and	inspect	the	app	heap

2.1	Dump	the	Java	(app)	heap

1.	 Run	the	MemoryOverload	app.
2.	 In	Android	Studio,	open	the	Android	Profiler.
3.	 Click	the	Memory	graph	to	fill	the	Android	Profiler	pane	with	the	detailed	view.
4.	 In	the	MemoryOverload	app,	tap	the	floating	action	button	(+)	once	to	add	a	set	of

views.	Wait	for	the	row	of	views	to	appear.

5.	 In	Android	Studio,	click	the	Dump	Java	Heap	button	 	to	capture	the	app	heap	into	a
file	and	open	the	list	of	classes.	This	can	take	a	long	time.	The	Heap	Dump	pane	will

Introduction

174

https://www.youtube.com/watch?v=tBHPmQQNiS8&list=PLWz5rJ2EKKc9CBxr3BVjPTPoDPLdPIFCE
https://github.com/google-developer-training/android-fundamentals/tree/master/RecyclerView
https://developer.android.com/guide/topics/ui/layout/recyclerview.html
https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/MemoryOverload

open	after	the	heap	dump	is	complete.	

2.2	Inspect	the	dumped	heap

Do	the	following	to	open	all	the	information	panes,	then	refer	to	the	screenshot	annotations
for	an	explanation	of	each	pane.

1.	 In	the	Heap	Dump	pane	(1),	find	and	click	the		TextView		class.	This	opens	an	Instance
View	pane.

2.	 In	the	Instance	View	pane	(2),	click	one	of	the		TextView		instances.	This	opens	a
References	pane	(3).	Your	screen	should	now	look	similar	to	the	screenshot	below.	

The	Heap	Dump	pane	(1)	shows	all	the	classes	related	to	your	app,	as	they	are	represented
on	the	heap.	The	columns	give	you	size	information	for	all	the	objects	of	this	class.	Click	a
column	header	to	sort	by	that	metric.

Allocation	Count:	Number	of	instances	of	this	class	that	are	allocated.
Shallow	Size:	Total	size	of	all	instances	of	this	class.

Introduction

175

Retained	Size:	Size	of	memory	that	all	instances	of	this	class	are	dominating.

After	you	click	the	floating	action	button	(+)	in	the	MemoryOverload	app,	you	see	a	large
number	of		TextView		instances	on	the	screen.	Corresponding	allocations	are	recorded	on
the	graph	and	in	the	allocation	count	for	the		TextView		class.

The	Instance	View	pane	(2)	lists	all	the	instances	of	the	selected		TextView		class	that	are
on	the	heap.	The	columns	are	as	follows.

Depth:	Shortest	number	of	hops	from	any	garbage-collection	root	to	the	selected
instance.
Shallow	Size:	Size	of	this	instance,	in	bytes.
Retained	Size:	Total	size	of	memory	being	retained	due	to	all	instances	of	this	class,	in
bytes.

The	References	pane	(3)	shows	all	the	references	to	the	selected	instance.	For	example,	in
the	MemoryOverload	app,	all	the	views	are	created	and	added	to	the	view	hierarchy.	When
you	are	debugging	an	app,	look	for	classes	and	instances	that	should	not	be	there,	and	then
check	their	references.

For	example,	if	you	are	offloading	work	to	another	thread,	it	is	possible	that	references	to
views	or	activities	remain	after	an		Activity		has	been	restarted,	leaking	memory	on	every
configuration	change.	Look	for	long-lived	references	to		Activity	,		Context	,		View	,
	Drawable	,	and	other	objects	that	might	hold	a	reference	to	the		Activity		or		Context	
container.

Right-click	a	class	or	instance	and	select	Jump	to	Source.	This	opens	the	source	code,	and
you	can	inspect	it	for	potential	issues.

Click	the	Export	button	 	at	the	top	of	the	Heap	Dump	pane	to	export	your	snapshot	of
the	Java	heap	to	an	Android-specific	Heap/CPU	Profiling	file	in		HPROF		format.		HPROF		is	a
binary	heap-dump	format	originally	supported	by	J2SE.	See	HPROF	Viewer	and	Analyzer	if
you	want	to	dig	deeper.

See	Memory	Profiler,	Processes	and	Threads,	and	Manage	Your	App's	Memory.

Task	3.	Record	memory	allocations
Dumping	the	heap	gives	you	a	snapshot	of	the	allocated	memory	at	a	specific	point	in	time.
Recording	allocations	shows	you	how	memory	is	being	allocated	over	a	period	of	time.

3.1	Record	allocations

Introduction

176

https://developer.android.com/studio/profile/am-hprof.html
https://developer.android.com/studio/profile/memory-profiler.html
https://developer.android.com/guide/components/processes-and-threads.html
https://developer.android.com/topic/performance/memory.html

1.	 Run	the	MemoryOverload	app.
2.	 In	Android	Studio,	open	the	Android	Profiler.
3.	 Click	the	Memory	graph	to	fill	the	Android	Profiler	pane	with	the	detailed	view.

4.	 Click	the	Record	Memory	Allocations	button	 	.	

5.	 On	your	device	with	the	MemoryOverload	app	running,	tap	the	floating	action	button	(+)
to	add	a	set	of	views.

6.	 Wait	only	a	few	seconds,	then	click	the	Record	Memory	Allocations	button	again.	The

button	is	now	a	black	square	 	indicating	that	clicking	it	will	pause	the	recording.
Don't	wait	too	long	to	pause	the	recording,	because	the	recorded	files	can	get	large.

3.2	Inspect	recorded	allocations

Refer	to	the	screenshot	below	for	the	next	steps.

1.	 The	Memory	graph	indicates	which	portion	was	recorded	(1).	Select	the	recorded
portion,	if	necessary.	You	can	record	more	than	one	section	of	the	graph	and	switch
between	them.

2.	 As	in	the	previous	task,	the	Heap	Dump	pane	(2)	shows	the	recorded	data.
3.	 Click	a	class	name	to	see	instances	allocated	during	this	period	of	time	(3).	As	in	the

previous	task,	there	should	be	many	instances	of	the		TextView		class.
4.	 Click	an	instance	to	see	its	Call	Stack	(4).
5.	 At	the	top	of	the	Call	Stack	(which	is	actually	the	bottom...)	is	the	method	call	in	your

code	that	initiated	creation	of	this	instance.	In	this	case,	the	method	is
	addRowOfTextViews()	.

Introduction

177

Click		addRowOfTextViews		to	locate	this	call	in	your	code	(5).	

To	export	the	recordings	to	an		hprof		file	(for	heaps)	or	an		alloc		file	(for	allocations),	click

the	Export	button	 	in	the	top-left	corner	of	the	Heap	Dump	or	Allocations	pane.	Load
the	file	into	Android	Studio	later	for	exploration.

Solution	code
Android	Studio	project:	MemoryOverload

Summary
Use	Memory	Profiler	to	observe	how	your	app	uses	memory	over	time.	Look	for
patterns	that	indicate	memory	leaks.
Use	Java	heap	dumps	to	identify	which	classes	allocate	large	amounts	of	memory.
Record	allocations	over	time	to	observe	how	apps	allocate	memory	and	where	in	your
code	the	allocation	is	happening.

Related	concept

Introduction

178

https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/MemoryOverload

The	related	concept	documentation	is	in	Memory.

Learn	more
Android	developer	documentation:

Android	Profiler	overview
Memory	Profiler
Overview	of	Android	Memory	Management
Manage	Your	App's	Memory
Investigating	your	RAM	Usage

The	Android	Performance	Patterns	video	series	show	older	tools	but	the	principles	all	apply:

Memory	Monitor
Do	Not	Leak	Views
Memory	and	Threading

Introduction

179

https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-2-make-your-apps-fast-and-small/lesson-4-performance/4-2-c-memory/4-2-c-memory.html
https://developer.android.com/studio/preview/features/android-profiler.html
https://developer.android.com/studio/profile/memory-profiler.html
https://developer.android.com/topic/performance/memory-overview.html
https://developer.android.com/topic/performance/memory.html
https://developer.android.com/studio/profile/investigate-ram.html
https://www.youtube.com/playlist?list=PLWz5rJ2EKKc9CBxr3BVjPTPoDPLdPIFCE
https://www.youtube.com/watch?v=7ls28uGMBEs
https://www.youtube.com/watch?v=BkbHeFHn8JY
https://www.youtube.com/watch?v=tBHPmQQNiS8&list=PLWz5rJ2EKKc9CBxr3BVjPTPoDPLdPIFCE&index=3

4.3:	Optimizing	network,	battery,	and
image	use

Table	of	Contents:
What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Run	the	Network	Profiler	tool
Task	2.	Run	battery	statistics	and	visualization	tools
Task	3.	Convert	images	to	WebP	format
Summary
Related	concepts
Learn	more

Networking	is	one	of	the	biggest	users	of	battery.	Optimizing	your	networking	by	following
best	practices	will	reduce	battery	drain,	as	well	as	reducing	the	size	and	frequency	of	data
transfers.

In	this	practical,	you	learn	how	to	use	tools	to	measure	and	analyze	network	and	battery
performance.	You	also	learn	how	to	compress	images	to	reduce	the	size	of	your	data
stream.

Optimizing	network	and	battery	performance	is	a	huge	topic,	and	as	devices	change,	so	do
some	of	the	details	and	recommendations.	The	Android	team	is	constantly	improving	the
framework	and	APIs	to	make	it	easier	for	you	to	write	apps	that	perform	well.

See	the	Best	Practices:	Network,	Battery,	Compression	concept	for	an	essential	overview.
Make	use	of	the	extensive	linked	resources	to	dive	deeper	and	get	the	most	up-to-date
recommendations.

What	you	should	already	KNOW
You	should	be	able	to:

Create	apps	with	Android	Studio	and	run	them	on	a	mobile	device.
Work	with	Developer	options	on	a	mobile	device.
Start	the	Android	Profiler.

Introduction

180

https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-2-make-your-apps-fast-and-small/lesson-4-performance/4-4-c-best-practices-network-battery-compression/4-4-c-best-practices-network-battery-compression.html
https://developer.android.com/studio/preview/features/android-profiler.html

What	you	will	LEARN
You	will	learn	how	to:

Monitor	networking	using	the	Networking	Profiler	tool.
Dump	and	view	battery	usage	using		batterystats		and	Battery	Historian	2.0.
Convert	images	to	WebP	format.

What	you	will	DO
Run	the	Networking	Profiler	tool.
Dump	battery	statistics	and	display	them	as	a	chart	using	Battery	Historian	2.0.
Convert	an	image	to	WebP	format	using	Android	Studio.

App	overview
You'll	use	the	WhoWroteIt	app,	or	any	app	of	your	choice	that	makes	network	calls.
You'll	create	a	simple	demo	app	with	a	large	image	and	an	image	converted	to	WebP
format.

Task	1.	Run	the	Network	Profiler	tool
Android	Profiler	includes	the	Network	Profiler	tool,	which	makes	it	possible	to	track	when
your	app	is	making	network	requests	in	real	time.	Using	the	Network	Profiler,	you	can
monitor	how	and	when	your	app	transfers	data.	With	this	information,	you	can	optimize	your
code	to	reduce	the	frequency	of	data	transfers,	and	optimize	the	amount	of	data	transferred
during	each	connection.

In	this	task	you	run	Network	Profiler	with	the	WhoWroteIt	app.

1.1	Modify	and	run	the	WhoWroteIt	app

1.	 Download	the	WhoWroteIt	app	and	open	it	in	Android	Studio.
2.	 To	help	demonstrate	the	tools,	modify	the		MainActivity.searchBooks()		method	of	the

WhoWroteIt	app:

Make	multiple	calls	for	each	search.	This	will	save	you	some	tedious	on-screen
typing.
Call	the		sleep()		method	between	requests	to	ensure	that	each	network	call	is

Introduction

181

https://github.com/google-developer-training/android-fundamentals/tree/master/WhoWroteIt
https://developer.android.com/studio/preview/features/android-profiler.html
https://developer.android.com/studio/profile/network-profiler.html
https://developer.android.com/studio/profile/network-profiler.html
https://github.com/google-developer-training/android-fundamentals/tree/master/WhoWroteIt
https://github.com/google-developer-training/android-fundamentals/tree/master/WhoWroteIt

made	separately—that	is,	to	ensure	that	the	system	does	not	batch	the	calls	for
you.

Obviously,	you	should	not	do	either	of	these	things	in	a	production	app.

In	the		MainActivity.searchBooks()		method,	replace	this	code:

//	If	the	network	is	active	and	the	search	field	is	not	empty,	start	a	FetchBook	A

syncTask.

if	(networkInfo	!=	null	&&	networkInfo.isConnected()	&&	queryString.length()!=0)	{

new	FetchBook(mTitleText,	mAuthorText,	mBookInput).execute(queryString);

}

With	this	code:

//	If	the	network	is	active	and	the	search	field	is	not	empty,	start	a	FetchBook	A

syncTask.

if	(networkInfo	!=	null	&&	networkInfo.isConnected()	&&	queryString.length()!=0)	{

new	FetchBook(mTitleText,	mAuthorText,	mBookInput).execute(queryString);

SystemClock.sleep(3000);

new	FetchBook(mTitleText,	mAuthorText,	mBookInput).execute(queryString);

SystemClock.sleep(3000);

new	FetchBook(mTitleText,	mAuthorText,	mBookInput).execute(queryString);

SystemClock.sleep(3000);

new	FetchBook(mTitleText,	mAuthorText,	mBookInput).execute(queryString);

SystemClock.sleep(3000);

new	FetchBook(mTitleText,	mAuthorText,	mBookInput).execute(queryString);

}

3.	 Run	your	app	and	perform	one	search.	The	app's	user	interface	has	not	changed,	and
you	should	see	one	search	result	for	your	query.

1.2	Run	the	Network	Profiler	tool

1.	 On	your	device,	turn	off	Wi-Fi	to	make	sure	that	your	device	uses	the	mobile	radio	for
networking	requests.	Make	sure	that	mobile	data	is	enabled	on	the	device.

2.	 Run	your	app	on	the	device.	If	possible,	do	this	on	a	physical	device	to	get	accurate
measurements.

3.	 In	Android	Studio,	open	Android	Profiler.
4.	 Enter	a	book	title	in	the	app	and	click	the	Search	Books	button.	The	Network	Profiler

should	display	a	summary	graph	similar	to	the	one	below.	The	pattern	may	look	different
for	different	devices	and	network	connections.

Orange	spikes	indicate	data	sent,	and	blue	spikes	data	received.	The	WhoWroteIt
app	does	not	send	a	lot	of	data,	so	the	orange	spikes	are	short,	while	the	blue
spikes	are	much	taller.

Introduction

182

The	horizontal	axis	moves	in	time,	and	the	vertical	axis	shows	data	transfer	rate	in
kilobytes	per	second.
Every	time	your	app	makes	a	network	request,	a	vertical	spike	on	the	Network
Profiler	indicates	the	activity.
The	width	of	the	base	of	the	spike	is	how	long	the	request	took.	The	height	of	the
spikes	is	the	amount	of	data	sent	or	received.	

5.	 Click	the	Network	Profiler	section	of	the	Android	Profiler	to	expand	the	pane	and	see
more	details,	as	shown	in	the	annotated	screenshot	below.	To	keep	the	graph	from
moving,	click	the	Live	button	in	the	top-right	corner	of	the	profiler,	or	just	scroll	back.
Doing	this	does	not	stop	the	recording.	

6.	 The	horizontal	colored	bar	at	the	top	indicates	whether	the	request	was	made	on	Wi-Fi
(gray)	or	the	mobile	radio	(dark	or	light	blue).	The	power	state	of	the	mobile	radio	is
indicated	by	dark	blue	for	high	(using	more	battery	power)	and	light	blue	for	low	(using
less	battery	power).

7.	 Legend	for	type	of	radio	used	and	power	state	of	mobile	radio.
8.	 The	orange	dotted	line	indicates	the	number	of	active	connections	over	time,	as	shown

on	the	y	-axis	on	the	right.
9.	 The	x	-axis	shows	the	time	that	has	passed.
10.	 Orange	spikes	mark	data	sent.	The	width	indicates	how	long	it	took,	and	the	height	how

much	data	was	sent.	The	WhoWroteIt	app	requests	are	small,	so	it	does	not	take	long
to	send	this	small	about	of	data.

11.	 Blue	spikes	mark	data	received.	The	width	indicates	how	long	data	wa	received	and	the
height	how	much	data	was	received.	Depending	on	how	many	books	match	the

Introduction

183

request,	the	size	of	the	received	data,	and	how	long	it	takes	to	receive	it,	can	vary.
12.	 The	y	-axis	on	the	left	shows	numeric	values	for	the	amounts	of	data	in	KB	per	second.

13.	 Experiment	with	different	queries	to	see	whether	it	slightly	changes	the	network	request
patterns.

1.3	Network	Profiler	details

To	show	you	advanced	profiling	data,	Android	Studio	must	inject	monitoring	logic	into	your
compiled	app.	Features	provided	by	advanced	profiling	include:

The	event	timeline	on	all	profiler	windows
The	number	of	allocated	objects	in	the	Memory	Profiler	tool
Garbage	collection	events	in	the	Memory	Profiler	tool
Details	about	all	transmitted	files	in	the	Network	Profiler	tool

To	enable	the	advanced	profiling	in	Android	Studio,	follow	these	steps:

1.	 Select	Run	>	Edit	Configurations.
2.	 Select	your	app	module	in	the	left	pane.
3.	 Click	the	Profiling	tab,	and	then	select	Enable	advanced	profiling.
4.	 Now	build	and	run	your	app	again	to	access	the	complete	set	of	profiling	features.

Advanced	profiling	slows	your	build	speed,	so	enable	it	only	when	you	want	to	start
profiling	your	app.

5.	 Open	the	Android	Profiler	tab.
6.	 Click	on	the	Network	Profiler	graph	to	open	the	detail	view,	then	click	on	it	again	to	open

the	advanced	profiling	panes.
7.	 On	your	connected	mobile	device,	search	for	a	book	to	get	data	moving	over	the

network	and	generate	a	graph.	The	example	below	uses	a	query	for	the	word	"jungle".

Refer	to	the	annotated	screenshot	below	for	the	next	steps.

1.	 Scroll	back	the	graph	to	stop	real-time	viewing.

Note	the	purple	dot	at	the	top	of	the	pane	(1),	which	indicates	a	user	action.	In	this	case,
the	action	was	pressing	the	Search	Books	button.

Next	to	the	user	action,	you	see	the	payload	for	your	request,	which	in	this	case
consists	of	the	word	"jungle"	(2).

2.	 Select	a	portion	of	the	graph	to	get	more	details	about	it	(3).

A	pane	opens	below	the	graph	listing	all	the	requests	and	responses	with	additional
information	in	the	selected	portion	of	the	graph	(4).

Introduction

184

3.	 Click	on	a	request,	and	a	new	pane	with	three	tabs	opens	(5).	By	default,	you	see	the
contents	of	the	first	tab,	displaying	the	contents	of	the	response	(6).	

4.	 In	the	screenshot	above,	notice	that	the	blue	bar	above	the	selected	portion	of	the
graph	remains	dark,	indicating	that	the	radio	is	in	a	high-power	state	throughout	the
requests.	This	is	because	the	requests	follow	each	other	closely	enough	to	keep	the
radio	on.

5.	 In	the	WhoWroteIt	app,	change	the	sleep	time	for	one	of	the	requests	until	the	radio
powers	off	between	requests.	How	long	the	mobile	radio	stays	in	the	high	state	can	vary
greatly	between	devices.

In	the	screenshot	below,	after	a	request,	the	radio	is	in	the	high-power	state	(1).	The
radio	stays	in	the	high-power	state	for	almost	30	seconds	before	powering	down	(2).
Then	the	radio	powers	up	again	for	the	next	request	(3).	

6.	 Click	the	Call	Stack	tab	to	see	where	the	request	originated	in	your	code.	When	your
app	makes	many	different	types	of	network	requests,	the	Call	Stack	tab	helps	you
pinpoint	where	in	your	code	you	may	want	to	start	optimizing.	

Introduction

185

When	sending	requests	and	receiving	responses,	try	to	optimize	for	power	consumption	of
the	mobile	radio	by	minimizing	the	time	the	mobile	radio	is	in	a	high-power	state.	This	can	be
challenging,	and	a	full	explanation	is	beyond	the	scope	of	this	practical.	However,	here	are
some	tips	to	get	you	started.

Limit	the	size	of	your	requests	and	responses.	Formulate	your	queries	to	only	request
the	data	you	absolutely	need.
Batch	your	requests	so	that	you	can	send	several	of	them	together	without	delay	to	take
advantage	of	the	high-power	state.	Space	the	sending	of	requests	to	maximize	for	the
mobile	radio	staying	in	lower	power	states.

For	more	best	practices,	see	Optimizing	Battery	Life	and	the	Best	Practices:	Network,
Battery,	Compression	concept.

Task	2.	Run	battery	statistics	and	visualization
tools
	dumpsys		is	an	Android	tool	that	runs	on	the	mobile	device	and	dumps	interesting
information	about	the	status	of	system	services	as	you	use	the	device.	The		dumpsys	
command	retrieves	this	information	from	the	device	so	that	you	can	use	it	to	debug	and
optimize	your	app.

You	used		dumpsys	framestats		in	the	Systrace	and		dumpsys		practical.

	Batterystats		collects	battery	data	from	your	device,	and	the	Battery	Historian	tool	converts
that	data	into	an	HTML	visualization	that	you	can	view	in	your	browser.		Batterystats		is	part
of	the	Android	framework,	and	the	Battery	Historian	tool	is	open-sourced	and	available	on
GitHub.		Batterystats		shows	you	where	and	how	processes	are	drawing	current	from	the
battery,	and	it	helps	you	identify	tasks	in	your	app	that	could	be	deferred	or	even	removed	to
improve	battery	life.

Introduction

186

https://developer.android.com/training/monitoring-device-state/index.html
https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-2-make-your-apps-fast-and-small/lesson-4-performance/4-4-c-best-practices-network-battery-compression/4-4-c-best-practices-network-battery-compression.html
https://source.android.com/devices/tech/debug/dumpsys.html
https://google-developer-training.gitbooks.io/android-developer-advanced-course-practicals/unit-2-make-your-apps-fast-and-small/lesson-4-performance/4-1c-p-systrace-and-dumpsys/4-1c-p-systrace-and-dumpsys.html
https://github.com/google/battery-historian

You	can	use	the	Battery	Historian	tool	on	the	output	of	the		dumpsys		command	to	generate	a
visualization	of	power-related	events	from	the	system	logs,	as	shown	in	the	screenshot
below.	This	information	makes	it	easier	for	you	to	understand	and	diagnose	battery-related
issues.	Battery	Historian	is	not	part	of	the	Android	framework,	and	you	will	need	to	download
and	install	it	from	the	internet.

In	this	practical,	you	create	and	work	with	a	Battery	Historian	chart.

WARNING:	Installing	the	Docker	and	Battery	Historian	tools	requires	downloading	about
500	MB	of	data	to	your	local	computer,	which	may	take	some	time.	Make	sure	that	you	have
sufficient	time,	bandwidth,	and	disk	space	before	you	begin.
IMPORTANT:	Use	the	Chrome	browser	to	work	with	Battery	Historian	files.

2.1	Install	the	Docker	software	management	platform

The	Battery	Historian	tool	is	open	sourced	and	available	on	GitHub.

There	are	different	ways	to	install	the	tool.	Using	Docker	is	by	far	the	easiest.	Docker	is	an
open	platform	for	developers	and	system	administrators	to	build,	ship,	and	run	distributed
apps.	See	the		README.md		file	with	the	Battery	Historian	source	code	on	GitHub	for	more
installation	options	and	documentation.

To	install	and	set	up	Docker:

1.	 On	your	computer,	install	the	free	community	edition	of	Docker	from
https://www.docker.com/community-edition.

2.	 Start	Docker.	This	may	take	some	time,	because	more	components	will	download.

Introduction

187

https://github.com/google/battery-historian
https://source.android.com/devices/tech/debug/dumpsys.html
https://github.com/google/battery-historian
https://www.docker.com/
https://github.com/google/battery-historian
https://www.docker.com/community-edition

3.	 Once	Docker	is	ready,	open	a	terminal	window	in	Android	Studio	or	on	your	desktop.
4.	 Enter	the	following	commands	in	the	terminal	to	verify	that	Docker	is	installed,	running,

and	working	properly:

		docker	--version	

		docker	ps

		docker	run	hello-world

5.	 Read	Docker's	output,	as	it	summarizes	how	Docker	works.

	docker	run	hello-world

	Unable	to	find	image	'hello-world:latest'	locally

	latest:	Pulling	from	library/hello-world

	78445dd45222:	Pull	complete	

	Digest:	sha256:c5515758d4c5e1e838e9cd307f6c6a0d620b5e07e6f927b07d05f6d12a1ac8d7

	Status:	Downloaded	newer	image	for	hello-world:latest

	Hello	from	Docker!

	This	message	shows	that	your	installation	appears	to	be	working	correctly.

	To	generate	this	message,	Docker	took	the	following	steps:

		1.	The	Docker	client	contacted	the	Docker	daemon.

		2.	The	Docker	daemon	pulled	the	"hello-world"	image	from	the	Docker	Hub.

		3.	The	Docker	daemon	created	a	new	container	from	that	image	which	runs	the

					executable	that	produces	the	output	you	are	currently	reading.

		4.	The	Docker	daemon	streamed	that	output	to	the	Docker	client,	which	sent	it	to

	your	terminal.

2.2	Get	the	Battery	Historian	tool

1.	 Run	the	following	Docker	command.

	docker	run	-p	1234:9999	gcr.io/android-battery-historian/stable:3.0	--port	9999

	1234		is	the	port	number	for	Battery	Historian	on	your	localhost.	You	can	replace		1234	
with	the	port	number	of	your	choice.	(This	might	pull	the	Battery	Historian,	which	might
take	a	while	depending	on	your	internet	speed.)

Important:	Check	the		README	file	for	Battery	Historian	in	GitHub	for	the	latest	version
number,	because	the	tool	gets	updated	and	improved.
You	will	see	a	series	of	messages	in	the	terminal,	similar	to	the	following:

Introduction

188

https://github.com/google/battery-historian

Unable	to	find	image	'gcr.io/android-battery-historian/stable:3.0'	locally

3.0:	Pulling	from	android-battery-historian/stable

c62795f78da9:	Downloading	12.84	MB/45.56	MB

d4fceeeb758e:	Download	complete	

[...]

e06a9fa76cf2:	Pull	complete	

Digest:	sha256:265a37707f8cf25f2f85afe3dff31c760d44bb922f64bbc455a4589889d3fe91

Status:	Downloaded	newer	image	for	gcr.io/android-battery-historian/stable:3.0

2017/08/04	18:33:34	Listening	on	port:		9999

Do	not	close	the	terminal	or	terminate	the	terminal	window,	because	this	will	stop	Battery
Historian.
Linux	and	Mac	OS	X:

That's	it.	Open	Battery	Historian,	which	will	be	available	in	your	browser	at
http://localhost:1234/

Windows:

You	may	have	to	enable	virtualization.	If	you	are	able	to	run	the	emulator	with	Android
Studio,	then	virtualization	is	already	enabled.
Once	you	start	Docker,	it	should	tell	you	the	IP	address	of	the	machine	it	is	using.	If,	for
example,	the	IP	address	is		123.456.78.90	,	Battery	Historian	will	be	available	at
http://123.456.78.90:1234.	(If	you	used	a	different	port,	substitute	it	in	the	URL.)	

2.3	Run	commands	to	get	battery	statistics

Your	mobile	device	collects	statistics	about	itself	as	it	runs.	This	information	is	useful	for
debugging	as	well	as	performance	analysis.	The		dumpsys	batterystats		command	gets
information	related	to	battery	usage	from	your	device.

1.	 Connect	your	mobile	device	to	your	computer.
2.	 Turn	off	device	Wi-Fi	so	that	the	device	uses	the	mobile	radio.
3.	 If	you	have	not	already	done	so,	download	the	WhoWroteIt	app	and	open	it	in	Android

Studio.

Introduction

189

https://developer.android.com/studio/run/emulator-acceleration.html
http://123.456.78.90:1234
https://github.com/google-developer-training/android-fundamentals/tree/master/WhoWroteIt

4.	 Run	the	WhoWroteIt	app	on	your	mobile	device.
5.	 On	your	computer,	open	a	terminal	window.	(Use	the	command	prompt	on	a	Windows

system,	or	open	the	Terminal	pane	in	Android	Studio.)
6.	 From	the	command	line,	shut	down	your	running		adb		server.

		adb	kill-server

7.	 Restart		adb		and	check	for	connected	devices.	The	command	lists	any	connected
devices.

		$	adb	devices

		List	of	devices	attached

		emulator-5554								device

		LGH918ce000b4b								device

8.	 Reset	battery	data	gathering.	Resetting	erases	old	battery	collection	data;	otherwise,
the	output	from	the	dump	command	will	be	huge.

		adb	shell	dumpsys	batterystats	--reset

9.	 Disconnect	your	mobile	device	from	your	computer	so	that	you	are	only	drawing	power
from	the	device's	battery.	On	the	emulator,	you	will	not	get	accurate	data	for	this
exercise.

10.	 Play	with	the	WhoWroteIt	app	for	a	short	time.	Search	for	different	books	by	using
different	search	text.

11.	 Reconnect	your	mobile	device.
12.	 On	your	mobile	device,	turn	Wi-Fi	on.
13.	 Make	sure	that		adb		recognizes	your	mobile	device.

adb	devices

14.	 Dump	all	battery	data	and	redirect	the	output	to	save	it	into	a	text	file.	This	can	take	a
while.

adb	shell	dumpsys	batterystats	>	batterystats.txt

15.	 To	create	a	report	from	raw	data	on	a	device	running	Android	7.0	and	higher:

adb	bugreport	bugreport.zip

For	devices	6.0	and	lower:

Introduction

190

adb	bugreport	>	bugreport.txt

	bugreport		could	take	several	minutes	to	complete.	Do	not	cancel,	close	the	terminal
window,	or	disconnect	your	device	until	it	is	done.

16.	 On	the	Battery	Historian	starting	page	in	your	Chrome	browser	(see	previous
screenshot),	browse	for	the		bugreport.txt		or		bugreport.zip		file.	Click	Submit	to
upload	and	display	the	chart.	If	you	used	Terminal	pane	in	Android	Studio,	the
	bugreport		file	will	be	located	in	the	WhoWroteIt	app's	root	directory.

2.4	What	you	see	in	the	Battery	Historian	chart

The	Battery	Historian	chart	graphs	power-relevant	events	over	time.

Each	row	shows	a	colored	bar	segment	when	a	system	component	is	active	and	drawing
current	from	the	battery.	The	chart	does	not	show	how	much	battery	was	used	by	the
component,	only	that	the	app	was	active.

1.	 Hover	over	the	bars	to	get	details	about	each	graph.	You	will	work	more	with	this	in	a
minute.

2.	 Hover	over	the	"i"	information	icon	on	the	left	to	get	a	color	legend,	as	shown	in	the

figure	below.	

3.	 Using	the	chart	screenshot	below	and	explanations	below,	explore	your	chart.	Your
chart	looks	different	than	the	screenshot	because	you	are	on	a	different	device,	and	you
likely	performed	different	actions.

Chart	guidelines

Introduction

191

The	following	chart	shows	three	minutes	of	information	for	an	LG	V20	mobile	device	running
the	modified	WhoWroteIt	app.

The	numbers	in	the	following	list	reference	the	numbered	callouts	in	the	image	below,
illustrating	some	of	the	powerful	information	you	can	gather	and	analyze.

(1)	The	Mobile	radio	active	line	shows	the	activity	of	the	mobile	radio.	The	mobile	radio
is	one	of	the	biggest	battery	users.	When	working	on	battery	efficiency,	you	always	want
to	look	at	and	optimize	the	mobile	radio's	activity.
(2)	Movable	timeline	that	displays	information	about	battery	charge	state.	The	upper	box
shows	information	about	the	current	battery	state.	The	bottom	bars	show	that	the	device
was	not	plugged	in	at	this	moment,	and	it	was	not	charging.	This	information	is	useful
when	you	want	to	verify	that	your	code	only	performs	certain	battery	intensive	activities,
such	as	syncs,	when	the	device	is	plugged	in	and	on	Wi-Fi.
(3)	Mobile	radio	activity.	The	selected	bar	in	the	Mobile	radio	active	line,	and	those
nearby,	are	likely	the	WhoWroteIt	app's	network	calls	to	fetch	books.	The	information
box	for	the	bar	underneath	the	timeline	marker	shows	additional	information	such	as	the
duration	and	the	number	of	occurrences.

See	the	following	documentation	for	more:

Battery	Historian	Charts
Analyzing	Power	Use	With	Battery	Historian

Task	3.	Convert	images	to	WebP	format

Introduction

192

https://developer.android.com/studio/profile/battery-historian-charts.html
https://developer.android.com/topic/performance/power/battery-historian.html

Most	download	traffic	consists	of	images	fetched	from	a	server.	The	smaller	you	can	make
your	downloadable	images,	the	better	the	network	experience	your	app	can	provide	for
users.	Downloading	smaller	images	means	faster	downloads,	less	time	on	the	radio,	and
potential	savings	of	battery	power.	Using	WebP	images	with	your	app	sources	reduces	APK
size,	which	in	turn	means	faster	app	downloads	for	your	users.

WebP	is	an	image	file	format	from	Google.	WebP	provides	lossy	compression	(as	JPG
does)	and	transparency	(as	PNG	does),	but	WebP	can	provide	better	compression	than
either	JPG	or	PNG.	A	WebP	file	is	often	smaller	in	size	than	its	PNG	and	JPG	counterparts,
with	at	least	the	same	image	quality.	Even	using	lossy	settings,	WebP	can	produce	a	nearly
identical	image	to	the	original.	Android	has	included	lossy	WebP	support	since	Android	4.0
(API	14)	and	support	for	lossless,	transparent	WebP	since	Android	4.3	(API	18).

Serve	WebP	files	over	the	network	to	reduce	image	load	times	and	save	network	bandwidth.

In	general,	use	the	following	algorithm	to	decide	which	image	format	to	use:

Do	you	support	WebP?	

								Yes:	Use	WebP

								No:	Does	it	need	transparency?

																Yes:	Use	PNG

																No:	Is	the	image	"simple"	(colors,	structure,	subject?)

																							Yes:	Use	PNG

																								No:	Use	JPG

3.1	Create	an	app	and	compare	image	sizes	and	quality	for
different	formats

Android	has	included	lossy	WebP	support	since	Android	4.0	(API	14)	and	support	for
lossless,	transparent	WebP	since	Android	4.2	(API	18).

Support	for	lossless	and	transparent	WebP	images	is	only	available	in	Android	4.2	and
higher.	That	means	your	project	must	declare	a		minSdkVersion		of	18	or	higher	to	create
lossless	or	transparent	WebP	images	using	Android	Studio.

Note:	You	can	create	a	new	app	for	this	task,	or	you	can	make	a	copy	of	the	LargeImages
app	and	modify	it	in	accordance	with	the	steps	below.
1.	 Create	an	app	with	a		minSdkVersion		of	18	using	the	Basic	Template.
2.	 Add	the	same	large	image	that	you	used	in	the	LargeImages	app	as	the	background	for

the	text	view.
3.	 Make	a	backup	copy	of	the	image	in	res/drawable.	You	need	the	backup	because

conversion	occurs	in	place,	replacing	your	original	image.
4.	 In	your		res/drawable		folder,	right-click	the	image	and	choose	Convert	to	WebP	at	the

bottom	of	the	menu.	The	Convert	Images	to	WebP	dialog	opens.

Introduction

193

https://developers.google.com/speed/webp/
https://developer.android.com/guide/topics/media/media-formats.html#image-formats
https://developers.google.com/speed/webp/
https://developer.android.com/guide/topics/media/media-formats.html#image-formats
https://github.com/google-developer-training/android-advanced/tree/master/LargeImages

This	conversion	happens	"in-place";	that	is,	your	original	image	is	changed	into	the
compressed	image.	

5.	 Choose	Lossy	encoding,	move	the	slider	to	21%,	and	click	OK	to	preview	the	files.	For
this	particular	image,	these	settings	will	give	you	about	10%	of	the	size	for	the
converted	image.	This	saves	you	over	350	K!	

6.	 Click	Finish	to	save	the	converted	small	image	and	rename	it	to		mnt_diablo_webp.webp	.

7.	 Add	an		onClick()		handler	to	the	text	view	that	swaps	the	background	between	the
backed	up	original	and	the	WebP	image.

8.	 Run	your	app.
9.	 Click	to	swap	between	the	two	images.	Do	you	notice	any	difference	in	quality?	In	most

cases	the	difference	should	be	unnoticeable	to	casual	user.

Introduction

194

Summary
Network	Monitor	gives	you	a	quick	live	look	at	how	your	app	is	making	network
requests.
The		dumpsys	batterystats		command	gets	battery-related	information	from	your	mobile
device.
The	Battery	Historian	tool	displays	the		batterystats		information	as	an	interactive	time
chart.	You	can	use	the	chart	to	correlate	battery	usage	with	activities	taken	by	your	app.

Related	concepts
The	related	concept	documentation	is	in	Best	Practices:	Networking,	Battery,	Compression
with	extensive	references	to	more	documentation.

Learn	more
Performance	is	a	huge	and	important	topic,	and	there	are	many	resources	for	you	to	dive
deeper.

Network:

Android	Profiler
Inspect	Network	Traffic	with	Network	Profiler
Connectivity	for	billions
Managing	Network	Usage
Battery	Drain	and	Networking	(video)
Transferring	Data	Without	Draining	the	Battery:	in-depth	docs

Battery:

	Batterystats		and	Battery	Historian	Walkthrough
Battery	Historian	Charts
Analyzing	Power	Use	with	Battery	Historian
Optimizing	Battery	Life:	in-depth	docs
Battery	Performance	101	(video)
Battery	Drain	and	Wake	Locks	(video)
Battery	Drain	and	Networking	(video)

WebP:

Create	WebP	Images

Introduction

195

https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-2-make-your-apps-fast-and-small/lesson-4-performance/4-3-c-best-practices-network-battery-compression/4-3-c-best-practices-network-battery-compression.html
https://developer.android.com/studio/preview/features/android-profiler.html
https://developer.android.com/studio/profile/network-profiler.html
https://developer.android.com/develop/quality-guidelines/building-for-billions-connectivity.html
https://developer.android.com/training/basics/network-ops/managing.html
https://www.youtube.com/watch?v=fEEulSk1kNY
https://developer.android.com/training/efficient-downloads/index.html
https://developer.android.com/studio/profile/battery-historian.html
https://developer.android.com/studio/profile/battery-historian-charts.html
https://developer.android.com/topic/performance/power/battery-historian.html
https://developer.android.com/training/monitoring-device-state/index.html
https://www.youtube.com/watch?v=9i1_PnPpd3g
https://www.youtube.com/watch?v=reMau7d0yeg
https://www.youtube.com/watch?v=fEEulSk1kNY
https://developer.android.com/studio/write/convert-webp.html

WebP	website
Image	Compression	for	Web	Developers	(good,	comprehensive	intro)
Reducing	Image	Download	Sizes
Reduce	APK	Size
Reduced	data	cost	for	billions

Introduction

196

https://developers.google.com/speed/webp/
https://www.html5rocks.com/en/tutorials/speed/img-compression/
https://developer.android.com/topic/performance/network-xfer.html
https://developer.android.com/topic/performance/reduce-apk-size.html
https://developer.android.com/develop/quality-guidelines/building-for-billions-data-cost.html?hl=sr

5.1:	Using	resources	for	languages
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Add	another	language
Task	2.	Add	a	right-to-left	(RTL)	language
Task	2	solution	code
Task	3.	Add	a	Language	option	to	the	options	menu
Task	3	solution	code
Coding	challenge
Challenge	solution	code
Summary
Related	concept
Learn	more

Users	run	Android	devices	in	many	different	languages.	To	reach	the	most	users,	your	app
should	handle	text	and	layouts	in	ways	appropriate	for	those	languages.

An	Android	user	can	change	the	language	for	a	device	in	the	Settings	app.	As	a	developer,
you	should	localize	your	app	to	support	different	languages	in	the	locales	in	which	your	app
is	released.

In	this	chapter,	you	learn	how	to	provide	support	for	different	languages	using	string
resources	and	the	Translations	Editor	in	Android	Studio.

What	you	should	already	KNOW
You	should	be	able	to:

Create	and	run	apps	in	Android	Studio.
Extract	string	resources	and	use	string	resources	in	the	code.
Use	the	Layout	Editor	to	align	views	in	a		ConstraintLayout	.
Edit	layouts	in	XML.
Change	and	add	an	options	menu	in	the	Basic	Activity	template.

Introduction

197

What	you	will	LEARN
You	will	learn	how	to:

Add	support	for	different	languages.
Use	the	Translations	Editor	to	edit	translations.
Modify	layouts	to	support	right-to-left	(RTL)	languages.

What	you	will	DO
Add	languages	to	an	app.
Use	the	Translations	Editor	to	edit	translations.
Modify	the	app's	layouts	to	support	RTL	languages,	such	as	Hebrew.
Add	a	Language	option	to	the	options	menu	to	switch	languages.

Apps	overview
In	this	lesson	you	work	from	a	starter	app	called	LocaleText_start,	which	is	a	simple	app
created	using	the	Basic	Activity	template.	Its	UI	uses	the	default		ConstraintLayout		provided
by	the	template.	It	has	text,	an	image,	and	a	floating	action	button	that	can	make	a	phone
call.	The	options	menu	has	a	single	menu	item,	Help,	that	launches	a	second	activity	with
help	information.

Introduction

198

https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/LocaleText_start

This	lesson	demonstrates	how	you	can	localize	an	app	for	a	locale,	and	provide	translated
text	within	your	app	for	the	other	languages.

Introduction

199

After	adding	an	RTL	language,	you	will	use	XML	layout	attributes	to	take	advantage	of	the
layout	mirroring	feature	added	to	Android	4.2.	Layout	mirroring	redraws	the	layout	for	a	right-
to-left	orientation	for	RTL	languages.	As	a	result,	the	image,	the		TextView		elements,	the
options	menu,	and	the	floating	action	button	are	all	automatically	moved	to	the	opposite	side
of	the	screen	as	shown	below.	The	app	demonstrates	the	attributes	you	use	for	layout

mirroring.	

Task	1.	Add	another	language
In	this	task	you	will	learn	the	following	key	practices	for	adding	different	languages:

Save	all	text	strings	as	resources	in	the	default	version	of		strings.xml	.
Add	a	new	language	in	the	Translations	Editor.
Translate	the	text.
Test	your	app	in	different	languages.

1.1	Examine	the	startup	app's	layout

To	save	time,	the	LocaleText_start	starter	app	has	been	prepared	with	a	layout	to	show	the
effects	of	changing	languages.

1.	 Download	the	LocaleText_start	app.
2.	 Rename	the		LocaleText_start		project	folder	to		LocaleText	,	open	it	in	Android	Studio,

and	refactor	it	to	use	the	name		LocaleText	.
3.	 Run	the	app	to	see	what	it	looks	like.

Introduction

200

https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/LocaleText_start
https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/LocaleText_start

4.	 Examine	the	app's	layouts.

The		MainActivity		layout	includes:

An		ImageView		constrained	to	the	left	margin	of	the	parent	(the	screen).
A		TextView		with	a	heading	constrained	to	the	right	side	of	the		ImageView	.
Another		TextView		with	description	text,	also	constrained	to	the	right	side	of	the
	ImageView	.
A	floating	action	button	with	a	phone	icon	in	the	lower	right	side.
The	options	menu	in	the	app	bar	with	one	choice:	Help.

The		HelpActivity		layout	includes:

A		TextView		for	the	title,	constrained	to	the	left	margin	of	the	parent	(the	screen).
A	floating	action	button	with	a	phone	icon	on	the	left	side.
Another		TextView		with	body	text,	constrained	to	the	right	side	of	the	floating	action
button	and	to	the	title		TextView	.
The	Up	button	and		Activity		name	in	the	app	bar.

Open		content_main.xml		to	see	the		MainActivity		layout	in	the	Design	tab.	You	should	see
an		ImageView		and	two		TextView		elements	in	the	layout	(shown	in	the	figure	below).

The		product_image			ImageView		is	constrained	to	the	top	and	left	side	of	the	screen.
The		heading			TextView		is	constrained	to	the	top	and	right	side	of	the		product_image	
	ImageView	,	and	to	the	right	side	of	the	parent.
The		description			TextView		is	constrained	to	the	bottom	of		heading			TextView		and	to
the	right	side	of		product_image			TextView		and	parent/screen.	

Introduction

201

1.2	Examine	the	startup	app's	layout	and	resources

To	prepare	an	app	to	be	translated	into	another	language,	save	all	text	strings	as	resources
in		strings.xml	,	including	text	from	menu	items	such	as	the	options	menu,	text	on	tabs,	and
any	other	navigation	elements	that	use	text.

To	save	time,	the	LocaleText_start	starter	app	has	been	prepared	with	all	text	strings	in
	strings.xml	.	Open		strings.xml	—known	as	the	default		strings.xml		file	because	it	is
used	for	the	default	language—to	see	the	string	resources	in	the	app.	It	includes	every	piece
of	text	in	the	app	including	the		action_help		resource	for	the	options	menu	item	(Help).	The
file	include	comments	that	provide	the	context	for	the	translator	to	translate	your	strings—
such	as	the	use	of	grammar	structures	and	product	terms.

<resources>

<!--	All	comments	are	notes	to	translators.	-->

<string	name="app_name">LocaleText</string>

<!--	The	Help	option	in	the	options	menu,	no	more	than	30	chars.	-->

<string	name="action_help">Help</string>

...

</resources>

Introduction

202

https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/LocaleText_start

Include	comments	in	the		strings.xml		file	to	describe	the	context	in	which	each	string	is
used.	If	you	use	a	translator	to	translate	your	strings,	the	translator	will	understand	the
context	from	the	comments	you	provide,	which	will	result	in	a	better	quality	translation.

1.3	Add	another	language	resource	to	the	app

Use	the	Android	Studio	Translations	Editor	to	create	the	string	resources	for	each	language.

1.	 Open	the		strings.xml		file,	and	click	the	Open	editor	link	in	the	top	right	corner.

The	Translations	Editor	appears	with	a	row	for	each	resource	key	(such	as
	action_help	,		app_name	,	and		nougat).	The	Default	Value	column	is	the	default	value
of	the	resource	key	in	the	default	language.	

Introduction

203

2.	 Click	the	globe	button	in	the	top	left	corner	of	the	Translations	Editor	pane	("1"	in	the
following	figure),	and	select	French	in	the	dropdown	menu:	

After	you	choose	a	language,	a	new	column	with	blank	entries	appears	in	the
Translations	Editor	for	that	language,	and	the	keys	that	have	not	yet	been	translated
appear	in	red.

To	show	only	the	keys	that	require	translation,	check	the	Show	only	keys	needing
translation	checkbox	option	at	the	top	of	the	Translations	Editor	pane,	next	to	the
globe.

3.	 Select	a	key	(such	as		description).	The	Key,	Default	Value,	and	Translation	fields
appear	at	the	bottom	of	the	Translations	Editor	pane.

4.	 Add	the	French	translation	for	the	key	by	selecting	the	key's	cell	in	the	column	for	the
language	(French),	and	entering	the	translation	in	the	Translation	field	at	the	bottom	of
the	pane	as	shown	in	the	following	figure.	

Note:	For	an	app	to	be	released	to	the	public,	you	would	use	a	translation	service	if	you
don't	know	the	language.	You	can	click	the	Order	a	translation	link	at	the	top	of	the
Translations	Editor	pane	to	start	the	process	with	the	service.	The	service	should	provide	a
translated		strings.xml		file,	which	you	can	copy	into	your	project	folder	as	described	in	the
concept	chapter,	and	the	translations	appear	in	the	Translations	Editor.	For	this	example,	if
you	don't	know	French	use	Google	Translate.

1.4	Enter	the	translations	for	the	strings

Introduction

204

https://translate.google.com/

1.	 Enter	the	translations	in	the	French	column	for	each	key,	as	shown	in	the	following

figure:	

2.	 Click	the	Untranslatable	checkboxes	for	the		support_phone		and		dial_log_message	
keys;	they	change	from	red	to	black.	Keys	shown	in	black	don't	need	to	be	translated,
either	because	they've	already	been	translated,	or	because	you've	indicated	that	they
are	untranslatable.

Since	there	is	no	translation	for	the		support_phone		and		dial_log_message		keys,	the
default	values	will	be	used	in	the	layout	no	matter	what	language	and	locale	the	user
chooses	in	the	Settings	app.

If	you	don't	want	to	translate	the	app	name,	you	can	click	the	Untranslatable	checkbox
for	it;	however,	you	can	also	modify	the	app	name	for	each	language,	as	shown	in	the
above	figure.	The	choice	of	translating	the	app	name	is	up	to	you.	Many	apps	add
translated	names	so	that	the	users	in	other	languages	understand	the	app's	purpose
and	can	find	the	app	in	Google	Play	in	their	own	languages.

3.	 To	see	a	preview	of	the	layout	in	the	new	language,	open		content_main.xml		in	the
Design	tab,	and	choose	the	language	you	added	from	the	Language	menu	at	the	top
of	the	Layout	Editor.	The	layout	reappears	with	a	preview	of	what	it	looks	like	in	that
language.	

Introduction

205

Changing	the	language	can	affect	the	layout.	In	this	case,	the	headline	in	the	previous
figure,	"Pacquet	de	bonbons	de	nougat,"	takes	up	two	lines.	To	prepare	for	different
languages,	you	need	to	create	layouts	that	have	enough	room	in	their	text	fields	to
expand	at	least	30	percent,	because	a	translated	version	of	the	text	may	take	more
room.

4.	 Switch	to	Project:	Project	Files	view,	and	expand	the	res	directory.	You	see	that	the
Translations	Editor	created	a	new	directory	for	the	French	language:		values-fr	.	The
	values		directory	is	the	default	directory	for	colors,	dimensions,	strings,	and	styles,

Introduction

206

while	for	now,	the		values-fr		directory	has	only	string	resources.	

An	app	can	include	multiple		values		directories,	each	customized	for	a	specific	language
and	locale	combination.	When	a	user	runs	the	app,	Android	automatically	selects	and	loads
the		values		directories	that	best	match	the	user's	chosen	language	and	locale.	For
example,	if	the	user	chooses	French	as	the	language	for	the	device	in	the	Settings	app,	the
French		strings.xml		file	in	the		values-fr		directory	is	used	rather	than	the		strings.xml		file
in	the	default		values		directory.

1.5	Run	the	app	and	switch	languages

1.	 Run	the	app	on	the	emulator	or	on	a	device.	The	strings	appear	in	the	language	used	in
the	default		strings.xml		file	(in	this	case,	English).	Click	the	options	menu,	which	offers
one	option	(Help).	Click	Help	to	see	the	second		Activity	.	

Introduction

207

2.	 To	switch	the	preferred	language	in	your	device	or	emulator,	open	the	Settings	app.	If

your	Android	device	is	in	another	language,	look	for	the	gear	icon:	

3.	 Find	the	Languages	&	input	settings	in	the	Settings	app,	and	choose	Languages.

Be	sure	to	remember	the	globe	icon	for	the	Languages	&	input	choice,	so	that	you	can
find	it	again	if	you	switch	to	a	language	you	do	not	understand.	Languages	is	the	first

choice	on	the	Languages	&	input	screen.	

4.	 For	devices	and	emulators	running	a	version	of	Android	previous	to	Android	7,	choose
Language	on	the	Languages	&	input	screen,	select	Français	(France),	and	skip	the
following	steps.

(In	versions	of	Android	previous	to	Android	7,	users	can	choose	only	one	language.	In
Android	7	and	newer	versions,	users	can	choose	multiple	languages	and	arrange	them
by	preference.	The	primary	language	is	numbered	1,	as	shown	in	the	following	figure,
followed	by	lower-preference	languages.)

5.	 For	devices	and	emulators	running	Android	7	or	newer,	follow	these	steps:

6.	 Choose	Languages	on	the	Languages	&	input	screen.

Introduction

208

7.	 To	add	a	language	not	on	the	list,	click	Add	a	language,	select	Français,	and	then
select	France	for	the	locale.

8.	 Use	the	move	icon	on	the	right	side	of	the	Language	preferences	screen	to	drag
Français	(France)	to	the	top	of	the	list.	

Introduction

209

9.	 Run	the	app	again.	The	app	now	appears	in	French:	

If	the	user	has	chosen	a	language	that	your	app	does	not	support,	the	app	displays	the
strings	that	are	in	the	default	strings.xml	file.	For	example,	if	the	user	has	chosen	Spanish
(or	any	other	language	which	your	app	does	not	support),	the	app	displays	strings	in
English,	which	is	the	language	used	in	the	default	strings.xml	file	for	this	app.

Note:	Remember	to	include	all	the	strings	you	need	for	the	app	in	the	default		strings.xml	
file.	If	the	default	file	is	absent,	or	if	it	is	missing	a	string	that	the	app	needs,	the	app	may
stop.

Task	2.	Add	a	right-to-left	(RTL)	language
Some	languages,	such	as	English,	are	read	from	left	to	right	(LTR),	while	others,	such	as
Arabic	or	Hebrew,	are	read	from	right	to	left	(RTL).	While	the	text	fields	in	an	LTR	language
would	be	arranged	in	a	layout	from	left	to	right,	they	should	be	reversed	in	a	layout	for	an
RTL	language.	Android	4.2	and	newer	versions	provide	full	native	support	for	RTL	layouts	so
that	you	can	use	the	same	layout	for	both	types	of	languages.

So	far,	the	app	uses	two	LTR	languages:	English	(for	the	default)	and	French.	In	this	task
you	add	Hebrew,	an	RTL	language.

2.1	Check	for	RTL	support

Introduction

210

http://android-developers.blogspot.fr/2013/03/native-rtl-support-in-android-42.html

Android	provides	the	layout	mirroring	feature,	which	redraws	the	layout	for	RTL	languages
so	that	the	image	view,	the	text	view,	the	options	menu,	and	the	floating	action	button	are	all
automatically	moved	to	the	opposite	side	of	the	layout.

Open		AndroidManifest.xml		to	check	that	the	following	attribute	is	part	of	the		<application>	
element.	This	enables	RTL	layout	mirroring:

android:supportsRtl="true"

Android	Studio	adds	the	above	attribute	to	new	projects.	If	you	change		true		to		false	,
RTL	layout	mirroring	is	not	supported,	and	the	views	and	other	elements	that	use	the	RTL
language	appear	as	they	would	for	an	LTR	language.

2.2	Add	an	RTL	language

Add	Hebrew	to	the	LocaleText	app:

1.	 Open	the	LocaleText	app	from	the	previous	task	in	Android	Studio.
2.	 Add	Hebrew	and	translate	the	strings	using	the	Translations	Editor	(see	previous	task

for	details).	The	translations	appear	in	the	new	Hebrew	(iw)	column	for	the	key.	

3.	 To	see	a	preview	of	the	layout	in	the	new	language,	open		content_main.xml	,	click	the
Design	tab	if	it	is	not	already	selected,	and	choose	Hebrew	(iw)	from	the	Language
menu	at	the	top	of	the	Layout	Editor.	The	layout	reappears	with	a	preview	of	what	it	will
look	like	in	Hebrew.

Introduction

211

As	shown	in	the	figure,	adding	an	RTL	language	can	affect	the	layout,	because	Android
Studio	automatically	supplies	a	declaration	in	the		<application>		element	in	the
AndroidManifest.xml	file	that	automatically	turns	on	RTL	layout	support:
	android:supportsRtl="true"	.	The	RTL	language	characters	are	properly	set	from	right	to
left,	and	the	RTL	text	is	justified	to	the	right	margin.

However,	the	UI	elements—with	the	exception	of	the	floating	action	button—are	still	in	the
same	place	in	the	layout,	as	if	they	were	showing	an	LTR	language.	The	floating	action
button	moves	to	the	opposite	(left)	side	of	the	screen,	as	it	should	for	an	RTL	language.	But
the		ImageView		is	still	constrained	to	the	left	margin,	and	the	two	TextView	elements	are
constrained	to	the	right	side	of	the	ImageView.

The		ImageView		and		TextView		elements	should	move	to	the	opposite	side	of	the	screen,
where	a	Hebrew	reader	would	expect	them	to	be.	In	the	next	step	you	will	fix	the	layout	to
fully	support	an	RTL	language.

2.3	Modify	the	content	layout	for	RTL	languages

Introduction

212

http://developer.android.com/guide/topics/manifest/application-element.html

To	adjust	a	layout	so	that	it	fully	supports	an	RTL	language,	you	need	to	add	a	"start"	and
"end"	attribute	for	every	"left"	and	"right"	attribute	in	each	layout.	For	example,	if	you	use
	android:layout_marginLeft	,	add		android:layout_marginStart	:

1.	 Open		content_main.xml		and	look	at	the	XML	code.	

Android	Studio	highlights	"right"	and	"left"	attributes	(such	as		layout_marginLeft		in	the
figure)	and	provides	suggestions	about	including	"start"	and	"end"	attributes	to	better
support	right-to-left	languages.

2.	 Add	a	"start"	attribute	for	every	"left"	attribute,	and	an	"end"	attribute	for	every	"right"
attribute.	For	example,	add	the		android:layout_marginStart		attribute	to	all	uses	of	the
	layout_marginLeft		attribute:

	android:layout_marginLeft="@dimen/standard_margin"

	android:layout_marginStart="@dimen/standard_margin"

The	"start"	attribute	defines	the	start	of	the	view,	which	is	the	same	as	the	"left"	attribute
for	an	LTR	language;	however,	in	RTL	languages,	the	start	side	is	the	right	side.

The	"end"	attribute	defines	the	end	of	the	view,	which	is	the	same	as	the	"right"	attribute
for	an	LTR	language;	however,	in	RTL	languages,	the	end	side	is	the	left	side.

Be	sure	to	add	"start"	and	"end"	to	the	constraint	attributes.	For	example:

Introduction

213

app:layout_constraintLeft_toRightOf="@+id/product_image"

app:layout_constraintStart_toEndOf="@+id/product_image"

3.	 To	see	a	preview	of	the	layout	in	the	new	language,	click	the	Design	tab,	and	choose
Hebrew	(iw)	in	the	Language	menu	at	the	top	of	the	Layout	Editor.	The	layout
reappears	with	a	preview	of	what	it	will	look	like,	now	that	you	have	added	the	"start"
and	"end"	attributes.	

Compare	this	layout	preview	with	the	layout	preview	in	the	previous	task.	As	a	result	of
adding	the	"start"	and	"end"	attributes	for	margins	and	constraints,	the	layout	now	shows	the
image	on	the	right	side	of	the	screen	(the	"start"	side),	and	the		TextView		elements	are
constrained	to	its	left	("end")	side.

The	following	snippet	is	the	revised	XML	code	for	the	two		TextView		elements	and	the
	ImageView		in		content_main.xml	:

Introduction

214

<TextView

				android:id="@+id/heading"

				android:layout_width="0dp"

				android:layout_height="wrap_content"

				android:layout_marginLeft="@dimen/standard_margin"

				android:layout_marginStart="@dimen/standard_margin"

				android:layout_marginTop="@dimen/standard_margin"

				android:text="@string/nougat"

				android:textAppearance=

																				"@style/TextAppearance.AppCompat.Headline"

				app:layout_constraintHorizontal_bias="0.0"

				app:layout_constraintLeft_toRightOf="@+id/product_image"

				app:layout_constraintStart_toEndOf="@+id/product_image"

				app:layout_constraintRight_toRightOf="parent"

				app:layout_constraintEnd_toEndOf="parent"

				app:layout_constraintTop_toTopOf="parent"	/>

<ImageView

				android:id="@+id/product_image"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				app:srcCompat="@drawable/nougat"

				app:layout_constraintTop_toTopOf="parent"

				android:layout_marginTop="@dimen/standard_margin"

				android:layout_marginLeft="@dimen/standard_margin"

				android:layout_marginStart="@dimen/standard_margin"

				app:layout_constraintLeft_toLeftOf="parent"

				app:layout_constraintStart_toStartOf="parent"/>

<TextView

				android:id="@+id/description"

				android:layout_width="0dp"

				android:layout_height="wrap_content"

				android:text="@string/description"

				android:layout_marginTop="0dp"

				app:layout_constraintTop_toBottomOf="@id/heading"

				app:layout_constraintLeft_toRightOf="@id/product_image"

				app:layout_constraintStart_toEndOf="@id/product_image"

				android:layout_marginLeft="@dimen/standard_margin"

				android:layout_marginStart="@dimen/standard_margin"

				android:layout_marginRight="@dimen/standard_margin"

				android:layout_marginEnd="@dimen/standard_margin"

				app:layout_constraintRight_toRightOf="parent"

				app:layout_constraintEnd_toEndOf="parent"

				app:layout_constraintHorizontal_bias="0.0"	>

</TextView>

2.4	Modify	the	help	layout	for	RTL	languages

Introduction

215

Modify	the		activity_help.xml		layout	for	the	RTL	language:	Add	a	"start"	attribute	for	every
"left"	attribute,	and	an	"end"	attribute	for	every	"right"	attribute,	as	done	previously	for
	content.xml	,	for	the	two		TextView		elements	and	the	floating	action	button.	The	following
snippet	shows	the	XML	code	for	these	elements	in		activity_help.xml	:

<TextView

				android:id="@+id/help_title"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:layout_marginLeft="@dimen/standard_margin"

				android:layout_marginStart="@dimen/standard_margin"

				android:layout_marginTop="@dimen/standard_margin"

				android:text="@string/action_help"

				android:textAppearance=

																"@style/TextAppearance.AppCompat.Headline"

				app:layout_constraintLeft_toLeftOf="parent"

				app:layout_constraintStart_toStartOf="parent"

				app:layout_constraintTop_toTopOf="parent"	/>

<android.support.design.widget.FloatingActionButton

				android:id="@+id/fab"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:clickable="true"

				app:fabSize="mini"

				app:srcCompat="@android:drawable/ic_menu_call"

				android:layout_marginLeft="@dimen/standard_margin"

				android:layout_marginStart="@dimen/standard_margin"

				app:layout_constraintLeft_toLeftOf="parent"

				app:layout_constraintStart_toStartOf="parent"

				android:layout_marginTop="@dimen/standard_margin"

				app:layout_constraintTop_toBottomOf="@+id/help_title"	/>

<TextView

				android:id="@+id/help_body"

				android:layout_width="0dp"

				android:layout_height="wrap_content"

				android:padding="@dimen/standard_margin"

				android:text="@string/help_text"

				android:textAppearance="@style/TextAppearance.AppCompat.Medium"

				android:layout_marginLeft="@dimen/standard_margin"

				android:layout_marginStart="@dimen/standard_margin"

				android:layout_marginRight="@dimen/standard_margin"

				android:layout_marginEnd="@dimen/standard_margin"

				app:layout_constraintRight_toRightOf="parent"

				app:layout_constraintEnd_toEndOf="parent"

				app:layout_constraintTop_toBottomOf="@+id/help_title"

				app:layout_constraintLeft_toRightOf="@+id/fab"

				app:layout_constraintStart_toEndOf="@+id/fab"

				app:layout_constraintHorizontal_bias="1.0"	>

</TextView>

Introduction

216

To	see	the	changes,	run	the	app	on	the	device	or	emulator,	and	then	change	the	language	to
Hebrew	and	run	the	app	again.

The	image	now	appears	on	the	right	of	the	screen,	at	the	start	of	the	text	in	the	main	activity.
The	help	activity's	layout	is	also	mirrored	for	the	RTL	language.

Note	also	that	the	app	name,	the	Help	title	for		HelpActivity	,	and	the	Up	button	for
	HelpActivity		(shown	on	the	right	side	of	the	figure)	are	also	moved	to	the	opposite	side	of
the	layout,	which	is	proper	for	RTL	languages.

Task	2	solution	code
Android	Studio	project:	LocaleText1

Task	3.	Add	a	Language	option	to	the	options
menu
Would	you	like	a	quicker	way	than	going	back	to	the	Settings	app	to	change	the	language
for	testing	this	app?	In	this	task,	you	add	a	Language	option	to	the	options	menu	in	the
LocaleText	app.	When	tapped,	this	option	uses	an	Intent	to	open	the	language	list	in	the
Settings	app.

Introduction

217

https://github.com/google-developer-training/android-advanced/tree/master/LocaleText1

The	Language	menu	option	will	make	it	easier	for	the	user	to	open	the	language	list	without
having	to	look	for	and	launch	the	Settings	app.	The	user	can	also	immediately	return	to	the
LocaleText	app	and	see	the	app	in	the	new	language	by	tapping	the	Back	button.

3.1	Add	the	menu	option

Open	the	LocaleText	app	project	from	the	previous	section	(or	download	the	LocaleText1
app	project).

Add	the	Language	item	to		menu_main.xml	,	using		action_language		as	the		id	.	Set	the
	android:orderInCategory		attribute	value	to	a	higher	number	than		action_help		so	that	it
appears	below	the	Help	option	in	the	menu.

<item

				android:id="@+id/action_language"

				android:orderInCategory="110"

				android:title="Language"

				app:showAsAction="never"	>

</item>

Introduction

218

https://github.com/google-developer-training/android-advanced/tree/master/LocaleText1

Extract	the	string	resource	for	the	option's		android:title		attribute	("Language").	Use	the
Translations	Editor	to	provide	that	string	resource	for	French	and	Hebrew.

3.2	Modify	onOptionsItemSelected()

In	MainActivity,	change	the	code	in	the		onOptionsItemSelected()		method	to	a		switch		block
that	handles	both	Help	and	Language:

@Override

public	boolean	onOptionsItemSelected(MenuItem	item)	{

				//	Handle	options	menu	item	clicks	here.

				switch	(item.getItemId())	{

								case	R.id.action_help:

												showHelp();

												return	true;

								case	R.id.action_language:

												Intent	languageIntent	=	new	

																													Intent(Settings.ACTION_LOCALE_SETTINGS);

												startActivity(languageIntent);

											return	true;

								default:

											//	Do	nothing.

								}

				return	super.onOptionsItemSelected(item);

}

The	Language	case	uses	an	Intent	with		Settings.ACTION_LOCALE_SETTINGS		to	navigate
directly	to	the	language	list.

Task	3	solution	code
Android	Studio	project:	LocaleText2

Coding	challenge
Note:	All	coding	challenges	are	optional	and	not	prerequisite	for	the	material	in	the	later
chapters.
Challenge:	Localize	the	UI	elements	of	another	app.

Developers	often	work	in	teams	and	are	asked	to	update	existing	apps	to	localize	them.	In
such	cases	you	may	not	know	everything	about	the	code	in	the	app,	but	you	can	apply
localization	best	practices	to	update	the	code.

Introduction

219

https://developer.android.com/reference/android/content/Intent.html
https://github.com/google-developer-training/android-advanced/tree/master/LocaleText2

For	this	challenge,	download	the	RecyclerView_start	starter	app,	rename	it	to		RecyclerView	,
and	run	the	app.	It	shows	a	list	of	"Word"	items.	The	floating	action	button	adds	a	"Word"
item	each	time	you	click	it.	Clicking	on	an	item	displays	"Clicked!"	with	"Word"	(as	shown	in
the	figure).

Introduction

220

https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/RecyclerView_start

Introduction

221

The	following	are	the	general	steps	for	this	challenge:

1.	 Add	string	resources	to	the	project	with	translations	for	French	(or	any	LTR	language)
and	Hebrew	(or	any	RTL	language).	

The	challenge	requires	you	to	support	a	RTL	language.	The	number	that	appears	after
"Word"	for	an	LTR	language	("Word	20")	should	appear	before	"Word"	("20	 הלָמִ ")	for	an
RTL	language.	To	control	placement,	use	a	string	format	with	an	argument	for	the
number,	as	described	in	the	Formatting	and	Styling	section	of	String	Resources.

2.	 Open		MainActivity	,	find	the	code	In	the		onCreate()		method	that	puts	the	initial	data
into	the	word	list	(shown	in	the	comment	below),	and	replace	it	with	code	to	use	the
	word		string	resource:

	//	Original	code:	mWordList.addLast("Word	"	+	i)

	mWordList.addLast(String.format(getResources()

																																		.getString(R.string.word,	i));

3.	 Within	the		onCreate()		method,	find	the	code	for	the	floating	action	button	in		onClick()	
that	adds	a	new	word	to	the	word	list	(shown	in	the	comment	below),	and	replace	it	to
use	the		word		string	resource:

	//	Original	code:	mWordList.addLast("+	Word	"	+	wordListSize)

	mWordList.addLast("+	"	+

																getResources().getString(R.string.word,	wordListSize));

4.	 Open		WordListAdapter	,	and	use	the		getString()		method	to	replace	the	hardcoded
"Clicked!"	with		R.string.clicked	.	In	the		WordViewHolder		class	within	WordListAdapter,
change	the		onClick()		method	to	the	following:

	public	void	onClick(View	v)	{

					String	clickOutput	=	v.getContext().getString(clicked)	+

																					wordItemView.getText();

					wordItemView.setText(clickOutput);

	}

5.	 Run	the	app	and	click	the	floating	action	button	twice	to	add	two	more	entries:	"+	Word
20"	and	"+	Word	21."	Click	the	Word	16	item	to	ensure	that	it	displays	"Clicked!	Word

Introduction

222

https://developer.android.com/guide/topics/resources/string-resource.html#FormattingAndStyling
https://developer.android.com/guide/topics/resources/string-resource.html
https://developer.android.com/reference/android/content/Context.html#getString(int)

16"	as	shown	in	the	previous	figure.	Then	change	your	device	or	emulator	to	another
language,	run	the	app,	and	perform	the	same	steps.	

Challenge	solution	code
Android	Studio	project:	LocaleRecyclerView

Summary
To	prepare	an	app	to	support	different	languages,	extract	and	save	all	strings	as
resources	in		strings.xml	,	including	menu	items,	tabs,	and	any	other	navigation
elements	that	use	text.
To	use	the	Translations	Editor,	open	the		strings.xml		file,	and	click	the	Open	editor
link	in	the	top	right	corner.
To	add	a	language,	click	the	globe	button	in	the	top	left	corner	of	the	Translations	Editor.
To	see	a	preview	of	the	layout	in	the	new	language,	open	the	layout	XML	file,	click	the
Design	tab,	and	choose	the	language	in	the	Language	menu	at	the	top	of	the	layout
editor.

Introduction

223

https://github.com/google-developer-training/android-advanced/tree/master/LocaleRecyclerView

To	support	right-to-left	(RTL)	languages	with	RTL	layout	mirroring,	Android	Studio
automatically	includes	the		android:supportsRtl		attribute,	set	to		true	,	as	part	of	the
	<application>		element	in		AndroidManifest.xml		for	each	project.
To	support	RTL	languages	in	a	layout,	add	the	"start"	and	"end"	XML	attributes	for	all
"left"	and	"right"	attributes.
Switch	the	preferred	language	in	your	device	or	emulator	by	choosing	Languages	&
input	>	Languages	in	Settings.	In	Android	7	and	newer	you	can	add	another	language
by	clicking	Add	a	language.	Drag	the	preferred	language	to	the	top	of	the	list.
Use	the	default		strings.xml		file	to	define	each	and	every	string	in	the	app,	so	that	if	a
language	or	dialect	is	not	available,	the	app	shows	the	default	language.

Related	concept
The	related	concept	documentation	is	in	Languages	and	layouts.

Learn	more
Android	developer	documentation:

Supporting	Different	Languages	and	Cultures
Localizing	with	Resources
String	Resources
Localization	checklist
Language	and	Locale
Testing	for	Default	Resources

Material	Design:	Usability	-	Bidirectionality

Android	Developers	Blog:	Native	RTL	support	in	Android	4.2

Android	Play	Console:	Translate	&	localize	your	app

Other:

Language	Subtag	Registry	-	IANA
Country	Codes
ISO	3166	Country	Codes
Android	locale	codes	and	variants

Introduction

224

https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-3-make-your-apps-accessible/lesson-5-localization/5-1-c-languages-and-layouts/5-1-c-languages-and-layouts.html
https://developer.android.com/training/basics/supporting-devices/languages.html
https://developer.android.com/guide/topics/resources/localization.html
https://developer.android.com/guide/topics/resources/string-resource.html
https://developer.android.com/distribute/tools/localization-checklist.html
https://developer.android.com/guide/topics/resources/multilingual-support.html
https://developer.android.com/guide/topics/resources/localization.html#test-for-default
https://material.io/guidelines/usability/bidirectionality.html
https://android-developers.googleblog.com/2013/03/native-rtl-support-in-android-42.html
https://support.google.com/googleplay/android-developer/answer/3125566?hl=en
https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
http://www.1728.org/countries.htm
https://www.iso.org/iso-3166-country-codes.html
https://github.com/championswimmer/android-locales

5.2:	Using	the	locale	to	format	information
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Use	the	locale's	date	format
Task	2.	Use	the	locale's	number	format
Task	3.	Use	the	locale's	currency
Solution	code
Coding	challenge
Challenge	solution	code
Summary
Related	concept
Learn	more

To	provide	the	best	experience	for	Android	users	in	different	regions,	your	app	should	handle
not	only	text	but	also	numbers,	dates,	times,	and	currencies	in	ways	appropriate	to	those
regions.

When	users	choose	a	language,	they	also	choose	a	locale	for	that	language,	such	as
English	(United	States)	or	English	(United	Kingdom).	Your	app	should	change	to	show	the
formats	for	that	locale:	for	dates,	times,	numbers,	currencies,	and	similar	information.	Dates
can	appear	in	different	formats	(such	as	dd	/	mm	/	yyyy	or	yyyy	-	mm	-	dd),	depending	on
the	locale.	Numbers	appear	with	different	punctuation,	and	currency	formatting	also	varies.

What	you	should	already	KNOW
You	should	be	able	to:

Create	and	run	apps	in	Android	Studio.
Add	different	languages	and	edit	translations	in	the	Translations	Editor.
Modify	layouts	to	accommodate	right-to-left	(RTL)	languages.

What	you	will	LEARN
You	will	learn	how	to:

Introduction

225

Use	the	current	locale	to	set	the	format	for	the	date	and	for	numbers.
Parse	a	number	from	a	locale-formatted	string.
Show	different	currencies	based	on	the	locale.

What	you	will	DO
Use		DateFormat		to	format	a	date	(a	product's	expiration	date)	according	to	the	user-
chosen	locale.
Use		NumberFormat		to	format	numbers	and	currencies	according	to	the	user-chosen
locale.
Use	the	current	locale's	country	code	to	determine	which	currency	to	use.

App	overview
The	LocaleText	app	(from	the	lesson	about	using	language	resources)	offers	localized
language	resources,	but	there	are	other	aspects	of	localization	that	need	to	be	addressed.
Dates,	numbers,	and	currencies	are	the	most	important	aspects.

You	will	use	LocaleText3_start	as	the	starter	code.	It	already	contains	extra	UI	elements	and
strings	translated	into	French	and	Hebrew,	and	the	RTL	layout	adjustments	("start"	and
"end"	attributes)	that	are	described	in	the	previous	lesson.	You	will	do	the	following:

Convert	a	product	expiration	date	to	the	format	for	the	user's	chosen	locale.
Format	the	user's	quantity	for	the	user's	chosen	locale,	so	that	the	quantity	properly
displays	thousands	and	higher	numbers	with	the	right	separators.
Set	the	currency	format	for	the	language	and	locale,	and	use	it	to	display	the	price.

Introduction

226

https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/LocaleText_start

The	figure	below	shows	the	fully	finished	LocaleText3	app.

Task	1.	Use	the	locale's	date	format
In	this	task	you	learn	how	to	get	the	current		Date		and	format	it	for	current		Locale		using
	DateFormat	.	You	add	two	views	to	the	layout	for	the	expiration	date	and	its	label,	then
localize	the	views	by	translating	a	string	and	adding	RTL	attributes	to	the	layout.

1.1	Examine	the	layout

Download	the	LocaleText3_start	app	project,	rename	the	project	folder	to		LocaleText3	,	and
open	the	project	in	Android	Studio.

Open		content_main.xml		to	see	the	layout	and	become	familiar	with	the	UI	elements:

	date_label	:	Label	for	the	expiration	date.
	date		:	Expiration	date.
	quantity_label	:	Label	for	the	quantity.
	quantity	:	Quantity	entered	by	the	user.
	price_label	:	Label	for	the	single-package	price.
	price	:	Single-package	price.
	total_label	:	Label	for	the	total	amount.
	total	:	Total	amount,	calculated	by	multiplying	the		quantity		by	the		price	.	

Introduction

227

https://developer.android.com/reference/java/util/Date.html
https://developer.android.com/reference/java/util/Locale.html
https://developer.android.com/reference/java/text/DateFormat.html
https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/LocaleText_start

Open	the	Translations	Editor	to	see	French	and	Hebrew	translations	for	the	new	string
resources.	(For	instructions	on	adding	a	language,	see	the	lesson	about	using	language
resources.)	You	will	not	be	translating	the	date,	so	the	Untranslatable	checkbox	for	the
	date		key	is	already	selected.

Since	there	is	no	translation	for	the		date		key,	the	default	value	will	be	used	in	the	layout	no
matter	what	language	and	locale	the	user	chooses.	You	will	add	code	to	format	the	date	so
that	it	appears	in	the	locale's	date	format.

1.2	Use	DateFormat	to	format	the	date

The	code	in		MainActivity.java		adds	five	days	to	the	current	date	to	get	the	expiration	date.
You	will	add	code	to	format	the	expiration	date	for	the	locale.

Note:	Throughout	this	lesson,	places	where	you	will	add	code	are	marked	by		TODO	
comments.	After	adding	the	code,	you	can	delete	or	edit	the		TODO		comments.
1.	 Open		MainActivity	,	and	find	the	the	code	at	the	end	of	the		onCreate()		method	after

the		fab.setOnClickListener()		section:

Introduction

228

	protected	void	onCreate(Bundle	savedInstanceState)	{

				//	...	Rest	of	the	onCreate	code.

				fab.setOnClickListener(new	View.OnClickListener()	{

								//	...	Rest	of	the	setOnClickListener	code.

				});

				//	Get	the	current	date.

				final	Date	myDate	=	new	Date();

				//	Add	5	days	in	milliseconds	to	create	the	expiration	date.

				final	long	expirationDate	=	myDate.getTime()	+	

																																						TimeUnit.DAYS.toMillis(5);

				//	Set	the	expiration	date	as	the	date	to	display.

				myDate.setTime(expirationDate);

				//	TODO:	Format	the	date	for	the	locale.

This	code	adds	five	days	to	the	current	date	to	get	the	expiration	date.

2.	 Add	the	following	to	format	and	display	the	date:

					//	TODO:	Format	the	date	for	the	locale.

					String	myFormattedDate	=	

																							DateFormat.getDateInstance().format(myDate);

					//	Display	the	formatted	date.

					TextView	expirationDateView	=	(TextView)	findViewById(R.id.date);

					expirationDateView.setText(myFormattedDate);

	}

As	you	enter		DateFormat	,	the		java.text.DateFormat		class	should	be	imported.	If	it
doesn't	automatically	import,	click	the	red	warning	bulb	in	Android	Studio	and	import	it.

The		DateFormat.getDateInstance()		method	gets	the	default	formatting	style	for	the
user's	selected	language	and	locale.	The		DateFormat			format()		method	formats	a	date
string.

Introduction

229

https://developer.android.com/reference/java/text/DateFormat.html#getDateInstance()
https://developer.android.com/reference/java/text/DateFormat.html#format(java.util.Date)

3.	 Run	the	app,	and	switch	languages.	The	date	is	formatted	in	each	specific	language	as
shown	in	the	figure.	

Task	2.	Use	the	locale's	number	format
Numbers	appear	with	different	punctuation	in	different	locales.	In	U.S.	English,	the
thousands	separator	is	a	comma,	whereas	in	France,	the	thousands	separator	is	a	space,
and	in	Spain	the	thousands	separator	is	a	period.	The	decimal	separator	also	varies
between	period	and	comma.

Use	the	Java	class		NumberFormat		to	format	numbers	and	to	parse	formatted	strings	to
retrieve	numbers.	You	will	use	the		quantity	,	which	is	provided	for	entering	an	integer
quantity	amount.

	MainActivity		already	includes		OnEditorActionListener	,	which	closes	the	keyboard	when

the	user	taps	the	Done	key	(the	checkmark	icon	in	a	green	circle):	

You	will	add	code	to	parse	the	quantity,	convert	it	to	a	number,	and	then	format	the	number
according	to	the		Locale	.

2.1	Examine	the	listener	code

Open		MainActivity	,	and	find	the	following	listener	code	at	the	end	of	the		onCreate()	
method.	This	is	where	you	will	put	your	code	to	get	and	format	the	quantity:

Introduction

230

https://developer.android.com/reference/java/text/NumberFormat.html
https://developer.android.com/reference/android/widget/TextView.OnEditorActionListener.html
https://developer.android.com/reference/java/util/Locale.html

//	Add	an	OnEditorActionListener	to	the	EditText	view.

enteredQuantity.setOnEditorActionListener(new	

																														EditText.OnEditorActionListener()	{

				@Override

				public	boolean	onEditorAction(TextView	v,	int	actionId,	

																																																KeyEvent	event)	{

								if	(actionId	==	EditorInfo.IME_ACTION_DONE)	{

													//	Close	the	keyboard.

													InputMethodManager	imm	=	(InputMethodManager)

																												v.getContext().getSystemService

																												(Context.INPUT_METHOD_SERVICE);

													imm.hideSoftInputFromWindow(v.getWindowToken(),	0);

													//	TODO:	Parse	string	in	view	v	to	a	number.

//...

The	listener	defines	callbacks	to	be	invoked	when	an	action	is	performed	on	the	editor.	In
this	case,	when	the	user	taps	the	Done	key,	it	triggers	the		EditorInfo.IME_ACTION_DONE	
action,	and	the	callback	closes	the	keyboard.

Note:	The		EditorInfo.IME_ACTION_DONE		constant	may	not	work	for	some	smartphones	that
implement	a	proprietary	soft	keyboard	that	ignores		imeOptions		(as	described	in	Stack
Overflow	tip,	"How	do	I	handle	ImeOptions'	done	button	click?").	For	more	information	about
setting	input	method	actions,	see	Specify	the	Input	Method	Action,	and	for	details	about	the
	EditorInfo		class,	see		EditorInfo	.

2.2	Use	the	locale's	number	format	to	parse	the	string	to	a
number

The		quantity		value	is	a	string,	perhaps	entered	in	a	different	language.	In	this	step	you
write	code	to	parse	the	string	to	a	number,	so	that	your	code	can	use	it	in	a	calculation.	If	the
value	doesn't	parse	properly,	you	will	throw	an	exception	and	show	a	message	asking	the
user	to	enter	a	number.

Follow	these	steps:

1.	 Open		MainActivity	.	At	the	top,	declare		mNumberFormat		to	get	an	instance	of	the
number	format	for	the	user-chosen	locale,	and	add	a		TAG		for	reporting	an	exception
with	the	entered	quantity:

	private	NumberFormat	mNumberFormat	=	NumberFormat.getInstance();

	private	static	final	String	TAG	=	MainActivity.class.getSimpleName();

Introduction

231

https://developer.android.com/reference/android/view/inputmethod/EditorInfo.html#IME_ACTION_DONE
https://developer.android.com/reference/android/view/inputmethod/EditorInfo.html#IME_ACTION_DONE
https://developer.android.com/reference/android/widget/TextView.html#attr_android:imeOptions
https://stackoverflow.com/questions/2004344/how-do-i-handle-imeoptions-done-button-click
https://developer.android.com/training/keyboard-input/style.html#Action
https://developer.android.com/reference/android/view/inputmethod/EditorInfo.html

After	you	enter		NumberFormat	,	the	expression	appears	in	red.	Click	it	and	press	Option-
Return	on	a	Mac,	or	Alt-Return	on	Windows,	to	choose		java.text.NumberFormat	.

The		NumberFormat.getInstance()		method	returns	a	general-purpose	number	format	for
the	user-selected	language	and	locale.

2.	 In	the	listener	code	in		MainActivity	,	change	the		quantity		to	a	number	(if	the		view		is
not	empty)	by	using	the		NumberFormat.parse()		method	with		intValue()		to	return	an
integer.

				//	Parse	string	in	view	v	to	a	number.

				mInputQuantity	=	mNumberFormat.parse(v.getText()

																										.toString()).intValue();

				//	TODO:	Convert	to	string	using	locale's	number	format.

3.	 Android	Studio	displays	a	red	bulb	in	the	left	margin	of	the		numberFormat.parse	
statement	because	the	statement	requires	an	exception	handler.	Although	the	keyboard
is	restricted	to	a	numeric	keypad,	the	code	still	needs	to	handle	an	exception	when
parsing	the	string	to	convert	it	to	a	number.	Click	the	bulb	and	choose	Surround	with
try/catch	to	create	a	simple		try		and		catch		block	to	handle	exceptions.	Android
Studio	automatically	imports		java.text.ParseException	.

				//	Parse	string	in	view	v	to	a	number.

				try	{

									//	Use	the	number	format	for	the	locale.

									mInputQuantity	=	mNumberFormat.parse(v.getText()

																										.toString()).intValue();

				}	catch	(ParseException	e)	{

									e.printStackTrace();

				}

				//	TODO:	Convert	to	string	using	locale's	number	format.

4.	 The	exception	handling	is	not	yet	finished.	The	best	practice	is	to	display	a	message	to
the	user.	The		TextEdit			setError()		method	provides	a	popup	warning	if,	for	some
reason,	a	number	was	not	entered.	Change	the	code	in	the	previous	step	to	the
following,	using	the	string	resource		enter_number		(provided	in	the		strings.xml		file	and
previously	translated).

Introduction

232

https://developer.android.com/reference/java/text/NumberFormat.html#getInstance()
https://developer.android.com/reference/java/text/NumberFormat.html#parse(java.lang.String)
https://developer.android.com/reference/android/widget/TextView.html#setError(java.lang.CharSequence)

				//	Parse	string	in	view	v	to	a	number.

				try	{

									//	Use	the	number	format	for	the	locale.

									mInputQuantity	=	mNumberFormat.parse(v.getText()

																										.toString()).intValue();

									v.setError(null);

				}	catch	(ParseException	e)	{

									Log.e(TAG,Log.getStackTraceString(e));

									v.setError(getText(R.string.enter_number));

									return	false;

				}

					//	TODO:	Convert	to	string	using	locale's	number	format.

If	the	user	runs	the	app	and	taps	the	Done	key	without	entering	a	number,	the
	enter_number		message	appears.	Since	this	is	a	string	resource,	the	translated	version
appears	in	French	or	Hebrew	if	the	user	chooses	French	or	Hebrew	for	the	device's
language.

2.3	Convert	the	number	to	a	string	formatted	for	the	locale

In	this	step	you	convert	the	number	back	into	a	string	that	is	formatted	correctly	for	the
current	locale.

In	the	listener	code	in		MainActivity	,	add	the	following	to	convert	the	number	to	a	string
using	the	format	for	the	current	locale,	and	show	the	string:

//	Convert	to	string	using	locale's	number	format.

String	myFormattedQuantity	=	mNumberFormat.format(mInputQuantity);

//	Show	the	locale-formatted	quantity.

v.setText(myFormattedQuantity);

Run	the	app:

1.	 Enter	a	quantity	and	tap	the	Done	key	to	close	the	keyboard.
2.	 Switch	the	language.	First	choose	English	(United	States),	run	the	app	again,	and

enter	a	quantity	again.	The	thousands	separator	is	a	comma.
3.	 Switch	the	language	to	Français	(France),	run	the	app	again,	and	enter	a	quantity

again.	The	thousands	separator	is	a	space.
4.	 Switch	the	language	to	Español	(España),	run	the	app	again,	and	enter	a	quantity

again.	The	thousands	separator	is	a	period.	Note	that	even	though	you	have	no
Spanish	string	resources	(which	is	why	the	text	appears	in	English),	the	date	and	the
number	are	both	formatted	for	the	Spain	locale.	

Introduction

233

Task	3.	Use	the	locale's	currency
Currencies	are	different	in	some	locales.	Use	the		NumberFormat		class	to	format	currency
numbers.	The		NumberFormat.getCurrencyInstance()		method	returns	the	currency	format	for
the	user-selected	language	and		Locale	,	and	the		NumberFormat.format()		method	applies
the	format	to	create	a	string.

To	demonstrate	how	to	show	amounts	in	a	currency	format	for	the	user's	chosen	locale,	you
will	add	code	that	will	show	the	price	in	the	locale's	currency.	Given	the	complexities	of
multiple	currencies	and	daily	fluctuations	in	exchange	rates,	you	may	want	to	limit	the
currencies	in	an	app	to	specific	locales.	To	keep	this	example	simple,	you	will	use	a	fixed
exchange	rate	for	just	the	France	and	Israel	locales,	based	on	the	U.S.	dollar.	The	starter
app	already	includes	fixed	(fake)	exchange	rates.

3.1	Get	the	current	locale	and	its	country	code

You	can	retrieve	the	country	code	of	the	user-chosen	locale	to	determine	whether	the
country	is	one	whose	currency	your	app	supports	(that	is,	France	or	Israel).	If	it	is,	use	the
locale's	currency	format	and	exchange	rate.	For	all	other	unsupported	countries	and	the
U.S.,	set	the	currency	format	to	U.S.	(dollar).

The	starter	app	already	includes	variables	for	the	France	and	Israel	currency	exchange
rates.	You	will	use	this	to	calculate	and	show	the	price.	Pricing	information	would	likely	come
from	a	database	or	a	web	service,	but	to	keep	this	app	simple	and	focused	on	localization,	a
fixed	price	in	U.S.	dollars	has	already	been	added	to	the	starter	app.

Introduction

234

https://developer.android.com/reference/java/text/NumberFormat.html
https://developer.android.com/reference/java/text/NumberFormat.html#getCurrencyInstance()
https://developer.android.com/reference/java/util/Locale.html
https://developer.android.com/reference/java/text/NumberFormat.html#format(double)

1.	 Open		MainActivity		and	find	the	fixed	price	and	exchange	rates	at	the	top	of	the	class:

	//	Fixed	price	in	U.S.	dollars	and	cents:	ten	cents.

	private	double	mPrice	=	0.10;

	//	Exchange	rates	for	France	(FR)	and	Israel	(IW).

	private	double	mFrExchangeRate	=	0.93;	//	0.93	euros	=	$1.

	private	double	mIwExchangeRate	=	3.61;	//	3.61	new	shekels	=	$1.

2.	 Add	the	following	to	the	top	of		MainActivity		to	get	an	instance	(mCurrencyFormat)	of
the	currency	for	the	user's	chosen	locale:

	//	Get	locale's	currency.

	private	NumberFormat	mCurrencyFormat	=	

																								NumberFormat.getCurrencyInstance();

The		NumberFormat.getCurrencyInstance()		method	returns	the	currency	format	for	the
user-selected	locale.

3.2	Calculate	and	show	the	price	in	different	currencies

1.	 To	calculate	the	price	at	a	specific	exchange	rate,	open		MainActivity		and	add	the
following	code	to	the		onCreate()		method	after	the		TODO		comment:

	//	TODO:	Set	up	the	price	and	currency	format.

	String	myFormattedPrice;

	String	deviceLocale	=	Locale.getDefault().getCountry();

	//	If	country	code	is	France	or	Israel,	calculate	price

	//	with	exchange	rate	and	change	to	the	country's	currency	format.

	if	(deviceLocale.equals("FR")	||	deviceLocale.equals("IL"))	{

					if	(deviceLocale.equals("FR"))	{

									//	Calculate	mPrice	in	euros.

									mPrice	*=	mFrExchangeRate;

					}	else	{

									//	Calculate	mPrice	in	new	shekels.

									mPrice	*=	mIwExchangeRate;

					}

					//	Use	the	user-chosen	locale's	currency	format,	which

					//	is	either	France	or	Israel.

					myFormattedPrice	=	mCurrencyFormat.format(mPrice);

	}	else	{

					//	mPrice	is	the	same	(based	on	U.S.	dollar).

					//	Use	the	currency	format	for	the	U.S.

					mCurrencyFormat	=	NumberFormat.getCurrencyInstance(Locale.US);

					myFormattedPrice	=	mCurrencyFormat.format(mPrice);

	}

	//	TODO:	Show	the	price	string.

Introduction

235

https://developer.android.com/reference/java/text/NumberFormat.html#getCurrencyInstance()

The		Locale.getDefault()		method	gets	the	current	value	of	the		Locale	,	and	the
	Locale.getCountry()		method	returns	the	country/region	code	for	this		Locale	.	Used
together,	they	provide	the	country	code	that	you	need	to	check.	The	code		FR		is	for
France,	and		IL		is	for	Israel.	The	code	tests	only	for	those	locales,	because	all	other
locales,	including	the	U.S.,	use	the	default	currency	(U.S.	dollars).

The	code	then	uses	the	currency	format	to	create	the	string		myFormattedPrice	.

2.	 After	the	above	code,	add	code	to	show	the	price	string:

	//	TODO:	Show	the	price	string.

	TextView	localePrice	=	(TextView)	findViewById(R.id.price);

	localePrice.setText(myFormattedPrice);

3.	 Run	the	app.	The	"Price	per	package"	appears	in	U.S.	dollars	(left	side	of	the	figure
below)	because	the	device	or	emulator	is	set	to	English	(United	States).

4.	 Change	the	language	and	locale	to	Français	(France),	and	navigate	back	to	the	app.
The	price	appears	in	euros	(center	of	the	figure	below).

5.	 Change	the	language	to	Français	(Canada),	and	the	price	appears	in	U.S.	dollars	(right
side	of	the	figure	below)	because	the	app	doesn't	support	Canadian	currency.	

When	the	user	chooses	the	Français	(Canada)	locale,	the	language	changes	to	French
because	French	language	resource	strings	are	provided.	The	locale,	however,	is	Canada.
Since	Canadian	currency	is	not	supported,	the	code	uses	the	default	locale's	currency,
which	is	the	United	States	dollar.	This	demonstrates	how	the	language	and	the	locale	can	be
treated	differently.

Solution	code
Android	Studio	project:	LocaleText3

Introduction

236

https://developer.android.com/reference/java/util/Locale.html#getDefault()
https://developer.android.com/reference/java/util/Locale.html#getCountry()
https://github.com/google-developer-training/android-advanced/tree/master/LocaleText3

Coding	challenge
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.
Challenge:	This	challenge	demonstrates	how	to	change	colors	and	text	styles	based	on	the
locale.	Download	the	Scorekeeper_start	app	(shown	below),	and	rename	and	refactor	the
project	to		ScorekeepLocale	.

Introduction

237

https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/Scorekeeper_start

Introduction

238

The	Locales	concept	chapter	explains	how	to	change	colors	and	styles	for	different	locales.

In	the	Scorekeeper	app,	the	text	size	is	controlled	by	a	style	in		styles.xml		in	the		values	
directory,	and	the	color	for	a		Button		background	is	set	in	an	XML	file	in	the		drawable	
directory.	An	app	can	include	multiple	resource	directories,	each	customized	for	a	different
language	and	locale.	Android	picks	the	appropriate	resource	directory	depending	on	the
user's	choice	for	language	and	locale.	For	example,	if	the	user	chooses	French,	and	French
has	been	added	to	the	app	as	a	language	using	the	Translations	Editor	(which	creates	the
	values-fr		directory	to	hold	it),	then:

The		strings.xml		file	in		values-fr		is	used	rather	than	the		strings.xml		file	in	the
default		values		directory,	as	you	would	expect.
The		colors.xml		and		dimens.xml		files	in		values-fr		(if	they	have	been	added	to	the
directory)	are	used	rather	than	the	versions	in	the	default		values		directory.
The		drawables		in		drawable-fr		(if	this	directory	has	been	added	to	the	app)	are	used
rather	than	the	versions	in	the	default		drawable		directory.

For	this	challenge,	do	the	following:

Add	the	Afrikaans	and	Hebrew	languages.
Change	the	text	size	for	the	team	names	to		40sp		in	Hebrew	only	(as	shown	on	the	left
side	of	the	figure	below).
In	South	Africa,	red	is	one	of	the	colors	of	mourning,	and	is	therefore	not	appropriate	as
the	color	for	the	minus	buttons.	Change	the	minus	button	color	to	light	orange,	but	only
for	the	Afrikaans	language	in	the	South	Africa	locale	(as	shown	on	the	right	side	of	the
figure	below).

Hints:

The	size	is	controlled	in	the		TeamText		style	in		styles.xml		in	the		values		directory.	Add
a	new		styles.xml		file	to	the		values-iw		directory	and	edit	it.
The	color	for	the		Button		background	(the	circle	around	the	minus	sign)	is	set	in
	minus_button_background.xml		in	the		res>drawable		directory.	To	create	a	different
language	version,	copy	the		drawable		subdirectory	and	rename	the	copy	drawable-af-
rZA.	You	can	then	change	the		minus_button_background.xml		file	in	the	copied	directory
to	change	the	color.
The	minus	sign	color	is	set	in	the		MinusButtons		style	in		styles.xml	.
Use		"@android:color/holo_orange_light"		for	the	new	color.	

Introduction

239

Challenge	solution	code
Android	Studio	project:	ScorekeepLocale

Summary
To	format	a	date	for	current	locale,	use		DateFormat	.

The		DateFormat			getDateInstance()		method	gets	the	default	formatting	style	for	the
user's	selected	language	and	locale.
The		DateFormat			format()		method	formats	a	date	string.

Use	the		NumberFormat		class	to	format	numbers	and	to	parse	formatted	strings	to	retrieve
numbers.

The		NumberFormat			getInstance()		method	returns	a	general-purpose	number	format	for
the	user-selected	language	and	locale.
Use	the		NumberFormat			parse()		method	to	get	an	integer	from	a	formatted	number

Introduction

240

https://github.com/google-developer-training/android-advanced/tree/master/ScorekeepLocale
https://developer.android.com/reference/java/text/DateFormat.html
https://developer.android.com/reference/java/text/DateFormat.html#getDateInstance()
https://developer.android.com/reference/java/text/DateFormat.html#format(java.util.Date)
https://developer.android.com/reference/java/text/NumberFormat.html
https://developer.android.com/reference/java/text/NumberFormat.html#getInstance()
https://developer.android.com/reference/java/text/NumberFormat.html#parse(java.lang.String)

string.

Use	the		NumberFormat		class	to	format	currency	numbers.

The		NumberFormat			getCurrencyInstance()		method	returns	the	currency	format	for	the
user-selected	language	and	locale.
The		NumberFormat			format()		method	applies	the	format	to	create	a	string.

Use	the		Locale	:

Get	the	current	value	of	the	default		Locale		with		Locale.getDefault()	.
Get	the	country/region	code	by	specifying	the	current		Locale		with
	Locale.getCountry()	.

Use	resource	directories:

Resources	are	defined	within	specially	named	directories	inside	the	project's	res
directory.	The	path	is	project_name		/app/src/main/res/	.
Add	resource	directories	using	the	following	general	format:

<resource	type>-<language	code>[-r<country	code>]

	<resource	type>		:	The	resource	subdirectory,	such	as		values		or		drawable	.

	<language	code>		:	The	language	code,	such	as		en		for	English	or		fr		for	French.

	<country	code>		:	Optional:	The	country	code,	such	as		US		for	the	U.S.	or		FR		for
France.

Related	concept
The	related	concept	documentation	is	Locales.

Learn	more
Android	developer	documentation:

Supporting	Different	Languages	and	Cultures
Localizing	with	Resources
Localization	checklist
Language	and	Locale
Testing	for	Default	Resources

Introduction

241

https://developer.android.com/reference/java/text/NumberFormat.html#getCurrencyInstance()
https://developer.android.com/reference/java/text/NumberFormat.html#format(double)
https://developer.android.com/reference/java/util/Locale.html
https://developer.android.com/reference/java/util/Locale.html#getDefault()
https://developer.android.com/reference/java/util/Locale.html
https://developer.android.com/reference/java/util/Locale.html#getCountry()
https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-3-make-your-apps-accessible/lesson-5-localization/5-2-c-locales/5-2-c-locales.html
https://developer.android.com/training/basics/supporting-devices/languages.html
https://developer.android.com/guide/topics/resources/localization.html
https://developer.android.com/distribute/tools/localization-checklist.html
https://developer.android.com/guide/topics/resources/multilingual-support.html
https://developer.android.com/guide/topics/resources/localization.html#test-for-default

Material	Design:	Usability	-	Bidirectionality

Android	Developers	Blog:

Android	Design	Support	Library
Native	RTL	support	in	Android	4.2

Android	Play	Console:	Translate	&	localize	your	app

Other:

Language	Subtag	Registry	-	IANA
Country	Codes
ISO	3166	Country	Codes
Android	Locale	Codes	and	Variants
How	do	I	use	NumberFormat	to	format	currencies?
How	to	format	international	telephone	numbers
International	Country	Calling	Codes
ISO-3166-1	Standard	(Wikipedia)

Introduction

242

https://material.io/guidelines/usability/bidirectionality.html
http://android-developers.blogspot.com/2015/05/android-design-support-library.html
https://android-developers.googleblog.com/2013/03/native-rtl-support-in-android-42.html
https://support.google.com/googleplay/android-developer/answer/3125566?hl=en
https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
http://www.1728.org/countries.htm
https://www.iso.org/iso-3166-country-codes.html
https://github.com/championswimmer/android-locales
http://www.avajava.com/tutorials/lessons/how-do-i-use-numberformat-to-format-currencies.html
https://www.cmtelecom.com/newsroom/how-to-format-international-telephone-numbers
http://www.nationsonline.org/oneworld/international-calling-codes.htm
https://en.wikipedia.org/wiki/ISO_3166-1

6.1:	Exploring	accessibility	in	Android
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Explore	TalkBack	and	text-to-speech
Task	2.	Explore	other	settings
Solution	code
Coding	challenge
Summary
Related	concept
Learn	more

Android	apps	should	be	usable	by	everyone,	including	people	with	disabilities.

Common	disabilities	that	can	affect	a	person's	use	of	an	Android	device	include	blindness,
low	vision,	color	blindness,	deafness	or	hearing	loss,	and	restricted	motor	skills.	When	you
develop	your	apps	with	accessibility	in	mind,	you	make	the	user	experience	better	not	only
for	users	with	these	disabilities,	but	also	for	all	of	your	other	users.

In	this	lesson,	you	explore	the	features	Android	provides	on	the	device	to	enable
accessibility,	including	Google	TalkBack	(Android's	screen	reader)	and	other	options	in	the
Android	framework.

Note:	This	practical	describes	the	accessibility	features	in	Android	7	(Nougat).	Your	device
or	version	of	Android	may	not	have	all	these	options,	or	the	options	may	have	different
names.

What	you	should	already	KNOW
You	should	be	familiar	with:

How	to	navigate	an	Android	device.

What	you	will	LEARN
You	will	learn	how	to:

Introduction

243

Turn	on	TalkBack	and	navigate	the	Google	user	interface	with	TalkBack	enabled.
Enable	other	accessibility	settings	to	customize	your	device.

What	you	will	DO
Experiment	with	the	various	accessibility	settings	on	an	Android	device.

App	overview
For	this	lesson	you	use	the	built-in	Android	settings	and	apps.	You	do	not	build	an	app.

Task	1.	Explore	TalkBack	and	text-to-speech
TalkBack	is	Android's	built-in	screen	reader.	With	TalkBack	enabled,	the	user	can	interact
with	their	Android	device	without	seeing	the	screen,	because	Android	describes	screen
elements	aloud.	Users	with	visual	impairments	might	rely	on	TalkBack	to	use	your	app.

In	this	task,	you	enable	TalkBack	to	understand	how	screen	readers	work	and	how	to
navigate	apps.

Note:	By	default,	TalkBack	is	unavailable	in	the	Android	emulator	and	in	some	older	devices.
The	source	for	the	TalkBack	feature	is	available	on	GitHub.	To	test	TalkBack	on	the	emulator
or	on	a	device	without	TalkBack,	download	and	build	the	source.

1.1	Turn	on	TalkBack

1.	 On	an	Android	device	or	emulator,	navigate	to	Settings	>	Accessibility	>	TalkBack.
2.	 Tap	the	On/Off	toggle	button	to	turn	on	TalkBack.
3.	 Tap	OK	to	confirm	permissions.
4.	 Confirm	your	device	password,	if	asked.

If	this	is	the	first	time	you've	run	TalkBack,	a	tutorial	launches.	(The	tutorial	may	not	be
available	on	older	devices.)	Use	the	tutorial	to	learn	about:

Explore	by	touch:	TalkBack	identifies	every	item	you	touch	on	the	screen.	You	can
touch	items	individually	or	move	your	finger	over	the	screen.	Swipe	left	or	right	to
explore	the	items	in	tab	(focus)	order.	The	currently	selected	item	has	a	green
border	around	the	view.	To	activate	the	selected	item	(the	last	item	heard),	double-
tap	it.
Scrolling.	Lists	can	be	scrolled	with	a	two	finger	scroll,	or	you	can	jump	forward	or

Introduction

244

https://github.com/google/talkback

back	in	a	list	with	a	side-by-side	swipe.
Finding	global	and	local	TalkBack	menus.
Setting	the	text	navigation	rate:	Swipe	up	or	down	as	TalkBack	reads	text	to	you	a
character,	word,	line,	or	paragraph	at	a	time.
Activating		EditText		views	and	entering	text.

It	may	be	helpful	to	navigate	the	tutorial	with	your	eyes	closed.	To	open	the	tutorial
again	in	the	future,	navigate	to	Settings	>	Accessibility	>	TalkBack	>	Settings	>
Launch	TalkBack	tutorial.

1.2	Explore	apps	with	TalkBack

With	TalkBack	enabled,	explore	the	Camera	and	Calculator	apps	with	these	steps:

1.	 Tap	the	Home	button,	then	double-tap	the	button	to	activate	it	and	return	to	the	Home
screen.

2.	 Tap	the	Camera	icon,	then	double-tap	to	activate	it.
3.	 Explore	the	various	buttons	and	options	in	the	Camera	app.	TalkBack	identifies	each

button	and	control	by	its	function	(for	example,	"Shutter	Button"	or	"Zoom	Out"	button),
not	by	its	appearance	("plus	button").

4.	 Tap	the	Home	button,	then	double-tap	the	button	to	activate	it	and	return	to	the	Home
screen.

5.	 Navigate	to	the	Apps	screen	and	activate	the	Calculator	app.
6.	 Swipe	right	with	one	finger	to	navigate	the	views	on	the	screen.	Navigation	in	the	app	is

not	strictly	left-to-right	and	top-to-bottom.	All	the	numbers	in	the	leftmost	panel	are
identified	before	all	the	operations	in	the	middle	panel.

7.	 Keep	swiping	right	to	navigate	to	the	advanced	options	screen,	which	is	a	panel	in
green	that	moves	out	from	the	right.	Swipe	left	and	double-tap	to	activate	the	main	view
and	close	the	advanced	operations.	Note	how	these	panel	views	do	not	have	visible
labels,	but	are	identified	by	purpose	in	TalkBack.

8.	 Perform	the	calculation	3	times	5.	TalkBack	reads	the	numbers,	the	operation	as	the
numbers	are	multiplied,	and	the	result.

9.	 Navigate	back	to	Settings	>	Accessibility	>	TalkBack,	and	turn	off	TalkBack.	TIP:
	To	scroll	in	TalkBack,	use	a	two-finger	swipe	gesture.

1.3	Other	speech	settings

TalkBack	is	the	most	comprehensive	of	Android's	screen	reader	functions.	Besides
TalkBack,	Android	provides	other	features	for	on-demand	screen	reading.

1.	 Navigate	to	Settings	>	Accessibility	>	Select	to	Speak.	If	you	don't	see	Select	to
Speak,	go	to	Google	Play	to	download	the	latest	version	of	TalkBack.

Introduction

245

https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback&hl=en

2.	 Tap	the	On/Off	toggle	button.
3.	 Tap	OK	to	confirm	permissions.
4.	 Confirm	your	device	password,	if	asked.

A	speech	button	appears	in	the	lower	right	corner	of	the	screen.	Select	to	Speak	works
similarly	to	TalkBack,	but	Select	to	Speak	works	only	on	user-selected	parts	of	the
screen,	and	only	by	request.

5.	 Tap	the	speech	button,	then	tap	to	select	a	portion	of	the	text	on	the	screen.	Android
reads	that	text	to	you.

6.	 Tap	the	Back	button	to	return	to	the	main	Accessibility	settings	page.
7.	 Tap	the	speech	button,	then	select	a	portion	of	the	screen.	Android	reads	all	the	text	in

the	selection.
8.	 Tap	Select	to	Speak.	Turn	the	toggle	button	off.
9.	 Tap	the	Back	button,	then	scroll	down	and	tap	Accessibility	shortcut.

This	option	lets	you	use	the	device	buttons	to	enable	TalkBack	by	holding	down	the
power	button	and	then	touching	and	holding	two	fingers	on	the	screen.	To	disable
TalkBack	again,	you	must	go	to	Settings	>	Accessibility	and	turn	it	off	manually.

10.	 Tap	the	Back	button,	then	scroll	down	to	Text-to-Speech	output.	Tap	that	item.

The	Google	text-to-speech	engine	is	used	for	TalkBack	and	other	text-to-speech
functions	in	apps	that	support	speech-to-text.	On	this	screen	you	can	configure	the
settings	for	speech	rate	and	pitch.	You	can	also	configure	the	speech	language,	change
the	language,	and	install	new	language	packs.	(To	see	all	the	options,	tap	the	gear	icon
on	the	Text-to-Speech	output	screen.)

Task	2.	Explore	other	settings
TalkBack,	Select	to	Speak,	and	the	text-to-speech	engine	are	helpful	for	users	with	visual
impairments.	Android	provides	several	other	accessibility	features.	In	this	task,	you	explore
some	of	these	other	options.

2.1	Explore	magnification,	font,	and	display

1.	 On	an	Android	device	or	emulator,	navigate	to	Settings	>	Accessibility	>
Magnification	gesture.

2.	 Tap	the	On/Off	toggle	button.

Introduction

246

To	use	the	magnification	gesture,	tap	three	times	on	the	screen.	Android	zooms	into	the
spot	where	you	tapped,	providing	a	magnified	view.	Tap	again	three	times	to	exit
magnification	mode.

3.	 Tap	the	Back	button	to	return	to	the	accessibility	settings.

4.	 Tap	Font	size.	Move	the	slider	all	the	way	to	the	right	to	increase	the	font	size	to	the
largest	setting.	The	preview	at	the	top	of	the	screen	shows	text	at	the	chosen	size.

A	larger	font	size	can	make	apps	easier	to	read.	A	larger	font	size	may	cause	app
elements	to	also	be	larger	or	to	wrap	in	unexpected	ways.

Note:	These	font-size	changes	only	affect	apps	that	use	the	Android	font	system.	In
particular,	the	enlarged	font	size	does	not	apply	to	the	Chrome	web	browser.	To	enlarge
the	font	for	web	pages,	use	Chrome	>	Options	menu	>	Settings	>	Accessibility	>
Text	scaling.

5.	 Return	to	the	Home	screen	and	examine	the	effect	of	the	larger	font	in	several	apps.	Try
messages,	email,	calendar,	or	any	of	the	apps	you've	created	in	this	course.	Note	that
apps	that	use	their	own	internal	fonts,	such	as	some	games,	may	not	enlarge	with	this
setting.

6.	 Navigate	back	to	Settings	>	Accessibility	>	Font	size	and	return	the	font	size	to	the
default.

7.	 Tap	the	Back	button,	select	Display	size,	and	move	the	slider	all	the	way	to	the	right.

Enlarging	the	display	size	makes	all	elements	on	the	screen	larger,	including	the	text.
Fewer	elements	fit	on	the	screen.	Enlarging	the	display	size	can	make	apps	easier	to
read,	and	it	also	makes	buttons	and	other	interactive	elements	easier	to	tap.

8.	 Return	the	slider	in	the	Display	size	settings	to	the	default	position.

2.2	Explore	color	and	contrast

1.	 Tap	Settings	>	Accessibility	>	High	contrast	text.

High	contrast	text	fixes	the	display	text	to	be	either	black	or	white,	depending	on	the
background,	and	outlines	the	text	to	emphasize	it.	High	contrast	text	can	make	text
easier	to	read.

Note:	High	contrast	text	is	an	experimental	feature	and	may	not	work	in	all	apps.
2.	 Return	to	the	Home	screen.	See	how	text	appears	in	messages,	email,	calendar,	or	any

of	the	apps	you've	created	in	this	course.

3.	 Return	to	Settings	>	Accessibility	and	turn	High	contrast	text	off	again.
4.	 Scroll	down	to	Color	inversion	and	tap	to	turn	it	on.

Introduction

247

Color	inversion	reverses	the	colors	on	your	screen.	For	example,	black	text	on	a	white
screen	becomes	white	text	on	a	black	screen.	Color	inversion	can	make	some	text
easier	to	read	and	reduce	eye	strain.

5.	 Return	to	the	Home	screen	and	try	some	apps	with	inverted	colors.

6.	 Swipe	from	the	top	of	the	screen	to	open	the	navigation	drawer.	Click	the	down	arrow	to
open	the	quick	settings.

7.	 Tap	Invert	colors	to	disable	color	inversion.
8.	 Navigate	to	Settings	>	Accessibility	>	Color	Correction.

Color	correction	changes	the	system	colors	to	help	users	with	various	forms	of	color
blindness	distinguish	screen	elements.

9.	 Tap	the	On/Off	toggle	button.

10.	 Navigate	to	the	Home	screen	and	note	the	differences	in	system	colors.
11.	 Return	to	the	Color	Correction	setting	and	tap	to	turn	it	off.

High	contrast	text,	Color	inversion,	and	Color	correction	are	experimental	features	in
Android.	The	features	may	not	work	in	all	apps	and	may	affect	app	performance.

In	the	next	practical,	you	learn	how	to	support	accessibility	features	in	your	own	apps.

Solution	code
No	project	for	this	practical.

Coding	challenge
Note:	All	coding	challenges	are	optional.
Challenge:	Download	and	build	the	RecyclerView	app,	if	you	have	not	already	done	so.	Run
the	RecyclerView	app	with	TalkBack	enabled,	and	note	where	you	could	improve	the	label
text	and	feedback.

Summary
An	accessible	app	works	well	for	all	users,	including	users	with	low	vision,	blindness,
deafness	or	hearing	loss,	cognitive	impairments,	or	motor	impairments.
On	an	Android	device,	all	accessibility	features	are	available	under	Settings	>
Accessibility.

Introduction

248

https://github.com/google-developer-training/android-fundamentals/tree/master/RecyclerView

With	TalkBack	enabled,	users	can	interact	with	their	Android	device	without	seeing	the
screen,	because	Android	describes	various	screen	elements	aloud.	Users	with	visual
impairments	may	rely	on	TalkBack	when	they	use	your	app.
The	TalkBack	"explore	by	touch"	feature	identifies	the	element	under	a	user's	finger.
In	TalkBack,	swiping	left	or	right	identifies	the	next	element	to	the	user.	Which	element
is	next	depends	on	the	focus	order,	which	is	generally	from	left	to	right	and	top	to
bottom.	If	you	don't	want	the	default,	you	can	define	focus	order	for	elements.
Select	To	Speak	works	similarly	to	TalkBack,	but	only	by	request,	and	only	for	specific
parts	of	the	screen.	To	identify	those	parts	of	the	screen,	click	the	Speech	button.	Then
tap	or	drag	a	selection	on	the	screen.
The	Accessibility	shortcut	enables	the	user	to	turn	on	TalkBack	quickly,	without	needing
to	navigate	to	the	settings	pages.
The	Text-to-speech	output	settings	provide	options	for	the	Google	text-to-speech
engine,	which	TalkBack	uses.
Magnification	gestures	enable	the	user	to	magnify	portions	of	the	screen	by	tapping
three	times.
Font	and	display-size	settings	can	be	used	to	enlarge	the	default	system	text	or	all	app
elements.
The	high-contrast-text	setting	fixes	the	display	text	to	be	either	black	or	white,
depending	on	the	background,	and	outlines	the	text	to	emphasize	it.
The	color-inversion	setting	reverses	the	colors	on	your	screen.
The	color-correction	setting	changes	the	system	colors	to	help	users	with	various	forms
of	color	blindness	distinguish	screen	elements.

Related	concept
The	related	concept	documentation	is	in	Accessibility.

Learn	more
Android	support	documentation:

Android	accessibility	overview	-	Android	Accessibility	Help
Get	started	on	Android	with	TalkBack	-	Android	Accessibility	Help
Select	to	Speak
Magnification	gestures
Font	size	and	display	size
High	contrast	text
Accessibility	shortcut

Introduction

249

https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-3-make-your-apps-accessible/lesson-6-accessibility/6-1-c-accessibility/6-1-c-accessibility.html
https://support.google.com/accessibility/android/answer/6006564
https://support.google.com/accessibility/android/answer/6283677?hl=en&ref_topic=3529932
https://support.google.com/accessibility/android/answer/7349565?hl=en&ref_topic=6004781
https://support.google.com/accessibility/android/answer/6006949?hl=en&ref_topic=6004781
https://support.google.com/accessibility/android/answer/6006972?hl=en
https://support.google.com/accessibility/android/answer/6151855?hl=en&ref_topic=6004781
https://support.google.com/accessibility/android/answer/6006966?hl=en&ref_topic=6004781

Text-to-speech	output
Color	inversion
Color	correction

Other:

An	Introduction	to	Android	Accessibility	Features	-	SitePoint
What's	New	in	Android	Accessibility	(Google	I/O	'17)

Introduction

250

https://support.google.com/accessibility/android/answer/6006983?hl=en&ref_topic=6004781
https://support.google.com/accessibility/android/answer/6151800?hl=en&ref_topic=6004781
https://support.google.com/accessibility/android/answer/6151850?hl=en&ref_topic=6004781
https://www.sitepoint.com/introduction-android-accessibility-features/
https://www.youtube.com/watch?v=h5rRNXzy1xo

6.2:	Creating	accessible	apps
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Download	and	open	the	project
Task	2.	Add	accessibility
Task	3.	Add	an	EditText	view	with	a	label
Solution	code
Coding	challenge
Summary
Related	concept
Learn	more

Accessibility	is	a	set	of	design,	implementation,	and	testing	techniques	that	enable	your	app
to	be	usable	by	everyone,	including	people	with	disabilities.

Common	disabilities	that	can	affect	a	person's	use	of	an	Android	device	include	blindness,
low	vision,	color	blindness,	deafness	or	hearing	loss,	and	restricted	motor	skills.	When	you
develop	your	apps	with	accessibility	in	mind,	you	make	the	user	experience	better	not	only
for	users	with	these	disabilities,	but	also	for	all	of	your	other	users.

Accessibility	usually	does	not	require	a	full	overhaul	of	your	app's	design	or	code.
Accessibility	does	require	you	to	pay	attention	to	details	and	test	your	app	under	the	same
conditions	your	users	may	encounter.

Android	includes	several	accessibility-related	features,	to	help	you	optimize	your	app's	user
interface	(UI)	for	accessibility.	In	this	lesson,	you	learn	how	to	test	your	app	and	add	features
that	enhance	its	accessibility.

What	you	should	already	KNOW
You	should	be	familiar	with:

Creating,	building,	and	running	apps	in	Android	Studio.
Creating	views	and	layouts	in	both	Android	Studio's	design	editor	and	XML.

Introduction

251

What	you	will	LEARN
You	will	learn	how	to:

Test	your	app	for	accessibility	in	a	variety	of	ways.
Add	attributes	to	your	XML	layouts	that	assist	with	making	your	app	more	accessible	for
your	users.

What	you	will	DO
Download	and	run	a	starter	app.
Test	the	app	with	Google	TalkBack	(Android's	screen	reader)	to	identify	possible
accessibility	issues.	TalkBack	gives	spoken	feedback	so	that	you	can	use	your	device
without	looking	at	the	screen.
Run	Android	Studio's	code	inspector	to	identify	missing	accessibility-related	attributes.
Update	the	app	to	resolve	the	accessibility	issues	revealed	in	testing.

App	overview
The	SimpleAccessibility	app	demonstrates	how	to	add	accessible	features	to	your	app's	UI.

The	app,	when	complete,	looks	like	this:	

Introduction

252

https://support.google.com/accessibility/android/answer/6283677?hl=en

None	of	the	views	have	click	handlers,	so	the	app	does	not	have	any	actual	functionality.
The	focus	for	this	app	(and	this	lesson)	is	in	the	layout	XML	code	and	in	the	attributes	that
enable	accessibility.

Task	1.	Download	and	open	the	project
In	this	task,	you	run	the	starter	app	for	SimpleAccessibility	and	explore	it	in	TalkBack.

1.1	Download	and	open	the	sample	app

1.	 Download	the	SimpleAccessibility-start	app	and	unzip	the	file.
2.	 Open	the	app	in	Android	Studio.
3.	 Open		res/layout/activity_main.xml	.

The	SimpleAccessibility	app	contains	a	number	of	views	in	a	layout,	including	buttons
(Button		and		ImageButton		views),	checkboxes,	and	an	image.	All	the	accessibility
functions	you	learn	about	in	this	practical	are	implemented	in	the	layout.	

1.2	Test	the	app	with	TalkBack

TalkBack	is	Android's	built-in	screen	reader.	When	TalkBack	is	on,	the	user	can	interact	with
their	Android	device	without	seeing	the	screen.	Users	with	visual	impairments	may	rely	on
TalkBack	to	use	your	app.	In	this	task,	you	manually	explore	the	app	with	TalkBack	enabled,
to	expose	possible	accessibility	problems.

Introduction

253

https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/SimpleAccessibility_start
https://developer.android.com/reference/android/widget/Button.html
https://developer.android.com/reference/android/widget/ImageButton.html

Note:	By	default,	TalkBack	is	unavailable	in	the	Android	emulator	and	in	some	older	devices.
The	source	for	the	TalkBack	feature	is	available	on	GitHub.	To	test	TalkBack	on	the	emulator
or	on	a	device	without	TalkBack,	download	and	build	the	source.
To	test	the	app	with	TalkBack	enabled,	use	these	steps:

1.	 On	a	device,	navigate	to	Settings	>	Accessibility	>	TalkBack.
2.	 Tap	the	On/Off	toggle	button	to	turn	on	TalkBack.
3.	 Tap	OK	to	confirm	permissions.	After	TalkBack	is	on,	you	can	navigate	the	Android	UI	in

one	of	these	ways:

Tap	a	UI	element	to	hear	the	description	for	that	element.	Double-tap	to	select.
Swipe	right	or	left	to	navigate	through	the	elements	in	sequence.	Double-tap
anywhere	to	select.
Drag	your	finger	over	the	screen	to	hear	what's	under	your	finger.	Double-tap
anywhere	to	select.

4.	 Build	and	run	your	app	in	Android	Studio.

When	your	app	starts	with	TalkBack	enabled,	no	item	is	initially	focused.	TalkBack	reads
the	title	of	the	app.

5.	 Tap	each	element	or	swipe	to	hear	the	descriptions	for	the	elements	in	sequence.	Note
the	following:

The	spoken	feedback	for	the	Compose	button	is	the	button	title	itself.
The	feedback	for	the	image	button	is	"unlabelled	button."
The	feedback	for	a	checkbox	is	the	checkbox	label	and	the	current	state	of	the
checkbox	(selected	or	cleared.)
No	feedback	is	available	for	the	partly	cloudy	image.	The	image	is	not	even	a
focusable	element.

6.	 Swipe	from	left	to	right	to	navigate	between	focusable	elements	on	the	screen.	Note
that	the	focus	moves	from	top	to	bottom.	The	partly	cloudy	image	is	not	focusable.

Task	2.	Add	accessibility
Experimenting	with	TalkBack	and	the	starter	app	in	the	previous	task	exposed	problems	in
how	the	app's	views	are	identified	for	vision-impaired	users.	In	this	task,	you	fix	some	of
these	problems.

2.1	Inspect	and	fix	the	code	in	Android	Studio

Introduction

254

https://github.com/google/talkback

Android	Studio	highlights	places	in	your	XML	layout	code	that	have	potential	accessibility
problems,	and	makes	suggestions	for	fixing	those	problems.	For	accessibility,	Android
Studio	checks	two	things:

Missing	content	descriptions	on		ImageView		and		ImageButton		objects.	Because	these
views	do	not	have	text	associated	with	them,	the	TalkBack	screen	reader	can't	describe
them	without	an	explicit	description.
Missing	label	indicators	(API	17	or	higher).	Text	views	are	often	used	as	labels	for	some
other	view	in	the	layout,	for	example,	as	a	label	to	indicate	the	content	for	an		EditText	.
A	label	indicator	specifies	the	other	view	that	this	view	is	a	label	for.

To	inspect	and	fix	your	code	for	accessibility,	use	these	steps:

1.	 In	Android	Studio,	open	the		res/layout/activity_main.xml		file,	if	it's	not	already	open.
Switch	to	the	Text	tab.

2.	 Note	that	the		ImageButton		and		ImageView		elements	have	yellow	highlights	on	them.
When	you	hover	over	the	elements,	the	message	reads,	"Missing	contentDescription
attribute	on	image."

3.	 Add	an		android:contentDescription		attribute	to	the		ImageButton		view,	with	the	value
"Discard."	Extract	this	string	into	a	resource.

4.	 Add	an		android:contentDescription		attribute	to	the		ImageView	,	with	the	value	"Partly
Cloudy."	Extract	this	string	into	a	resource.

5.	 Build	and	run	your	app.
6.	 Navigate	your	app	with	TalkBack	turned	on.	The	trash-can	button	now	has	a	reasonable

description,	but	you	still	can't	focus	on	the	partly	cloudy	image.

2.2	Add	focus	to	views

In	addition	to	readable	descriptions,	make	sure	that	users	can	navigate	your	screen	layouts
using	hardware	or	software-based	directional	controls	such	as	D-pads,	trackballs,
keyboards,	or	on-screen	gestures.

Most	views	are	focusable	by	default,	and	the	focus	moves	from	view	to	view	in	your	layout.
The	Android	platform	tries	to	figure	out	the	most	logical	focus	order	based	on	each	view's
closest	neighbor.	Generally,	views	are	focussed	from	left	to	right	and	top	to	bottom.	In	some
cases,	you	want	to	make	your	views	explicitly	focusable	or	change	the	focus	order	to	reflect
how	the	user	uses	your	app.

In	the	case	of	the	SimpleAccessibility	app,	the	partly	cloudy	image	is	not	focusable,	even
with	a	content	description	added.	Assuming	that	the	partly	cloudy	image	is	there	to	show	the
current	weather,	you	must	add	a	focusable	attribute	to	that	image	so	that	TalkBack	can	read
the	content	description.

Introduction

255

To	make	the	partly	cloudy	image	focusable,	use	these	steps:

1.	 Find	the	partly	cloudy		ImageView		element	in	the	XML	layout.
2.	 Add	the		android:focusable		attribute	to	the		ImageView	:

	android:focusable="true"

3.	 Build	and	run	the	app.	With	TalkBack	enabled,	navigate	to	the	partly	cloudy	image.
TalkBack	reads	the	image's	content	description.

Note:	In	addition	to	making	an	item	focusable,	you	can	add	focus-related	attributes	to
the	views	in	your	app.	The	attributes	include		nextFocusUp	,		nextFocusDown	,
	nextFocusLeft	,		nextFocusRight	,	and		nextFocusForward	.	See	Supporting	Keyboard
Navigation	for	more	information	on	how	to	navigate	using	input	focus.

Task	3.	Add	an	EditText	view	with	a	label
In	this	task,	you	add	an		EditText		view	and	an	associated	label	(a		TextView).		EditText	
views	and		TextView		labels	are	a	special	case	for	handling	accessibility	in	your	app.

3.1	Add	views	and	test	the	app	in	TalkBack

1.	 Add	a		TextView		to	the	app's	layout	below	the		ImageView	.	Give	it	the		android:text	
attribute	of		"Message."		Extract	that	string	into	a	resource.

2.	 Add	an		EditText		just	below	the		TextView	.	Give	it	an	ID	of		@+id/edittext_message	,
and	the		android:		hint		attribute		"Enter	your	message."		Extract	that	string	into	a
resource.

3.	 Build	and	run	the	app	and	navigate	to	the	new	views.	Experiment	with	entering	text	in
TalkBack.

Note	these	things:

For	text	views,	TalkBack	reads	the	text	that's	in	the		android:text		attribute.	Here,	the
text	is	"Message."	You	do	not	need	content	descriptions	for	text	views.
For		EditText		views,	TalkBack	reads	the	text	that's	in	the		android:hint		attribute.	Here,
the	text	is	"Enter	your	message."	If		android:hint		does	not	exist,	TalkBack	reads	the
text	that's	in		android:text		instead.

In		EditText		views,	it's	better	to	use		android:hint		rather	than		android:text		for	the
default	text.

When	the	app	starts,	the	first		EditText		has	the	initial	focus.

Introduction

256

https://developer.android.com/reference/android/view/View.html#attr_android:nextFocusUp
https://developer.android.com/reference/android/view/View.html#attr_android:nextFocusDown
https://developer.android.com/reference/android/view/View.html#attr_android:nextFocusLeft
https://developer.android.com/reference/android/view/View.html#attr_android:nextFocusRight
https://developer.android.com/reference/android/view/View.html#attr_android:nextFocusForward
https://developer.android.com/training/keyboard-input/navigation.html
https://developer.android.com/reference/android/R.attr.html#hint

TIP:	In	TalkBack,	you	can	move	the	cursor	in	an		EditText		view	with	the	device's	volume	up
and	volume	down	buttons.

3.2	Add	explicit	labels	for	EditText	views	(API	17	and
higher)

If	you	target	your	app	to	Android	4.2	(API	level	17)	or	higher,	use	the		android:labelFor	
attribute	when	labeling	views	that	serve	as	content	labels	for	other	views.	For	readable
descriptions,	TalkBack	prefers	explicit	labels	(using		android:labelFor)	over	attributes	such
as		android:text		or		android:hint	.

Explicit	labels	are	only	available	in	API	17	or	higher,	and	Android	Studio	can	highlight
missing	labels	for		EditText		views	as	part	of	code	inspection.	The	SimpleAccessibility	app
uses	the	default	minimum	SDK	of	15.	In	this	task,	you	change	the	API	level	to	enable	explicit
labels.	Then	you	add	the	appropriate	label	attribute.

1.	 Open	the		build.gradle	(Module:	app)		file	and	change		minSdkVersion		from		15		to		17	.
2.	 Click	Sync	Now	to	rebuild	the	project.
3.	 In	the		activity_main.xml		layout	file,	delete	the		android:hint		attribute	from	the

	EditText	.

The		EditText		element	is	now	highlighted	in	yellow.	When	you	hover	over	the	element,
the	message	reads,	"No	label	views	point	to	this	text	field	with	an
android:labelFor="@+id/edittext_message"	attribute."

4.	 Add	the		android:labelFor		attribute	to	the		TextView		that	serves	as	a	label	for	this
	EditText	:

	android:labelFor="@+id/edittext_message"

The	highlight	on	the		EditText		disappears.

5.	 Build	and	run	the	app.	TalkBack	now	reads	the	contents	of	the	label	to	identify	the
	EditText	.

Solution	code
Android	Studio	project:	SimpleAccessibility

Coding	challenge

Introduction

257

https://developer.android.com/reference/android/R.attr.html#labelFor
https://github.com/google-developer-training/android-advanced/tree/master/SimpleAccessibility

Note:	All	coding	challenges	are	optional.
Challenge:	If	the	content	of	a	view	changes	programmatically	as	the	app	runs,	you	need	to
update	the	content	descriptions	to	reflect	the	new	state.

Modify	the	SimpleAccessibility	app	to	include	a	click	handler	for	the	Discard	(trash	can)
button.	When	the	button	is	clicked,	toggle	between	two	images:	the	default	trash	can
and	a	lock	icon.	(You	can	use		@android:drawable/ic_lock_lock		for	the	lock	icon.)
Use	the		setContentDescription()		method	to	change	the	content	description	when	the
button	image	changes.
Test	the	app	in	TalkBack.	Verify	that	the	correct	content	description	appears	for	each
image.

Hints:

Get	an	image	drawable	from	the	resources:

Drawable	img	=	ContextCompat.getDrawable(this,	R.drawable.my_drawable);

Get	a	string	from	the	resources:

String	str	=	getResources().getString(R.string.my_string);

Compare	two	drawables:

if	(drawable1.getConstantState()	==	drawable2.getConstantState())	{

			...	

}

Summary
Adding	accessibility	to	your	app	does	not	require	significant	code	changes.	You	can	add
many	accessibility	features	to	an	existing	app	through	attributes	in	the	XML	layout.	Use
Android's	TalkBack	feature	to	test	your	app	for	users	with	low	vision.
Android	Studio	can	highlight	missing	accessibility	attributes	(content	descriptions	and
labels)	in	your	app's	layout.
To	provide	readable	descriptions	of	buttons,	add		android:contentDescription		attributes
to		ImageView		and		ImageButton		elements.
To	provide	the	ability	to	navigate	your	app's	UI,	use	focus	and	focus	order.
Add		android:focusable		attributes	to		ImageView		views	that	are	not	by	default	focusable.
You	don't	need	to	add	content	descriptions	or	focus	to	decorative	images.
For		EditText		views,	use		android:hint		instead	of		android:contentDescription	.

Introduction

258

https://developer.android.com/reference/android/view/View.html#setContentDescription(java.lang.CharSequence)

If	your	app	supports	API	17	or	higher,	use	the		android:labelFor		attribute	to	indicate
that	a	view	is	a	label	for	some	other	view.

Related	concept
The	related	concept	documentation	is	in	Accessibility.

Learn	more
Android	support	documentation:

Android	accessibility	overview	-	Android	Accessibility	Help
Get	started	on	Android	with	TalkBack	-	Android	Accessibility	Help
Editable	View	labels	-	Android	Accessibility	Help
Content	labels	-	Android	Accessibility	Help

Android	developer	documentation:

Accessibility	Overview
Making	Apps	More	Accessible
Accessibility	Developer	Checklist
Building	Accessible	Custom	Views
Developing	Accessible	Applications
Designing	Effective	Navigation
Testing	Your	App's	Accessibility
Developing	an	Accessibility	Service

Material	Design:	Usability	-	Accessibility

Videos:

GTAC	2015:	Automated	Accessibility	Testing	for	Android	Applications
Google	I/O	2015	-	Improve	your	Android	app's	accessibility

Other:

Accessibility	Testing	on	Android
An	Introduction	to	Android	Accessibility	Features	-	SitePoint
Having	Trouble	Focusing?	A	Primer	on	Focus	in	Android

Introduction

259

https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-3-make-your-apps-accessible/lesson-6-accessibility/6-1-c-accessibility/6-1-c-accessibility.html
https://support.google.com/accessibility/android/answer/6006564
https://support.google.com/accessibility/android/answer/6283677?hl=en&ref_topic=3529932
https://support.google.com/accessibility/android/answer/6378120?hl=en
https://support.google.com/accessibility/android/answer/7158690
https://developer.android.com/guide/topics/ui/accessibility/index.html
https://developer.android.com/guide/topics/ui/accessibility/apps.html
https://developer.android.com/guide/topics/ui/accessibility/checklist.html
https://developer.android.com/guide/topics/ui/accessibility/custom-views.html
https://developer.android.com/training/accessibility/accessible-app.html
https://developer.android.com/training/design-navigation/index.html
https://developer.android.com/training/accessibility/testing.html
https://developer.android.com/training/accessibility/service.html
https://material.io/guidelines/usability/accessibility.html
https://www.youtube.com/watch?v=vvwc8MVlusY
https://www.youtube.com/watch?v=euEsfNR5Zw4&t=142s
https://robots.thoughtbot.com/accessibility-testing-on-android
https://www.sitepoint.com/introduction-android-accessibility-features/
https://www.novoda.com/blog/do-you-even-focus-bro/

7.1:	Using	the	device	location
Contents:

Introduction
What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Set	up	location	services
Task	2.	Get	the	last	known	location
Task	3.	Get	the	location	as	an	address
Task	4.	Receive	location	updates
Solution	code
Coding	challenge
Summary
Related	concept
Learn	more

Users	are	constantly	moving	around	in	the	world,	usually	with	their	phones	in	their	pockets.
Advances	in	GPS	and	network	technologies	have	made	it	possible	to	create	Android	apps
with	precise	location	awareness,	using	the	location	services	APIs	included	in	Google	Play
services.

When	an	app	requests	the	device	location,	it	impacts	network	and	battery	consumption,
which	impacts	device	performance.	To	improve	the	performance	of	your	app,	keep	the
frequency	of	location	requests	as	low	as	possible.

In	this	practical,	you	learn	how	to	access	the	device's	last	known	location.	You	also	learn
how	to	convert	a	set	of	geographic	coordinates	(longitude	and	latitude)	into	a	street	address,
and	how	to	perform	periodic	location	updates.

What	you	should	already	KNOW
You	should	be	familiar	with:

Creating,	building,	and	running	apps	in	Android	Studio.
The		Activity		lifecycle.
Making	data	persistent	across	configuration	changes.
Requesting	permissions	at	runtime.

Introduction

260

Using	an		AsyncTask		to	do	background	work.

What	you	will	LEARN
You	will	learn	how	to:

Get	the	last	known	location	of	the	device.
Obtain	a	physical	address	from	a	set	of	coordinates	(reverse	geocoding).
Perform	periodic	location	updates.

What	you	will	DO
Create	the	WalkMyAndroid	app	and	have	it	display	the	device's	last	known	location	as
latitude	and	longitude	coordinates.
Reverse	geocode	the	latitude	and	longitude	coordinates	into	a	physical	address.
Extend	the	app	to	receive	periodic	location	updates.

App	overview
The	WalkMyAndroid	app	prompts	the	user	to	change	the	device	location	settings,	if
necessary,	to	allow	the	app	to	access	precise	location	data.	The	app	shows	the	device
location	as	latitude	and	longitude	coordinates,	then	shows	the	location	as	a	physical
address.	The	completed	app	does	periodic	location	updates	and	shows	an	animation	that
gives	the	user	a	visual	cue	that	the	app	is	tracking	the	device's	location.

You	create	the	WalkMyAndroid	app	in	phases:

In	tasks	1	and	2,	you	implement	a	button	that	gets	the	most	recent	location	for	the
device	and	displays	the	coordinates	and	timestamp	of	the	location	in	a		TextView	.
In	task	3,	you	turn	the	coordinates	into	a	physical	address,	through	a	process	called
reverse	geocoding	.
In	task	4,	you	learn	how	to	trigger	periodic	updates	of	the	location.

Introduction

261

Task	1.	Set	up	location	services
Obtaining	the	location	information	for	a	device	can	be	complicated:	Devices	contain	different
types	of	GPS	hardware,	and	a	satellite	or	network	connection	(cell	or	Wi-Fi)	is	not	always
available.	Activating	GPS	and	other	hardware	components	uses	power.	(For	more
information	about	GPS	and	power	use,	see	the	chapter	on	performance.)

To	find	the	device	location	efficiently	without	worrying	about	which	provider	or	network	type
to	use,	use	the		FusedLocationProviderClient		interface.	Before	you	can	use
	FusedLocationProviderClient	,	you	need	to	set	up	Google	Play	services.	In	this	task,	you
download	the	starter	code	and	include	the	required	dependencies.

1.1	Download	the	starter	app

1.	 Download	the	starter	app	for	this	practical,	WalkMyAndroid-Starter.
2.	 Open	the	starter	app	in	Android	Studio,	rename	the	app	to	WalkMyAndroid,	and	run	it.
3.	 You	might	need	to	update	your	Android	SDK	Build-Tools.	To	do	this,	use	the	Android

SDK	Manager.

The	UI	has	a	Get	Location	button,	but	tapping	it	doesn't	do	anything	yet.

1.2	Set	up	Google	Play	services

Install	the	Google	Repository	and	update	the	Android	SDK	Manager:

Introduction

262

https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/WalkMyAndroid-Starter
https://developer.android.com/studio/intro/update.html#sdk-manager

1.	 Open	Android	Studio.
2.	 Select	Tools	>	Android	>	SDK	Manager.
3.	 Select	the	SDK	Tools	tab.
4.	 Expand	Support	Repository,	select	Google	Repository,	and	click	OK.

Now	you	can	include	Google	Play	services	packages	in	your	app.

To	add	Google	Play	services	to	your	project,	add	the	following	line	of	code	to	the
	dependencies		section	in	your	app-level		build.gradle	(Module:	app)		file:

compile	'com.google.android.gms:play-services-location:XX.X.X'

Replace		XX.X.X		with	the	latest	version	number	for	Google	Play	services,	for	example
	11.0.2	.	Android	Studio	will	let	you	know	if	you	need	to	update	it.	For	more	information	and
the	latest	version	number,	see	Add	Google	Play	Services	to	Your	Project.

Note:	If	your	app	references	more	than	65K	methods,	the	app	may	fail	to	compile.	To
mitigate	this	problem,	compile	your	app	using	only	the	Google	Play	services	APIs	that	your
app	uses.	To	learn	how	to	selectively	compile	APIs	into	your	executable,	see	Set	Up	Google
Play	Services	in	the	developer	documentation.	To	learn	how	to	enable	an	app	configuration
known	as	multidex	,	see	Configure	Apps	with	Over	64K	Methods.
Now	that	Google	Play	services	is	installed,	you're	ready	to	connect	to	the		LocationServices	
API.

Task	2.	Get	the	last	known	location
The		LocationServices		API	uses	a	fused	location	provider	to	manage	the	underlying
technology	and	provides	a	straightforward	API	so	that	you	can	specify	requirements	at	a
high	level,	like	high	accuracy	or	low	power.	It	also	optimizes	the	device's	use	of	battery
power.	In	this	step,	you	will	use	it	to	obtain	the	device's	last	known	location.

2.1	Set	location	permission	in	the	manifest

Using	the		Location		API	requires	permission	from	the	user.	Android	offers	two	location
permissions:

	ACCESS_COARSE_LOCATION	

	ACCESS_FINE_LOCATION	

The	permission	you	choose	determines	the	accuracy	of	the	location	returned	by	the	API.	For
this	lesson,	use	the		ACCESS_FINE_LOCATION		permission,	because	you	want	the	most	accurate
location	information	possible.

Introduction

263

https://developers.google.com/android/guides/setup#add_google_play_services_to_your_project
https://developers.google.com/android/guides/setup#split
https://developer.android.com/studio/build/multidex.html
https://developers.google.com/android/reference/com/google/android/gms/location/LocationServices
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_COARSE_LOCATION
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_FINE_LOCATION

1.	 Add	the	following	element	to	your	manifest	file,	above	the		<application>		element:

	<uses-permission	android:name="android.permission.ACCESS_FINE_LOCATION"/>

2.2	Request	permission	at	runtime

Starting	with	Android	6.0	(API	level	23),	it's	not	always	enough	to	include	a	permission
statement	in	the	manifest.	For	"dangerous"	permissions,	you	also	have	to	request
permission	programmatically,	at	runtime.

Dangerous	permissions	cover	areas	where	the	app	wants	data	or	resources	that	involve	the
user's	private	information,	or	could	potentially	affect	the	user's	stored	data	or	the	operation
of	other	apps.
To	request	location	permission	at	runtime:

1.	 Create	an		OnClickListener		for	the	Get	Location	button	in		onCreate()		in
	MainActivity	.

2.	 Create	a	method	stub	called		getLocation()		that	takes	no	arguments	and	doesn't	return
anything.	Invoke	the		getLocation()		method	from	the	button's		onClick()		method.

3.	 In	the		getLocation()		method,	check	for	the		ACCESS_FINE_LOCATION		permission.

If	the	permission	has	not	been	granted,	request	it.
If	the	permission	has	been	granted,	display	a	message	in	the	logs.	(The	code
below	shows	a		TAG		variable,	which	you	declare	later,	in	Task	3.1.)

For	information	on	runtime	permissions,	see	Requesting	Permissions	at	Run	Time.

	private	void	getLocation()	{

					if	(ActivityCompat.checkSelfPermission(this,

													Manifest.permission.ACCESS_FINE_LOCATION)

													!=	PackageManager.PERMISSION_GRANTED)	{

									ActivityCompat.requestPermissions(this,	new	String[]

																									{Manifest.permission.ACCESS_FINE_LOCATION},

																	REQUEST_LOCATION_PERMISSION);

					}	else	{

									Log.d(TAG,	"getLocation:	permissions	granted");

					}

	}

4.	 In	your		MainActivity		class,	define	an	integer	constant		REQUEST_LOCATION_PERMISSION.	
This	constant	is	used	to	identify	the	permission	request	when	the	results	come	back	in
the		onRequestPemissionsResult()		method.	It	can	be	any	integer	greater	than		0	.

5.	 Override	the		onRequestPermissionsResult()		method.	If	the	permission	was	granted,	call
	getLocation()	.	Otherwise,	show	a		Toast		saying	that	the	permission	was	denied.

Introduction

264

https://developer.android.com/training/permissions/requesting.html

	@Override

	public	void	onRequestPermissionsResult(int	requestCode,

		@NonNull	String[]	permissions,	@NonNull	int[]	grantResults)	{

					switch	(requestCode)	{

									case	REQUEST_LOCATION_PERMISSION:

													//	If	the	permission	is	granted,	get	the	location,

													//	otherwise,	show	a	Toast

													if	(grantResults.length	>	0

																					&&	grantResults[0]	==	PackageManager.PERMISSION_GRANTED)	{

																	getLocation();

													}	else	{

																	Toast.makeText(this,

																									R.string.location_permission_denied,

																									Toast.LENGTH_SHORT).show();

													}

													break;

					}

	}

6.	 Run	the	app.	Clicking	the	button	requests	permission	from	the	user.	If	permission	is
granted,	you	see	a	log	statement	in	the	console.

After	you	grant	permission,	subsequent	clicks	on	the	Get	Location	button	have	no
effect.	Because	you	already	granted	permission,	the	app	doesn't	need	to	ask	for
permission	again	(unless	the	user	manually	revokes	it	in	the	Settings	app),	even	if	you
close	and	restart	the	app.

2.3	Get	the	last	known	location

The		getLastLocation		()		method	doesn't	actually	make	a	location	request.	It	simply	returns
the	location	most	recently	obtained	by	the		FusedLocationProviderClient		class.

If	no	location	has	been	obtained	since	the	device	was	restarted,	the		getLastLocation()	
method	may	return		null	.	Usually,	the		getLastLocation()		method	returns	a		Location	
object	that	contains	a	timestamp	of	when	this	location	was	obtained.

To	get	the	last	known	location:

1.	 In		strings.xml	,	add	a	string	resource	called		location_text	.	Use		location_text		to
display	the	latitude,	longitude,	and	timestamp	of	the	last	known	location.

	<string	name="location_text">"Latitude:	%1$.4f	\n	Longitude:	%2$.4f	

	\n	Timestamp:	%3$tr"</string>

Note:	If	you	aren't	familiar	with	string	replacement	and	formatting,	see	Formatting	and
Styling	and	the		Formatter		documentation.

Introduction

265

https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient.html#getLastLocation()
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient.html
https://developer.android.com/reference/android/location/Location.html
https://developer.android.com/guide/topics/resources/string-resource.html#FormattingAndStyling
https://developer.android.com/reference/java/util/Formatter.html

2.	 In	your		MainActivity		class,	create	a	member	variable	of	the		Location		type	called
	mLastLocation	.

3.	 Find	the	location		TextView		by	ID	(textview_location)	in		onCreate()	.	Assign	the
	TextView		to	a	member	variable	called		mLocationTextView	.

4.	 Create	a	member	variable	of	the		FusedLocationProviderClient		type	called
	mFusedLocationClient	.

5.	 Initialize		mFusedLocationClient		in		onCreate()		with	the	following	code:

	mFusedLocationClient	=	LocationServices.getFusedLocationProviderClient(this);

The		getLastLocation()		method	returns	a		Task		that	results	in	a		Location		object	(after
the	Task's		onSuccess()		callback	method	is	called,	signifying	that	the		Task		was
successful).

Retrieve	the	latitude	and	longitude	coordinates	of	a	geographic	location	from	the
resulting		Location		object:

6.	 Replace	the	log	statement	in	the		getLocation()		method	with	the	following	code
snippet.	The	code	obtains	the	device's	most	recent	location	and	assigns	it	to
	mLastLocation	.

If	the	returned	location	is	not		null	,	set	the		TextView		to	show	the	coordinates	and
time	stamp	of	the		Location		object.
If	the	location	returned	is		null	,	the	fused	location	provider	has	not	obtained	a
location	since	the	device	was	restarted.	Display	a	message	in	the		TextView		that
says	that	the	location	is	not	available.

mFusedLocationClient.getLastLocation().addOnSuccessListener(

						new	OnSuccessListener<Location>()	{

@Override

public	void	onSuccess(Location	location)	{

		if	(location	!=	null)	{

						mLastLocation	=	location;

						mLocationTextView.setText(

														getString(R.string.location_text,

																						mLastLocation.getLatitude(),

																						mLastLocation.getLongitude(),

																						mLastLocation.getTime()));

		}	else	{

						mLocationTextView.setText(R.string.no_location);

		}

}

7.	 Run	the	app.	You	now	see	the	latest	location	that	is	stored	in	the	fused	location
provider.

Introduction

266

https://developers.google.com/android/reference/com/google/android/gms/tasks/Task
https://developers.google.com/android/reference/com/google/android/gms/tasks/OnSuccessListener.html#onSuccess(TResult)

Testing	location	on	an	emulator

If	you	test	the	WalkMyAndroid	app	on	an	emulator,	use	a	system	image	that	supports
Google	APIs	or	Google	Play:

1.	 In	Android	Studio,	create	a	new	virtual	device	and	select	hardware	for	it.
2.	 In	the	System	Image	dialog,	choose	an	image	that	says	"Google	APIs"	or	"Google

Play"	in	the	Target	column.

To	update	the	fused	location	provider	on	an	emulator:

1.	 The	emulator	appears	on	your	screen	with	a	vertical	menu	to	the	right	of	the	virtual
device.	To	access	emulator	options,	click	the	...	icon	at	the	bottom	of	this	vertical	menu.

2.	 Click	Location.
3.	 Enter	or	change	the	coordinates	in	the	Longitude	and	Latitude	fields.
4.	 Click	Send	to	update	the	fused	location	provider.

Clicking	Send	does	not	affect	the	location	returned	by		getLastLocation()	,	because
	getLastLocation()		uses	a	local	cache	that	the	emulator	tools	do	not	update.

When	you	test	the	app	on	an	emulator,	the		getLastLocation()		method	might	return		null	,
because	the	fused	location	provider	doesn't	update	the	location	cache	after	the	device	is
restarted.	If		getLastLocation()		returns		null		unexpectedly:

1.	 Start	the	Google	Maps	app	and	accept	the	terms	and	conditions,	if	you	haven't	already.
2.	 Use	the	steps	above	to	update	the	fused	location	provider.	Google	Maps	will	force	the

local	cache	to	update.
3.	 Go	back	to	your	app	and	click	the	Get	Location	button.	The	app	updates	with	the	new

location.

Later	in	this	lesson,	you	learn	how	to	force	the	fused	location	to	update	the	cache	using
periodic	updates.

Task	3.	Get	the	location	as	an	address
Your	app	displays	the	device's	most	recent	location,	which	usually	corresponds	to	its	current
location,	using	latitude	and	longitude	coordinates.	Although	latitude	and	longitude	are	useful
for	calculating	distance	or	displaying	a	map	position,	in	many	cases	the	address	of	the
location	is	more	useful.	For	example,	if	you	want	to	let	your	users	know	where	they	are	or
what	is	close	by,	a	street	address	is	more	meaningful	than	the	geographic	coordinates	of	the
location.

Introduction

267

The	process	of	converting	from	latitude/longitude	to	a	physical	address	is	called	reverse
geocoding	.	The		getFromLocation()		method	provided	by	the		Geocoder		class	accepts	a
latitude	and	longitude	and	returns	a	list	of	addresses.	The	method	is	synchronous	and
requires	a	network	connection.	It	may	take	a	long	time	to	do	its	work,	so	do	not	call	it	from
the	main	user	interface	(UI)	thread	of	your	app.

In	this	task,	you	subclass	an		AsyncTask		to	perform	reverse	geocoding	off	the	main	thread.
When	the		AsyncTask		completes	its	process,	it	updates	the	UI	in	the		onPostExecute()	
method.

Using	an		AsyncTask		means	that	when	your	main		Activity		is	destroyed	when	the	device
orientation	changes,	you	will	not	longer	be	able	to	update	the	UI.	To	handle	this,	you	make
the	location	tracking	state	persistent	in	Task	4.5.

3.1	Create	an	AsyncTask	subclass

Recall	that	an		AsyncTask		object	is	used	to	perform	work	off	the	main	thread.	An		AsyncTask	
object	contains	one	required	override	method,		doInBackground()		which	is	where	the	work	is
performed.	For	this	use	case,	you	need	another	override	method,		onPostExecute()	,	which	is
called	on	the	main	thread	after		doInBackground()		finishes.	In	this	step,	you	set	up	the
boilerplate	code	for	your		AsyncTask	.

	AsyncTask		objects	are	defined	by	three	generic	types:

Use	the		Params		type	to	pass	parameters	into	the		doInBackground()		method.	For	this
app,	the	passed-in	parameter	is	the		Location		object.
Use	the		Progress		type	to	mark	progress	in	the		onProgressUpdate()		method.	For	this
app,	you	are	not	interested	in	the		Progress		type,	because	reverse	geocoding	is
typically	quick.
Use	the		Results		type	to	publish	results	in	the		onPostExecute()		method.	For	this	app,
the	published	result	is	the	returned	address	String.

To	create	a	subclass	of		AsyncTask		that	you	can	use	for	reverse	geocoding:

1.	 Create	a	new	class	called		FetchAddressTask		that	is	a	subclass	of		AsyncTask	.
Parameterize	the		AsyncTask		using	the	three	types	described	above:

	private	class	FetchAddressTask	extends	AsyncTask<Location,	Void,	String>	{}

2.	 In	Android	Studio,	this	class	declaration	is	underlined	in	red,	because	you	have	not
implemented	the	required		doInBackground()		method.	Press	Alt	+	Enter	(Option	+
Enter	on	a	Mac)	on	the	highlighted	line	and	select	Implement	methods.	(Or	select
Code	>	Implement	methods.)

Introduction

268

https://developer.android.com/reference/android/location/Geocoder.html#getFromLocation(double,%20double,%20int)
https://developer.android.com/reference/android/location/Geocoder.html
https://developer.android.com/reference/android/os/AsyncTask.html
https://developer.android.com/reference/android/os/AsyncTask.html#doInBackground(Params...)
https://developer.android.com/reference/android/os/AsyncTask.html#onPostExecute(Result)

Notice	that	the	method	signature	for		doInBackground()		includes	a	parameter	of	the
	Location		type,	and	returns	a		String	;	this	comes	from	parameterized	types	in	the
class	declaration.

3.	 Override	the		onPostExecute()		method	by	going	to	the	menu	and	selecting	Code	>
Override	Methods	and	selecting		onPostExecute()	.	Again	notice	that	the	passed-in
parameter	is	automatically	typed	as	a	String,	because	this	what	you	put	in	the
	FetchAddressTask		class	declaration.

4.	 Create	a	constructor	for	the		AsyncTask		that	takes	a		Context		as	a	parameter	and
assigns	it	to	a	member	variable.

Your		FetchAddressTask		now	looks	something	like	this:

	private	class	FetchAddressTask	extends	AsyncTask<Location,	Void,	String>	{

				private	final	String	TAG	=	FetchAddressTask.class.getSimpleName();

				private	Context	mContext;

				FetchAddressTask(Context	applicationContext)	{

									mContext	=	applicationContext;

				}

				@Override

				protected	String	doInBackground(Location...	locations)	{

								return	null;

				}

				@Override

				protected	void	onPostExecute(String	address)	{

								super.onPostExecute(address);

				}

	}

3.2	Convert	the	location	into	an	address	string

In	this	step,	you	complete	the		doInBackground()		method	so	that	it	converts	the	passed-in
	Location		object	into	an	address	string,	if	possible.	If	there	is	a	problem,	you	show	an	error
message.

1.	 Create	a		Geocoder		object.	This	class	handles	both	geocoding	(converting	from	an
address	into	coordinates)	and	reverse	geocoding:

	Geocoder	geocoder	=	new	Geocoder(mContext,

								Locale.getDefault());

2.	 Obtain	a		Location		object.	The	passed-in	parameter	is	a	Java		varargs		argument	that
can	contain	any	number	of	objects.	In	this	case	we	only	pass	in	one		Location		object,

Introduction

269

https://developer.android.com/reference/android/location/Geocoder.html

so	the	desired	object	is	the	first	item	in	the		varargs		array:

	Location	location	=	params[0];

3.	 Create	an	empty		List		of		Address		objects,	which	will	be	filled	with	the	address
obtained	from	the		Geocoder	.	Create	an	empty		String		to	hold	the	final	result,	which	will
be	either	the	address	or	an	error:

	List<Address>	addresses	=	null;

	String	resultMessage	=	"";

4.	 You	are	now	ready	to	start	the	geocoding	process.	Open	up	a		try		block	and	use	the
following	code	to	attempt	to	obtain	a	list	of	addresses	from	the		Location		object.	The
third	parameter	specifies	the	maximum	number	of	addresses	that	you	want	to	read.	In
this	case	you	only	want	a	single	address:

	try	{

				addresses	=	geocoder.getFromLocation(

												location.getLatitude(),

												location.getLongitude(),

												//	In	this	sample,	get	just	a	single	address

												1);

	}

5.	 Open	a		catch		block	to	catch		IOException		exceptions	that	are	thrown	if	there	is	a
network	error	or	a	problem	with	the		Geocoder		service.	In	this		catch		block,	set	the
	resultMessage		to	an	error	message	that	says	"Service	not	available."	Log	the	error	and
result	message:

	catch	(IOException	ioException)	{

				//	Catch	network	or	other	I/O	problems

				resultMessage	=	mContext

												.getString(R.string.service_not_available);

				Log.e(TAG,	resultMessage,	ioException);

	}

6.	 Open	another		catch		block	to	catch		IllegalArgumentException		exceptions.	Set	the
	resultMessage		to	a	string	that	says	"Invalid	coordinates	were	supplied	to	the
Geocoder,"	and	log	the	error	and	result	message:

Introduction

270

	catch	(IllegalArgumentException	illegalArgumentException)	{

				//	Catch	invalid	latitude	or	longitude	values

				resultMessage	=	mContext

												.getString(R.string.invalid_lat_long_used);

				Log.e(TAG,	resultMessage	+	".	"	+

												"Latitude	=	"	+	location.getLatitude()	+

												",	Longitude	=	"	+

												location.getLongitude(),	illegalArgumentException);

	}

7.	 You	need	to	catch	the	case	where		Geocoder		is	not	able	to	find	the	address	for	the	given
coordinates.	In	the		try		block,	check	the	address	list	and	the		resultMessage		string.	If
the	address	list	is	empty	or		null		and	the		resultMessage		string	is	empty,	then	set	the
	resultMessage		to	"No	address	found"	and	log	the	error:

	if	(addresses	==	null	||	addresses.size()	==	0)	{

				if	(resultMessage.isEmpty())	{

								resultMessage	=	mContext

																.getString(R.string.no_address_found);

								Log.e(TAG,	resultMessage);

				}

	}

8.	 If	the	address	list	is	not	empty	or		null	,	the	reverse	geocode	was	successful.

The	next	step	is	to	read	the	first	address	into	a	string,	line	by	line:

Create	an	empty		ArrayList		of		Strings	.
Iterate	over	the		List		of		Address		objects	and	read	them	into	the	new		ArrayList	
line	by	line.
Use	the		TextUtils.join()	method	to	convert	the	list	into	a	string.	Use	the		\n	
character	to	separate	each	line	with	the	new-line	character:

Here	is	the	code:

	else	{

				//	If	an	address	is	found,	read	it	into	resultMessage

				Address	address	=	addresses.get(0);

				ArrayList<String>	addressParts	=	new	ArrayList<>();

				//	Fetch	the	address	lines	using	getAddressLine,

				//	join	them,	and	send	them	to	the	thread

				for	(int	i	=	0;	i	<=	address.getMaxAddressLineIndex();	i++)	{

								addressParts.add(address.getAddressLine(i));

				}

				resultMessage	=	TextUtils.join("\n",	addressParts);

	}

Introduction

271

https://developer.android.com/reference/android/text/TextUtils.html#join(java.lang.CharSequence,%20java.lang.Iterable)

9.	 At	the	bottom	of		doInBackground()		method,	return	the		resultMessage		object.

3.3	Display	the	result	of	the	FetchAddressTask	object

When		doInBackground()		completes,	the		resultMessage		string	is	automatically	passed	into
the		onPostExecute()		method.	In	this	step	you	update	the	member	variables	of
	MainActivity		with	new	values	and	display	the	new	data	in	the		TextView		using	a	passed	in
interface.

1.	 Create	a	new	string	resource	with	two	replacement	variables.

	<string	name="address_text">"Address:	%1$s	\n	Timestamp:	%2$tr"</string>

2.	 Create	an	interface	in		FetchAddressTask		called		OnTaskCompleted		that	has	one	method,
called		onTaskCompleted()	.	This	method	should	take	a	string	as	an	argument:

	interface	OnTaskCompleted	{

									void	onTaskCompleted(String	result);

	}

3.	 Add	a	parameter	for	the		OnTaskCompleted		interface	to	the		FetchAddressTask	
constructor,	and	assign	it	to	a	member	variable:

	private	OnTaskCompleted	mListener;

	FetchAddressTask(Context	applicationContext,	OnTaskCompleted	listener)	{

					mContext	=	applicationContext;

					mListener	=	listener;

	}

4.	 In	the		onPostExecute()		method,	call		onTaskCompleted()		on	the		mListener		interface,
passing	in	the	result	string:

	@Override

	protected	void	onPostExecute(String	address)	{

				mListener.onTaskCompleted(address);

				super.onPostExecute(address);

	}

5.	 Back	in	the		MainActivity	,	update	the	activity	to	implement	the
	FetchAddressTask.OnTaskCompleted		interface	you	created	and	override	the	required
	onTaskCompleted()		method.

6.	 In	this	method,	updated	the		TextView		with	the	resulting	address	and	the	current	time:

Introduction

272

	@Override

	public	void	onTaskCompleted(String	result)	{

				//	Update	the	UI

				mLocationTextView.setText(getString(R.string.address_text,

													result,	System.currentTimeMillis()));

	}

7.	 In	the		getLocation()		method,	inside	the		onSuccess()		callback,	replace	the	lines	that
assigns	the	passed-in	location	to		mLastLocation		and	sets	the		TextView		with	the
following	line	of	code.	This	code	creates	a	new		FetchAddressTask		and	executes	it,
passing	in	the		Location		object.	You	can	also	remove	the	now	unused		mLastLocation	
member	variable.

		//	Start	the	reverse	geocode	AsyncTask

	new	FetchAddressTask(MainActivity.this,	

										MainActivity.this).execute(location);

8.	 At	the	end	of	the		getLocation()		method,	show	loading	text	while	the		FetchAddressTask	
runs:

	mLocationTextView.setText(getString(R.string.address_text,

								getString(R.string.loading),

								System.currentTimeMillis()));

9.	 Run	the	app.	After	briefly	loading,	the	app	displays	the	location	address	in	the
	TextView	.

Task	4.	Receive	location	updates
Up	until	now,	you've	used	the		FusedLocationProviderClient.getLastLocation()		method,
which	relies	on	other	apps	having	already	made	location	requests.	In	this	task,	you	learn
how	to:

Track	the	device	location	using	periodic	location	requests.
Make	the	tracking	state	persistent.
Show	an	animation	to	give	a	visual	cue	that	the	device	location	is	being	tracked.
Check	the	device	location	settings.	You	need	to	know	whether	location	services	are
turned	on,	and	whether	they	are	set	to	the	accuracy	that	your	app	needs.

4.1	Set	up	the	UI	and	method	stubs

Introduction

273

If	your	app	relies	heavily	on	device	location,	using	the		getLastLocation()		method	may	not
be	sufficient,	because		getLastLocation()		relies	on	a	location	request	from	a	different	app
and	only	returns	the	last	value	stored	in	the	provider.

To	make	location	requests	in	your	app,	you	need	to:

Create	a		LocationRequest		object	that	contains	the	requirements	for	your	location
requests.	The	requirements	include	update	frequency,	accuracy,	and	so	on.	You	do	this
step	in	4.2	Create	the	LocationRequest	object,	below.
Create	a		LocationCallback		object	and	override	its		onLocationResult()		method.	The
	onLocationResult()		method	is	where	your	app	receives	location	updates.	You	do	this
step	in	4.3	Create	the	LocationCallback	object.
Call		requestLocationUpdates()		on	the		FusedLocationProviderClient	.	Pass	in	the
	LocationRequest		and	the		LocationCallback	.	You	do	this	step	in	4.4	Request	location
updates.

The	user	has	no	way	of	knowing	that	the	app	is	making	location	requests,	except	for	a	tiny
icon	in	the	status	bar.	In	this	step,	you	use	an	animation	(included	in	the	starter	code)	to	add
a	more	obvious	visual	cue	that	the	device's	location	is	being	tracked.	You	also	change	the
button	text	to	show	the	user	whether	location	tracking	is	on	or	off.

To	indicate	location	tracking	to	the	user:

1.	 In		MainActivity	,	declare	the	member	variables		mAndroidImageView		(of	type
	ImageView)	and		mRotateAnim		(of	type		AnimatorSet).

2.	 In	the		onCreate()		method,	find	the	Android		ImageView		by	ID	and	assign	it	to
	mAndroidImageView	.	Then	find	the	animation	included	in	the	starter	code	by	ID	and
assign	it	to		mRotateAnim	.	Finally	set	the	Android		ImageView		as	the	target	for	the
animation:

	mAndroidImageView	=	(ImageView)	findViewById(R.id.imageview_android);

	mRotateAnim	=	(AnimatorSet)	AnimatorInflater.loadAnimator

				(this,	R.animator.rotate);

	mRotateAnim.setTarget(mAndroidImageView);

3.	 In	the		strings.xml		file:

Change	the	button	text	to	"Start	Tracking	Location."	Do	this	for	for	both	the	portrait
and	the	landscape	layouts.
Change	the		TextView		text	to	"Press	the	button	to	start	tracking	your	location."

4.	 Refactor	and	rename	the		getLocation()		method	to		startTrackingLocation()	.

5.	 Create	a	private	method	stub	called		stopTrackingLocation()		that	takes	no	arguments

Introduction

274

https://developer.android.com/reference/android/animation/AnimatorSet.html

and	returns		void	.
6.	 Create	a	boolean	member	variable	called		mTrackingLocation	.	Boolean	primitives

default	to		false	,	so	you	do	not	need	to	initialize		mTrackingLocation	.
7.	 Change	the		onClick()		method	for	the	button's		onClickListener	:

If		mTrackingLocation		is		false	,	call		startTrackingLocation()	.
If		mTrackingLocation		is		true	,	call		stopTrackingLocation()	.

@Override

public	void	onClick(View	v)	{

		if	(!mTrackingLocation)	{

						startTrackingLocation();

		}	else	{

						stopTrackingLocation();

		}

}

8.	 At	the	end	of	the		startTrackingLocation()		method,	start	the	animation	by	calling
	mRotateAnim.start()	.	Set		mTrackingLocation		to	to		true		and	change	the	button	text	to
"Stop	Tracking	Location".

9.	 In	the		stopTrackingLocation()		method,	check	if	the	you	are	tracking	the	location.	If	you
are,	stop	the	animation	by	calling		mRotateAnim.end()	,	set		mTrackingLocation		to	to
	false	,	change	the	button	text	back	to	"Start	Tracking	Location"	and	reset	the	location
	TextView		to	show	the	original	hint.

	/**

	*	Method	that	stops	tracking	the	device.	It	removes	the	location

	*	updates,	stops	the	animation	and	reset	the	UI.

	*/

	private	void	stopTrackingLocation()	{

					if	(mTrackingLocation)	{

													mTrackingLocation	=	false;

													mLocationButton.setText(R.string.start_tracking_location);

													mLocationTextView.setText(R.string.textview_hint);

													mRotateAnim.end();

									}

	}

4.2	Create	the	LocationRequest	object

The		LocationRequest		object	contains	setter	methods	that	determine	the	frequency	and
accuracy	of	location	updates.	For	now,	we're	only	interested	in	the	following	parameters:

Interval:	The		setInterval()		method	defines	the	desired	update	interval	in
milliseconds.	For	this	app,	use	10	seconds	(10000	milliseconds).
Fastest	interval:	The	fused	location	provider	attempts	to	make	location	requests	more

Introduction

275

https://developers.google.com/android/reference/com/google/android/gms/location/LocationRequest

efficient	by	batching	requests	from	different	apps.	This	means	that	you	may	receive
updates	faster	than	what	you	set	in		setInterval()	,	which	can	cause	problems	if	your
UI	is	not	ready	for	updates.	To	limit	the	rate	of	location	updates,	use	the
	setFastestInterval()		method.	In	this	app,	use	5	seconds	(5000	milliseconds)
Priority:	Use	this	parameter	with	one	of	the	priority	constants	to	specify	a	balance
between	power	consumption	and	accuracy.	(Greater	accuracy	requires	greater	power
consumption.)	For	this	app,	use	the		PRIORITY_HIGH_ACCURACY		constant	to	prioritize
accuracy.

To	create	the		LocationRequest		object:

1.	 Create	a	method	called		getLocationRequest()		that	takes	no	arguments	and	returns	a
	LocationRequest	.

2.	 Set	the	interval,	fastest	interval,	and	priority	parameters.

	private	LocationRequest	getLocationRequest()	{

				LocationRequest	locationRequest	=	new	LocationRequest();

				locationRequest.setInterval(10000);

				locationRequest.setFastestInterval(5000);

				locationRequest.setPriority(LocationRequest.PRIORITY_HIGH_ACCURACY);

				return	locationRequest;	

	}

4.3	Create	the	LocationCallback	object

When	your	app	requests	a	location	update,	the	fused	location	provider	invokes	the
	LocationCallback.onLocationResult()		callback	method.	The	incoming	argument	contains	a
list	of		Location		objects	containing	the	location's	latitude	and	longitude.

To	create	a		LocationCallback		object:

1.	 At	the	bottom	of		onCreate()	,	create	a	new		LocationCallback		object	and	assign	it	to	a
member	variable	called		mLocationCallback	.

2.	 Override	the		onLocationResult()		method.

	mLocationCallback	=	new	LocationCallback()	{

					@Override

				public	void	onLocationResult(LocationResult	locationResult)	{

				}

	};

4.4	Request	location	updates

Introduction

276

https://developers.google.com/android/reference/com/google/android/gms/location/LocationRequest.html#PRIORITY_BALANCED_POWER_ACCURACY
https://developers.google.com/android/reference/com/google/android/gms/location/LocationCallback.html#onLocationResult(com.google.android.gms.location.LocationResult)
https://developer.android.com/reference/android/location/Location.html

You	now	have	the	required		LocationRequest		and		LocationCallback		objects	to	request
periodic	location	updates.	When	your	app	receives	the		LocationResult	objects	in
	onLocationResult()	,	use	the		FetchAddressTask		to	reverse	geocode	the		Location		object
into	an	address:

1.	 To	request	periodic	location	updates,	replace	the	call	to		getLastLocation()		in
	startTrackingLocation()		(along	with	the		OnSuccessListener)	with	the	following	method
call.	Pass	in	the		LocationRequest		and		LocationCallback	:

	mFusedLocationClient.requestLocationUpdates

								(getLocationRequest(),	mLocationCallback,

																null	/*	Looper	*/);

2.	 In	the		stopTrackingLocation()		method,	call		removeLocationUpdates()		on
	mFusedLocationClient	.	Pass	in	the		LocationCallback		object.

	mFusedLocationClient.removeLocationUpdates(mLocationCallback);

3.	 In	the		onLocationResult()		callback,	check		mTrackingLocation	.	If		mTrackingLocation		is
	true	,	execute		FetchAddressTask()	,	and	use	the		LocationResult.getLastLocation()	
method	to	obtain	the	most	recent		Location		object.

	@Override

	public	void	onLocationResult(LocationResult	locationResult)	{

				//	If	tracking	is	turned	on,	reverse	geocode	into	an	address

				if	(mTrackingLocation)	{

								new	FetchAddressTask(MainActivity.this,	MainActivity.this)

																													.execute(locationResult.getLastLocation());

	}

4.	 In		onTaskComplete()	,	where	the	UI	is	updated,	wrap	the	code	in	an		if		statement	that
checks	the		mTrackingLocation		boolean.	If	the	user	turns	off	the	location	updates	while
the		AsyncTask		is	running,	the	results	are	not	displayed	to	the		TextView	.

5.	 Run	the	app.	Your	app	tracks	your	location,	updating	the	location	approximately	every
ten	seconds.

Testing	the	location-update	functionality	on	an	emulator	can	be	tough:	the	UI	will	say
"Loading"	until	you	send	a	new	location,	and	seeing	the	timing	of	the	set	interval	is
impossible.	You	can	use	a	GPX	file	to	simulate	different	locations	over	time.	For	testing,	you
can	use	the		places_gps_data.gpx		GPX	file,	which	contains	several	locations:
1.	 Download	the		places_gps_data.gpx		file.
2.	 Open	your	emulator,	click	the	...	icon	at	the	bottom	of	this	vertical	settings	menu,	and

select	the	Location	tab.
3.	 Click	Load	GPX/KML	and	select	the	downloaded	file.

Introduction

277

https://developers.google.com/android/reference/com/google/android/gms/location/LocationResult.html
https://developers.google.com/android/reference/com/google/android/gms/location/LocationResult.html#getLastLocation()
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=12&cad=rja&uact=8&ved=0ahUKEwi0yOKL_ffUAhVUzGMKHWqpBxIQFghbMAs&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGPS_Exchange_Format&usg=AFQjCNER2THNfn98eGMvRJBp4knSDDXpkA
https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/WalkMyAndroidPlaces-gpx

4.	 Change	the	duration	of	each	item	to	10	seconds,	and	click	the	play	button.	If	you	start
tracking	when	the	GPX	file	is	playing,	you	see	a	changing	address	displayed	in	the	UI.

Right	now,	the	app	continues	to	request	location	updates	until	the	user	clicks	the	button,	or
until	the		Activity		is	destroyed.	To	conserve	power,	stop	location	updates	when	your
	Activity		is	not	in	focus	(in	the	paused	state)	and	resume	location	updates	when	the
	Activity		regains	focus:

1.	 Override	the		Activity		object's		onResume()		and		onPause()		methods.
2.	 In		onResume()	,	check		mTrackingLocation	.	If		mTrackingLocation		is		true	,	call

	startTrackingLocation()	.
3.	 In		onPause()	,	check		mTrackingLocation	.	If		mTrackingLocation		is		true,		call

	stopTrackingLocation()		but	set		mTrackingLocation		to		true		so	the	app	continues
tracking	the	location	when	it	resumes.

4.	 Run	the	app	and	turn	on	location	tracking.	Exiting	the	app	stops	the	location	updates
when	the	activity	is	not	visible.

4.5	Make	the	tracking	state	persistent

If	you	run	the	app	and	rotate	the	device,	the	app	resets	to	its	initial	state.	The
	mTrackingLocation		boolean	is	not	persistent	across	configuration	changes,	and	it	defaults	to
	false		when	the		Activity		is	recreated.	This	means	the	UI	defaults	to	the	initial	state.

In	this	step,	you	use	the	saved	instance	state	to	make		mTrackingLocation		persistent	so	that
the	app	continues	to	track	location	when	there	is	a	configuration	change.

1.	 Override	the		Activity		object's		onSaveInstanceState()		method.
2.	 Create	a	string	constant	called		TRACKING_LOCATION_KEY	.	You	use	this	constant	as	a	key

for	the		mTrackingLocation		boolean.
3.	 In		onSaveInstanceState()	,	save	the	state	of	the		mTrackingLocation		boolean	by	using

the		putBoolean()		method:

	@Override

	protected	void	onSaveInstanceState(Bundle	outState)	{

				outState.putBoolean(TRACKING_LOCATION_KEY,	mTrackingLocation);

				super.onSaveInstanceState(outState);

	}

4.	 In		onCreate()	,	restore	the		mTrackingLocation		variable	before	you	create	the
	LocationCallback		instance	(because	the	code	checks	for	the		mTrackingLocation	
boolean	before	starting	the		FetchAddressTask):

Introduction

278

https://developer.android.com/guide/components/activities/activity-lifecycle.html#onpause
https://developers.google.com/android/reference/com/google/android/gms/location/LocationCallback.html

	if	(savedInstanceState	!=	null)	{

				mTrackingLocation	=	savedInstanceState.getBoolean(

												TRACKING_LOCATION_KEY);

	}

5.	 Run	the	app	and	start	location	tracking.	Rotate	the	device.	A	new		FetchAddressTask		is
triggered,	and	the	device	continues	to	track	the	location.

Solution	code
WalkMyAndroid-Solution

Coding	challenge
Note:	All	coding	challenges	are	optional.
Challenge:	Extend	the	location		TextView		to	include	the	distance	traveled	from	the	first
location	obtained.	(See	the		distanceTo		()		method.)

Summary
Location	information	is	available	through	the		FusedLocationProviderClient		.	
Using	location	services	requires	location	permissions.
Location	permissions	are	categorized	as	"dangerous	permissions,"	so	you	must	include
them	in	the	manifest	and	request	them	at	runtime.
Use	the		getLastLocation()		method	to	obtain	the	device's	last	known	location	from	the
	FusedLocationProviderClient	.
The	process	of	converting	a	set	of	coordinates	(longitude	and	latitude)	into	a	physical
address	is	called	reverse	geocoding	.	Reverse	geocoding	is	available	through	the
	Geocoder		class'		getFromLocation()		method.
The		getFromLocation()		method	is	synchronous	and	may	take	a	while	to	complete,	so
you	should	not	use	it	on	the	main	thread.
Use	a		LocationRequest		to	specify	the	accuracy	and	frequency	requirements	of	your
location	updates.
Provided	that	the	device	settings	are	appropriate,	use	the		FusedLocationProviderClient	
to	request	periodic	location	updates	with		requestLocationUpdates()	.
Stop	the	location	updates	with	the		FusedLocationProviderClient	
	removeLocationUpdates()		method.

Introduction

279

https://github.com/google-developer-training/android-advanced/tree/master/WalkMyAndroid-Solution
https://developer.android.com/reference/android/location/Location.html#distanceTo(android.location.Location)
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient

Related	concept
The	related	concept	documentation	is	in	7.1	C:	Location	services.

Learn	more
Android	developer	documentation:

Making	Your	App	Location-Aware
	Location	

	Geocoder	

	FusedLocationProviderClient	

Introduction

280

https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-4-add-geo-features-to-your-apps/lesson-7-location/7-1-c-location-services/7-1-c-location-services.html
https://developer.android.com/training/location/index.html
https://developer.android.com/reference/android/location/Location.html
https://developer.android.com/reference/android/location/Geocoder.html
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient

8.1:	Using	the	Places	API
Contents:

Introduction
What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Sign	up	and	obtain	API	keys
Task	2.	Get	details	on	the	current	place
Task	3.	Add	the	place-picker	UI
Coding	challenge
Solution	code
Summary
Related	concept
Learn	more

The	Location	APIs	can	provide	timely	and	accurate	location	information,	but	these	APIs	only
return	a	set	of	geographic	coordinates.	In	7.1	Using	the	device	location,	you	learned	how	to
make	geographic	coordinates	more	useful	by	reverse	geocoding	them	into	physical
addresses.

But	what	if	you	want	to	know	more	about	a	location,	like	the	type	of	place	it	is?	In	this
practical,	you	use	the	Google	Places	API	for	Android	to	obtain	details	about	the	device's
current	location.	You	also	learn	about	the	place	picker	and	the	place-autocomplete	APIs.
The	place	picker	and	autocomplete	let	users	search	for	places	rather	than	having	your	app
detect	the	device's	current	place.

What	you	should	already	KNOW
You	should	be	familiar	with:

Creating,	building,	and	running	apps	in	Android	Studio.
The	activity	lifecycle.
Including	external	libraries	in	your		build.gradle		file.
Creating	responsive	layouts	with		ConstraintLayout	.

What	you	will	LEARN

Introduction

281

https://google-developer-training.gitbooks.io/android-developer-advanced-course-practicals/unit-4-add-geo-features-to-your-apps/lesson-7-location/7-1-p-use-the-device-location/7-1-p-use-the-device-location.html

You	will	learn	how	to:

Get	details	about	the	user's	current	place.
Launch	the	place-picker	UI	so	the	user	can	select	a	place.
Include	a	place-autocomplete	fragment	to	allow	the	user	to	search	for	places.

What	you	will	DO
Get	an	API	key	from	the	Google	API	Console	and	register	the	key	to	your	app.
Get	the	name	of	the	place	where	the	device	is	located.
If	the	place	is	a	school,	gym,	restaurant,	or	library,	change	an	image	in	the	UI	to	reflect
the	place	type.
Add	a	button	to	allow	the	user	to	select	a	place.
Add	a	search	bar	that	autocompletes	a	user's	search	for	a	place.

App	overview
The	app	for	this	practical	extends	the	WalkMyAndroid	app	from	the	previous	practical	in	two
ways:

1.	 Get	details	about	the	current	location	of	the	device,	including	the	place	type	and	place
name.	Display	the	name	in	the	label		TextView		and	change	the	Android	robot	image	to
reflect	the	place	type.	

Introduction

282

https://developers.google.com/places/supported_types
https://developers.google.com/android/reference/com/google/android/gms/location/places/Place

Introduction

283

2.	 Add	a	Pick	a	Place	button	that	launches	the	place-picker	UI,	allowing	the	user	to	select
a	place.

Introduction

284

https://developers.google.com/places/android-api/placepicker

Introduction

285

Task	1.	Sign	up	and	obtain	API	keys
In	this	task	you	set	up	the	starter	app,	WalkMyAndroidPlaces-Starter,	with	an	API	key.	Every
app	that	uses	the	Google	Places	API	for	Android	must	have	an	API	key.	The	key	is	linked	to
the	app	by	the	app's	package	name	and	by	a	digital	certificate	that's	unique	to	the	app.

To	set	up	an	API	key	in	your	app,	you	need	to	do	the	following:

Get	information	about	your	app's	digital	certificate.
Get	an	API	key.	To	do	this,	you	register	a	project	in	the	Google	API	Console	and	add
the	Google	Places	API	for	Android	as	a	service	for	the	project.
Add	the	key	to	your	app	by	adding	a		meta-data		element	to	your		AndroidManifest.xml	
file.

1.1	Get	your	app's	certificate	information

The	API	key	is	based	on	a	short	form	of	your	app's	digital	certificate,	known	as	the
certificate's	SHA-1	fingerprint	.	This	fingerprint	uniquely	identifies	the	app,	and	identifies	you
as	the	app's	owner,	for	the	lifetime	of	the	app.

You	might	have	two	certificates:

A	debug	certificate	,	which	is	the	certificate	you	use	for	this	practical.	The	Android	SDK
tools	generate	a	debug	certificate	when	you	do	a	debug	build.	Don't	attempt	to	publish
an	app	that's	signed	with	a	debug	certificate.	The	debug	certificate	is	described	in	more
detail	in	Sign	your	debug	build.
A	release	certificate	,	which	you	don't	need	for	this	practical.	The	Android	SDK	tools
generate	a	release	certificate	when	you	do	a	release	build.	You	can	also	generate	a
release	certificate	using	the		keytool		utility.	Use	the	release	certificate	when	you're
ready	to	release	your	app	to	the	world.	For	information	about	release	certificates,	see
Signup	and	API	Keys.

For	this	practical,	make	sure	that	you	use	the	debug	certificate.

To	view	the	debug	certificate's	fingerprint:

1.	 Locate	your	debug		keystore		file,	which	is	named		debug.keystore	.	By	default,	the	file
is	stored	in	the	same	directory	as	your	Android	Virtual	Device	(AVD)	files:

macOS	and	Linux:		~/.android/	
Windows	Vista	and	Windows	7:		C:\Users\your_user_name.android\	

The	file	is	created	the	first	time	you	build	your	project.

Introduction

286

https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/WalkMyAndroidPlaces-Starter
https://console.developers.google.com/
https://developer.android.com/studio/publish/app-signing.html#debug-mode
https://developers.google.com/places/android-api/signup#release-cert

2.	 List	the	SHA-1	fingerprint:

For	Linux	or	macOS,	open	a	terminal	window	and	enter	the	following:

keytool	-list	-v	-keystore	~/.android/debug.keystore	-alias	androiddebugkey	-

storepass	android	-keypass	android

For	Windows	Vista	and	Windows	7,	run:

keytool	-list	-v	-keystore	"%USERPROFILE%\.android\debug.keystore"\	-alias	an

droiddebugkey	-storepass	android	-keypass	android

You	should	see	output	similar	to	the	following:

Alias	name:	androiddebugkey

Creation	date:	Jan	01,	2013

Entry	type:	PrivateKeyEntry

Certificate	chain	length:	1

Certificate[1]:

Owner:	CN=Android	Debug,	O=Android,	C=US

Issuer:	CN=Android	Debug,	O=Android,	C=US

Serial	number:	4aa9b300

Valid	from:	Mon	Jan	01	08:04:04	UTC	2013	until:	Mon	Jan	01	18:04:04	PST	2033

Certificate	fingerprints:

MD5:		AE:9F:95:D0:A6:86:89:BC:A8:70:BA:34:FF:6A:AC:F9

SHA1:	BB:0D:AC:44:D3:21:E1:41:07:71:9C:62:90:AF:A4:66:6E:44:5D:95

Signature	algorithm	name:	SHA1withRSA

Version:	3

The	line	that	begins	with		SHA1		contains	the	certificate's	SHA-1	fingerprint.	The
fingerprint	is	the	sequence	of	20	two-digit	hexadecimal	numbers	separated	by
colons.

3.	 Copy	this	value	to	your	clipboard.	You	need	it	in	the	next	set	of	steps.

4.	 Download	the	starter	code	for	this	practical,	WalkMyAndroidPlaces-Starter.
5.	 Open	Android	Studio	and	open	your		AndroidManifest.xml		file.	Note	the		package		string

in	the		manifest		tag.	You	need	the	package	name	in	future	steps.

Note:	To	protect	your		keystore		file	and	key,	don't	enter	the		storepass		or		keypass	
arguments	on	the	command	line	unless	you're	confident	of	your	computer's	security.	For
example,	on	a	public	computer,	someone	could	look	at	your	terminal	window	history	or	list	of
running	processes,	get	the	password,	and	have	write-access	to	your	signing	certificate.	That
person	could	modify	your	app	or	replace	your	app	with	their	own.

1.2	Get	an	API	key	from	the	Google	API	Console

Introduction

287

https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/WalkMyAndroidPlaces-Starter

1.	 Go	to	the	Google	API	Console.
2.	 Create	or	select	a	project.	You	can	reuse	the	same	project	and	API	key	for	multiple

apps.
3.	 From	the	Dashboard	page,	click	ENABLED	APIS	AND	SERVICES.	The	API	Library

opens.
4.	 Search	for	"Places"	and	select	Google	Places	API	for	Android.
5.	 Click	ENABLE.
6.	 If	a	warning	appears	telling	you	to	create	credentials,	click	Create	credentials.

Otherwise,	open	the	Credentials	page	and	click	Create	credentials.
7.	 If	you	see	a	Find	out	what	kind	of	credentials	you	need	step,	skip	the	prompts.	Click

directly	on	the	API	key	link.
8.	 Name	the	key	whatever	you	like.

Restrict	the	key	to	Android	apps:

1.	 Follow	the	prompts	to	restrict	the	key	to	Android	apps.
2.	 Click	Add	package	name	and	fingerprint.
3.	 Add	your	app's	SHA-1	fingerprint	to	the	key.	(You	copied	this	fingerprint	to	your

clipboard	in	1.1	Get	your	app's	certificate	information.)	Also	enter	the	package	name
from	Android	Studio.

For	example:

BB:0D:AC:74:D3:21:E1:43:67:71:9B:62:91:AF:A1:66:6E:44:5D:75

com.example.android.walkmyandroidplaces

4.	 Save	your	changes.

On	the	Credentials	page,	your	new	Android-restricted	API	key	appears	in	the	list	of	API
keys	for	your	project.	An	API	key	is	a	string	of	characters,	something	like	this:

AIzaSyBdVl-cTCSwYZrZ95SuvNw0dbMuDt1KG0

5.	 Copy	the	API	key	to	your	clipboard.	You'll	paste	the	key	into	your	app	manifest	in	the
next	step.

1.3	Add	the	key	to	the	manifest

Add	your	API	key	to	your		AndroidManifest.xml		file	as	shown	in	the	following	code.	Replace
	YOUR_API_KEY		with	your	own	API	key:

Introduction

288

http://console.developers.google.com

<application>

		...

		<meta-data

						android:name="com.google.android.geo.API_KEY"

						android:value="YOUR_API_KEY"/>

...

Task	2.	Get	details	on	the	current	place
Now	that	you	have	your	API	key	set	up,	you're	ready	to	start	using	the	Places	API.	In	this
task,	you	use	the		PlaceDetectionClient.getCurrentPlace()		method	to	obtain	the	place	name
and	place	type	for	the	device's	current	location.	You	use	these	place	details	to	enhance	the
WalkMyAndroidPlaces	UI.

Introduction

289

https://developers.google.com/android/reference/com/google/android/gms/location/places/PlaceDetectionClient

Introduction

290

2.1	Add	the	Places	API	to	your	project

To	use	the	Places	API,	you	need	to	add	it	to	the	app-level		build.gradle		file.	You	also	need
to	connect	to	the	API	using	the		GoogleApiClient		class.

1.	 Add	the	following	statement	to	your	app-level		build.gradle		file.	Replace		XX.X.X		with
the	appropriate	support	library	version.	For	the	latest	version	number,	see	Add	Google
Play	Services	to	Your	Project.

	compile	'com.google.android.gms:play-services-places:XX.X.X'

2.	 In	the		MainActivity	,	in	the		onCreate()		method,	initialize	a		PlaceDetectionClient	
object.	You	use	this	object	to	get	information	about	the	device's	current	location.

	mPlaceDetectionClient	=	Places.getPlaceDetectionClient(this,	null);

Note:	To	use	the		PlaceDetectionClient		interface,	your	app	needs	the
	ACCESS_FINE_LOCATION		permission.	You	don't	need	to	add	this	permission,	because	the
WalkMyAndroidPlaces-Starter	code	includes	it.

2.2	Get	the	place	name

In	this	step,	you	extend	the	WalkMyAndroidPlaces	app	to	show	the	place	name	associated
with	the	current	device	location.

1.	 In	the		MainActivity	,	create	a		String		member	variable	called		mLastPlaceName	.	This
member	variable	will	hold	the	name	of	the	device's	most	probable	location.

2.	 In		strings.xml	,	modify	the		address_text		string	to	include	the	place	name	as	an
additional	variable:

	<string	name="address_text">"Name:	%1$s	\n	Address:	%2$s	\n	Timestamp:	%3$tr"</st

ring>

3.	 In	the		onClick()		method	for	the	Start	Tracking	Location	button,	add	another
argument	to	the		setText()		call.	Pass	in	the		loading		string	so	that	the		TextView		label
shows	"Loading..."	for	the		Name		and		Address		lines:

	mLocationTextView.setText(getString(R.string.address_text,

								getString(R.string.loading),//	Name

								getString(R.string.loading),//	Address

								new	Date()));	//	Timestamp

When	the		AsyncTask		returns	an		Address	,	the		onTaskCompleted()		method	is	called.	In

Introduction

291

https://developers.google.com/android/guides/setup#add_google_play_services_to_your_project
https://developers.google.com/android/reference/com/google/android/gms/location/places/PlaceDetectionClient

the		onTaskComplete()		method,	obtain	the	current	place	name	and	update	the
	TextView	.	To	get	the	current	place	name,	call		PlaceDetectionClient.getCurrentPlace()	.

The		getCurrentPlace()		method	returns	a		Task		object.	A		Task		object	represents	an
asynchronous	operation	and	contains	a	parameterized	type	that's	returned	when	the
operation	completes	in	its		onComplete()		callback.	In	this	case,	the	parameterized	type	is	a
	PlaceLikelihoodBufferResponse	.

The	returned		PlaceLikelihoodBufferResponse		instance	is	a	list	of		Place		objects,	each	with	a
"likelihood"	value	between	0	and	1.	The	likelihood	value	indicates	the	likelihood	that	the
device	is	at	that	place.	The	strategy	shown	below	is	to	use	a	loop	to	determine	the	place	that
has	the	highest	likelihood,	then	display	that	place	name.

1.	 In	the		onTaskCompleted()		method,	call		getCurrentPlace()		on	your
	PlaceDetectionClientApi		instance.	Store	the	result	in	a	local	variable.	Because	you	are
interested	in	all	places,	you	can	pass	in		null		for	the		PlaceFilter	:

	Task<PlaceLikelihoodBufferResponse>	placeResult	=

																					mPlaceDetectionClient.getCurrentPlace(null);

2.	 The		getCurrentPlace()		method	call	is	underlined	in	Android	Studio,	because	the
method	may	throw	a		SecurityException		if	you	don't	have	the	right	location	permissions.
Have	the		onTaskCompleted()		method	throw	a		SecurityException		to	remove	the
warning.

3.	 Add	an		OnCompleteListener		to	the		placeResult	:

	placeResult.addOnCompleteListener

																					(new	OnCompleteListener<PlaceLikelihoodBufferResponse>()	{

																	@Override

																	public	void	onComplete(@NonNull

																									Task<PlaceLikelihoodBufferResponse>	task)	{

													});

4.	 Create	an	if/else	statement	to	check	whether	the		Task		was	successful:

	if	(task.isSuccessful())	{

	}	else	{

	{

5.	 If	the		Task		was	successful,	call		getResult()		on	the	task	to	obtain	the
	PlaceLikelihoodBufferResponse	.	Initialize	an	integer	to	hold	the	maximum	value.
Initialize	a		Place		to	hold	the	highest	likelihood		Place		object.

Introduction

292

https://developers.google.com/android/reference/com/google/android/gms/location/places/PlaceDetectionClient.html#getCurrentPlace(com.google.android.gms.location.places.PlaceFilter)
https://developers.google.com/android/reference/com/google/android/gms/tasks/Task
https://developers.google.com/android/reference/com/google/android/gms/location/places/PlaceLikelihoodBufferResponse
https://developers.google.com/android/reference/com/google/android/gms/location/places/Place
https://developers.google.com/android/reference/com/google/android/gms/location/places/PlaceFilter.html

	if	(task.isSuccessful())	{

			PlaceLikelihoodBufferResponse	likelyPlaces	=	task.getResult();

			float	maxLikelihood	=	0;

			Place	currentPlace	=	null;

	}

6.	 Iterate	over	each		PlaceLikelihood		object	and	check	whether	it	has	the	highest
likelihood	so	far.	If	it	does,	update	the		maxLikelihood		and		currentPlace		objects:

	if	(task.isSuccessful())	{

			PlaceLikelihoodBufferResponse	likelyPlaces	=	task.getResult();

			float	maxLikelihood	=	0;

			Place	currentPlace	=	null;

			for	(PlaceLikelihood	placeLikelihood	:	likelyPlaces)	{

							if	(maxLikelihood	<	placeLikelihood.getLikelihood())	{

											maxLikelihood	=	placeLikelihood.getLikelihood();

											currentPlace	=	placeLikelihood.getPlace();

							}

			}

	}

7.	 If	the		currentPlace		is	not		null	,	update	the		TextView		with	the	result.	The	following
code	should	all	be	within	the		if	(task.isSuccessful())		loop:

	if	(currentPlace	!=	null)	{

			mLocationTextView.setText(

					getString(R.string.address_text,	

							currentPlace.getName(),	result	//This	is	the	address	from	the	AsyncTask,

							System.currentTimeMillis()));

	}

8.	 After	you	use	the	place	information,	release	the	buffer:

	likelyPlaces.release();

9.	 In	the		else		block	for	the	case	where	the		Task		is	not	successful,	show	an	error
message	instead	of	a	place	name:

	else	{

			mLocationTextView.setText(

						getString(R.string.address_text,

										"No	Place	name	found!",

										result,	System.currentTimeMillis()));

	}

10.	 Run	the	app.	You	see	the	place	name	along	with	the	address	in	the	label		TextView	.

Introduction

293

https://developers.google.com/android/reference/com/google/android/gms/location/places/PlaceLikelihood

2.3	Get	the	place	type

The		Place		object	you	obtained	from	the		PlaceLikelihood		object	contains	a	lot	more	than
just	the	name	of	the	place.	The	object	can	also	include	the	place	type,	rating,	price	level,
website	URL,	and	more.	(For	a	list	of	all	the	fields,	see	the		Place		reference.)

In	this	step,	you	change	the	image	of	the	Android	robot	to	reflect	the	place	type	of	the
current	location.	The	starter	code	includes	a	bitmap	image	for	a	"plain"	Android	robot,	plus
images	for	four	other	Android	robots,	one	for	each	these	place	types:	school,	gym,
restaurant,	and	library.

If	you	want	to	add	support	for	other	place	types,	use	the	Androidify	tool	to	create	a	custom
Android	robot	image	and	include	the	image	in	your	app.

1.	 In		MainActivity	,	create	a		setAndroidType()		method	that	uses	a		Place		object.	Have
the	method	assign	the	appropriate	drawable	to	the		ImageView	,	based	on	the	place	type:

	private	void	setAndroidType(Place	currentPlace)	{

				int	drawableID	=	-1;

				for	(Integer	placeType	:	currentPlace.getPlaceTypes())	{

								switch	(placeType)	{

												case	Place.TYPE_SCHOOL:

																drawableID	=	R.drawable.android_school;

																break;

												case	Place.TYPE_GYM:

																drawableID	=	R.drawable.android_gym;

																break;

												case	Place.TYPE_RESTAURANT:

																drawableID	=	R.drawable.android_restaurant;

																break;

												case	Place.TYPE_LIBRARY:

																drawableID	=	R.drawable.android_library;

																break;

								}

				}

				if	(drawableID	<	0)	{

								drawableID	=	R.drawable.android_plain;

				}

				mAndroidImageView.setImageResource(drawableID);

	}

Note:	The		setAndroidType()		method	is	where	you	can	add	support	for	more	place
types.	All	you	need	to	do	is	add	another		case		to	the		switch		statement	and	select	the
appropriate	drawable.	For	a	list	of	supported	place	types,	see	Place	Types.

2.	 In	the		onComplete()		callback	where	you	obtain	the	current		Place		object,	call
	setAndroidType()	.	Pass	in	the		currentPlace		object.

Introduction

294

https://developers.google.com/android/reference/com/google/android/gms/location/places/Place
https://developers.google.com/android/reference/com/google/android/gms/location/places/Place
https://developers.google.com/places/android-api/supported_types
http://androidify.com/
https://developers.google.com/places/android-api/supported_types

3.	 Run	your	app.	Unless	you	happen	to	be	in	one	of	the	supported	place	types,	you	don't
see	any	difference	in	the	Android	robot	image.	To	get	around	this,	run	the	app	on	an
emulator	and	follow	the	steps	below	to	set	up	fake	locations.

How	to	test	location-based	features	on	an	emulator

Testing	location-based	features	on	an	emulator	can	be	challenging.	The
	FusedLocationProviderClient		and	the	Places	API	have	to	use	a	location	that	you	provide
through	the	emulator	settings.

To	simulate	a	location,	use	a	GPX	file,	which	provides	a	set	of	GPS	coordinates	over	time:

1.	 Download	the	WalkMyAndroidPlaces-gpx	file.	The	file	contains	five	locations.	The	first
location	doesn't	correspond	to	any	of	the	supported	place	types.	The	other	four
locations	have	the	place	types	that	the	WalkMyAndroidPlaces	app	supports:	school,
gym,	restaurant,	library.

2.	 Start	an	emulator	of	your	choice.
3.	 To	navigate	to	your	emulator	settings,	select	the	three	dots	at	the	bottom	of	the	menu

next	to	the	emulator,	then	select	the	Location	tab.
4.	 In	the	bottom	right	corner,	click	Load	GPX/KML.	Select	the	file	you	downloaded.

Five	locations	load	in	the	GPS	data	playback	window.

5.	 Notice	the	Delay	column.	By	default,	the	emulator	changes	the	location	every	2
seconds.	Change	the	delay	to	10	seconds	for	each	item	except	the	first	item,	which
should	load	immediately	and	have	a	delay	of	0.

(A	delay	of	10	seconds	makes	sense	because	your	location	updates	happen
approximately	every	10	seconds.	Recall	the		LocationRequest		object,	in	which	the
interval	is	set	to	10,000	milliseconds,	or	10	seconds.)

6.	 Run	the	WalkMyAndroid	app	on	the	emulator	to	start	tracking	the	device	location.

7.	 Use	the	play	button	in	the	bottom	left	corner	of	the	emulator	Location	tab	to	deliver	the
GPX	file's	location	information	to	your	app.	The	location		TextView		and	the	Android
robot	image	should	update	every	10	seconds	to	reflect	the	new	locations	as	they	are
"played"	by	the	GPX	file!

Introduction

295

https://github.com/google-developer-training/android-advanced-starter-apps/tree/master/WalkMyAndroidPlaces-gpx
https://developers.google.com/android/reference/com/google/android/gms/location/LocationRequest

The	screenshot	below	shows	the	Location	tab	(1)	for	emulator	location	settings,	the	GPS
data	playback	button	(2),	and	the	Load	GPX/KML	button	(3).

Task	3.	Add	the	place-picker	UI
At	this	point,	the	WalkMyAndroidPlaces	app	only	looks	for	places	in	the	device's	current
location,	but	there	are	many	use	cases	where	you	want	the	user	to	select	a	location	from	a
map.	For	example,	if	you	create	an	app	to	help	users	decide	on	a	restaurant,	you	want	to
show	restaurants	in	the	area	that	the	user	selects,	not	just	restaurants	in	the	user's	current
location.

Having	the	user	select	a	location	from	a	map	seems	complicated:	you	need	a	map	with
places	of	interest	already	on	it,	and	you	need	a	way	for	the	user	to	search	for	a	place	and
select	a	place.	Fortunately,	the	Place	API	includes	the	place	picker,	a	UI	that	greatly
simplifies	the	work.

In	this	task,	you	add	a	button	that	launches	the	place-picker	UI.	The	place-picker	UI	lets	the
user	select	a	place,	and	it	displays	the	place	information	in	the	UI,	as	before.	(It	displays	the
relevant	Android	robot	image,	if	available,	and	it	displays	the	place	name,	address,	and
update	time.)

Introduction

296

https://developers.google.com/places/android-api/placepicker

3.1	Add	a	PlacePicker	button

The	place-picker	UI	is	a	dialog	where	the	user	can	search	for	a	place	and	select	a	place.	To
add	the	place	picker	to	your	app,	use	the		PlacePicker.IntentBuilder		intent	to	launch	a
special		Activity	.	Get	the	result	in	your	activity's		onActivityResult()		method:

1.	 Add	a	button	next	to	the	Start	Tracking	Location	button.	Use	"Pick	a	Place"	as	the
button's	text	in	both	the	portrait	and	the	landscape	layout	files.

2.	 Add	a	click	handler	that	executes	the	following	code	to	start	the		PlacePicker	.	Create
an	arbitrary	constant	called		REQUEST_PICK_PLACE		that	you'll	use	later	to	obtain	the	result.
(This	constant	should	be	different	from	your	permission-check	integer.)

Introduction

297

https://developers.google.com/places/android-api/placepicker

	private	static	final	int	REQUEST_PICK_PLACE	=	2;

	PlacePicker.IntentBuilder	builder	=	new	PlacePicker.IntentBuilder();

	try	{

				startActivityForResult(builder.build(MainActivity.this),	REQUEST_PICK_PLACE);

	}	catch	(GooglePlayServicesRepairableException	|	GooglePlayServicesNotAvailableEx

ception	e)	{

				e.printStackTrace();

	}

3.	 Run	your	app.	When	you	click	Pick	a	Place,	a		PlacePicker		dialog	opens.	In	the	dialog,
you	can	search	for	and	select	any	place.

The	next	step	is	to	get	whatever	place	the	user	selects	in		onActivityResult()	,	then	update
the		TextView		and	Android	robot	image	.	

3.2	Obtain	the	selected	place

The	result	from	the		PlacePicker		is	sent	automatically	to	the	activity's		onActivityResult()	
override	method.	Use	the	passed-in		requestCode		integer	to	get	the	result.	The	result	should
match	the	integer	you	passed	into	the		startActivityForResult()		method.

1.	 To	override	the		onActivityResult()		method,	select	Code	>	Override	Methods	in
Android	Studio.	Find	and	select	the		onActivityResult()		method,	then	click	OK.

2.	 In		onActivityResult()	,	create	an		if		statement	that	checks	whether	the		requestCode	
matches	your	request	integer.

To	get	the		Place		object	that	was	selected	from	the		PlacePicker	,	use	the
	PlacePicker.getPlace()		method.

3.	 If	the		resultCode		is		RESULT_OK	,	get	the	selected	place	from	the	data		Intent		using	the
	PlacePicker.getPlace()		method.	Pass	in	the	application	context	and	the	data		Intent	,
which	the	system	passes	into		onActivityResult()	.

If	the		resultCode		isn't		RESULT_OK	,	show	a	message	that	says	that	a	place	was	not
selected.

	if	(resultCode	==	RESULT_OK)	{

				Place	place	=	PlacePicker.getPlace(this,	data);

	}	else	{

				mLocationTextView.setText(R.string.no_place);

	}

4.	 After	you	get	the		Place		object,	call		setAndroidType()	.	Pass	in	your	obtained	object.
5.	 Update	the	label		TextView		with	the	place	name	and	address	from	the		Place		object.

Introduction

298

https://developers.google.com/android/reference/com/google/android/gms/location/places/ui/PlacePicker.html#getPlace(android.content.Context,%20android.content.Intent)

Set	the	update	time	to	be	the	current	time:

	mLocationTextView.setText(

																					getString(R.string.address_text,	place.getName(),

																													place.getAddress(),	System.currentTimeMillis()));

6.	 Run	the	app.	You	can	now	use	the		PlacePicker		to	choose	any	place	in	the	world,
provided	that	the	place	exists	in	the	Places	API.	To	test	your	app's	functionality,	search
for	one	of	the	place	types	for	which	you	have	an	Android	robot	image.

Note:	When	the	user	selects	a	location	using	the		PlacePicker	,	this	data	is	not	persisted
using	the		SavedInstanceState	.	For	this	reason,	when	you	rotate	the	device,	the	app	resets
to	the	initial	state.

Coding	challenge
Note:	All	coding	challenges	are	optional.
Challenge:	Add	a	place	autocomplete	search	dialog	UI	element	to	your		Activity	.	The
place	autocomplete	dialog	lets	the	user	search	for	a	place	without	launching	the
	PlacePicker	.

Solution	code
WalkMyAndroidPlaces-Solution

Summary
To	use	the	Google	Places	API	for	Android,	you	must	create	an	API	key	that's	restricted
to	Android	apps.	You	do	this	in	the	Google	API	Console.	In	your	project	in	the	API
Console,	you	also	need	to	enable	the	Google	Places	API	for	Android.
Include	the	API	key	in	a	metadata	tag	in	your		AndroidManifest.xml		file.
The		Place		object	contains	information	about	a	specific	geographic	location,	including
the	place	name,	address,	coordinates,	and	more.
Use	the		PlaceDetectionClient.getCurrentPlace()		method	to	get	information	about	the
device's	current	location.
	PlaceDetectionClient.getCurrentPlace()		returns	a		PlaceLikelihoodBuffer		in	a		Task	.
The		PlaceLikelihoodBuffer		contains	a	list	of		PlaceLikelihood		objects	that	represent
likely	places.	For	each	place,	the	result	includes	the	likelihood	that	the	place	is	the	right
one.

Introduction

299

https://developers.google.com/places/android-api/autocomplete
https://github.com/google-developer-training/android-advanced/tree/master/WalkMyAndroidPlaces-Solution
https://console.developers.google.com/
https://developers.google.com/android/reference/com/google/android/gms/location/places/Place
https://developers.google.com/android/reference/com/google/android/gms/location/places/PlaceDetectionClient.html#getCurrentPlace(com.google.android.gms.location.places.PlaceFilter)
https://developer.android.com/reference/com/google/android/gms/location/places/PlaceLikelihoodBuffer.html
https://developers.google.com/android/reference/com/google/android/gms/tasks/Task
https://developer.android.com/reference/com/google/android/gms/location/places/PlaceLikelihood.html

The	Places	API	includes	the		PlacePicker	,	which	you	use	to	include	the	place-picker	UI
in	your	app.	The	place-picker	UI	is	a	dialog	that	lets	the	user	search	for	places	and
select	places.
Launch	the		PlacePicker		using		startActivityForResult()	.	Pass	in	an		Intent		created
with		PlacePicker.IntentBuilder()	.
Retrieve	the	selected	place	in		onActivityResult()		by	calling		PlacePicker.getPlace()	.
Pass	in	the	activity	context	and	the	data		Intent	.

Related	concept
The	related	concept	documentation	is	in	8.1:	Places	API.

Learn	more
Android	developer	documentation:

Set	Up	Google	Play	Services
Places	API	for	Android
Place	Picker
Current	Place
	Place	

	PlaceDetectionClient	

Introduction

300

https://developer.android.com/reference/com/google/android/gms/location/places/ui/PlacePicker.html
https://developer.android.com/reference/android/app/Activity.html#startActivityForResult(android.content.Intent,%20int)
https://developer.android.com/reference/com/google/android/gms/location/places/ui/PlacePicker.IntentBuilder.html
https://developer.android.com/reference/android/app/Activity.html#onActivityResult(int,%20int,%20android.content.Intent)
https://developer.android.com/reference/com/google/android/gms/location/places/ui/PlacePicker.html
https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-4-add-geo-features-to-your-apps/lesson-8-places/8-1-c-places-api/8-1-c-places-api.html
https://developers.google.com/android/guides/setup
https://developers.google.com/places/android-api/
https://developers.google.com/places/android-api/placepicker
https://developers.google.com/places/android-api/current-place
https://developers.google.com/android/reference/com/google/android/gms/location/places/Place
https://developers.google.com/android/reference/com/google/android/gms/location/places/PlaceDetectionClient

9.1:	Adding	a	Google	Map	to	your	app
Contents:

Introduction
What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Set	up	the	project	and	get	an	API	Key
Task	2.	Add	map	types	and	markers
Task	3.	Style	your	map
Task	4.	Enable	location	tracking	and	Street	View
Coding	challenge
Solution	code
Summary
Related	concept
Learn	more

Building	apps	with	Google	Maps	allows	you	to	add	features	to	your	app	such	as	satellite
imagery,	robust	UI	controls,	location	tracking,	and	location	markers.	You	can	add	value	to
the	standard	Google	Maps	by	showing	information	from	your	own	data	set,	such	as	the
locations	of	well-known	fishing	or	climbing	areas.	You	can	also	create	games	tied	to	the	real
world,	like	Pokemon	Go.

In	this	practical,	you	create	a	Google	Maps	app	called		Wander	.

What	you	should	already	KNOW
You	should	be	familiar	with:

Basic	functionality	of	Google	Maps.
Runtime	permissions.
Creating,	building,	and	running	apps	in	Android	Studio.
Including	external	libraries	in	your		build.gradle		file.

What	you	will	LEARN
You	will	learn	how	to:

Introduction

301

Integrate	a	Google	Map	in	your	app.
Display	different	map	types.
Style	the	Google	Map.
Add	markers	to	your	map.
Enable	the	user	to	place	a	marker	on	a	point	of	interest	(POI).
Enable	location	tracking.
Enable	Google	Street	View.

What	you	will	DO
Get	an	API	key	from	the	Google	API	Console	and	register	the	key	to	your	app.
Create	the		Wander		app,	which	has	an	embedded	Google	Map.
Add	custom	features	to	your	app	such	as	markers,	styling,	and	location	tracking.
Enable	location	tracking	and	Street	View	in	your	app.

App	overview
In	this	practical	you	create	the		Wander		app,	which	is	a	styled	Google	Map.	The		Wander		app
allows	you	to	drop	markers	onto	locations,	see	your	location	in	real	time,	and	look	at	Street
View	panoramas.

Introduction

302

Task	1.	Set	up	the	project	and	get	an	API	Key
The	Google	Maps	API,	like	the	Places	API,	requires	an	API	key.	To	obtain	the	API	key,	you
register	your	project	in	the	Google	API	Console.	The	API	key	is	tied	to	a	digital	certificate
that	links	the	app	to	its	author.	For	more	about	using	digital	certificates	and	signing	your	app,
see	Sign	Your	App.

In	this	practical,	you	use	the	API	key	for	the	debug	certificate.	The	debug	certificate	is
insecure	by	design,	as	described	in	Sign	your	debug	build.	Published	Android	apps	that	use
the	Google	Maps	API	require	a	second	API	key:	the	key	for	the	release	certificate.	For	more
information	about	obtaining	a	release	certificate,	see	Get	API	Key.

Android	Studio	includes	a	Google	Maps	Activity	template,	which	generates	helpful	template
code.	The	template	code	includes	a		google_maps_api.xml		file	containing	a	link	that	simplifies
obtaining	an	API	key.

Note:	If	you	wish	to	build	the	Activity	without	using	the	template,	follow	the	steps	in	the	API
key	guide	to	obtain	the	API	key	without	using	the	link	in	the	template.

Introduction

303

1.1	Create	the	Wander	project	with	the	Maps	template

1.	 Create	a	new	Android	Studio	project.
2.	 Name	the	new	app	"Wander".	Accept	the	defaults	until	you	get	to	the	Add	an	Activity

page.
3.	 Select	the	Google	Maps	Activity	template.
4.	 Leave	the	default	Activity	Name	and	Layout	Name.
5.	 Change	the	Title	to	"Wander"	and	click	Finish.

Android	Studio	creates	several	maps-related	additional	files:

	google_maps_api.xml	

You	use	this	configuration	file	to	hold	your	API	key.	The	template	generates	two
	google_maps_api.xml		files:	one	for	debug	and	one	for	release.	The	file	for	the	API	key
for	the	debug	certificate	is	located	in		src/debug/res/values	.	The	file	for	the	API	key	for
the	release	certificate	is	located	in		src/release/res/values	.	In	this	practical	we	only	use
the	debug	certificate.

	activity_maps.xml	

This	layout	file	contains	a	single	fragment	that	fills	the	entire	screen.	The
	SupportMapFragment		class	is	a	subclass	of	the		Fragment		class.	You	can	include
	SupportMapFragment		in	a	layout	file	using	a		<fragment>		tag	in	any		ViewGroup	,	with	an
additional	attribute:

android:name="com.google.android.gms.maps.SupportMapFragment"

	MapsActivity.java	

The		MapsActivity.java		file	instantiates	the		SupportMapFragment		class	and	uses	the
class's		getMapAsync()		method	to	prepare	the	Google	Map.	The	activity	that	contains
the		SupportMapFragment		must	implement	the		OnMapReadyCallback		interface	and	that
interface's		onMapReady()		method.	The		getMapAsync()		method	returns	a		GoogleMap	
object,	signifying	that	the	map	is	loaded.

Note:	If	you	test	the		Wander		app	on	an	emulator,	use	a	system	image	that	includes	Google
APIs	and	Google	Play.	Select	an	image	that	shows	Google	Play	in	the	Target	column	of	the
virtual-devices	list.
Run	the	app	and	notice	that	the	map	fails	to	load.	If	you	look	in	the	logs,	you	see	a	message
saying	that	your	API	key	is	not	properly	set	up.	In	the	next	step,	you	obtain	the	API	key	to
make	the	app	display	the	map.

Introduction

304

https://developer.android.com/studio/publish/app-signing.html
https://developer.android.com/studio/publish/app-signing.html#debug-mode
https://developers.google.com/maps/documentation/android-api/signup#release-cert
https://developers.google.com/maps/documentation/android-api/signup
https://developers.google.com/android/reference/com/google/android/gms/maps/SupportMapFragment

1.2	Obtain	the	API	key

1.	 Open	the	debug	version	of	the		google_maps_api.xml		file.

The	file	includes	a	comment	with	a	long	URL.	The	URL's	parameters	include	specific
information	about	your	app.

2.	 Copy	and	paste	the	URL	into	a	browser.

3.	 Follow	the	prompts	to	create	a	project	in	the	Google	API	Console.	Because	of	the
parameters	in	the	provided	URL,	the	API	Console	knows	to	automatically	enable	the
Google	Maps	Android	API

4.	 Create	an	API	key	and	click	Restrict	Key	to	restrict	the	key's	use	to	Android	apps.	The
generated	API	key	should	start	with		AIza	.

5.	 In	the		google_maps_api.xml		file,	paste	the	key	into	the		google_maps_key		string	where	it
says		YOUR_KEY_HERE	.

6.	 Run	your	app.	You	have	an	embedded	map	in	your	activity,	with	a	marker	set	in	Sydney,
Australia.	(The	Sydney	marker	is	part	of	the	template,	and	you	change	it	later.)

Note:	The	API	key	may	take	up	to	5	minutes	to	take	effect.

Task	2.	Add	map	types	and	markers
Google	Maps	include	several	map	types:	normal,	hybrid,	satellite,	terrain,	and	"none."	In	this
task	you	add	an	app	bar	with	an	options	menu	that	allows	the	user	to	change	the	map	type.
You	move	the	map's	starting	location	to	your	own	home	location.	Then	you	add	support	for
markers,	which	indicate	single	locations	on	a	map	and	can	include	a	label.

2.1	Add	map	types

The	type	of	map	that	your	user	wants	depends	on	the	kind	of	information	they	need.	When
using	maps	for	navigation	in	your	car,	it's	helpful	to	see	street	names	clearly.	When	you	are
hiking,	you	probably	care	more	about	how	much	you	have	to	climb	to	get	to	the	top	of	the
mountain.	In	this	step,	you	add	an	app	bar	with	an	options	menu	that	allows	the	user	to
change	the	map	type.

1.	 To	create	a	new	menu	XML	file,	right-click	on	your		res		directory	and	select	New	>
Android	Resource	File.

2.	 In	the	dialog,	name	the	file		map_options	.	Choose	Menu	for	the	resource	type.	Click	OK.
3.	 Replace	the	code	in	the	new	file	with	the	following	code	to	create	the	map	options.	The

"none"	map	type	is	omitted,	because	"none"	results	in	the	lack	of	any	map	at	all.

Introduction

305

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiD7q3wuZPVAhXIjVQKHYSXBCwQFgglMAA&url=https%3A%2F%2Fdevelopers.google.com%2Fandroid%2Freference%2Fcom%2Fgoogle%2Fandroid%2Fgms%2Fmaps%2FOnMapReadyCallback&usg=AFQjCNEOax5QBVfdqXFIN34ZfGr6w5zNzQ

	<?xml	version="1.0"	encoding="utf-8"?>

	<menu	xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:app="http://schemas.android.com/apk/res-auto">

				<item	android:id="@+id/normal_map"

								android:title="@string/normal_map"

								app:showAsAction="never"/>

				<item	android:id="@+id/hybrid_map"

								android:title="@string/hybrid_map"

								app:showAsAction="never"/>

				<item	android:id="@+id/satellite_map"

								android:title="@string/satellite_map"

								app:showAsAction="never"/>

				<item	android:id="@+id/terrain_map"

								android:title="@string/terrain_map"

								app:showAsAction="never"/>

	</menu>

4.	 Create	string	resources	for	the		title		attributes.
5.	 In	the		MapsActivity		file,	change	the	class	to	extend	the		AppCompatActivity		class

instead	of	extending	the		FragmentActivity		class.	Using		AppCompatActivity		will	show
the	app	bar,	and	therefore	it	will	show	the	menu.

6.	 In		MapsActivity	,	override	the		onCreateOptionsMenu()		method	and	inflate	the
	map_options		file:

	@Override

	public	boolean	onCreateOptionsMenu(Menu	menu)	{

				MenuInflater	inflater	=	getMenuInflater();

				inflater.inflate(R.menu.map_options,	menu);

				return	true;

	}

7.	 To	change	the	map	type,	use	the		setMapType	()	method	on	the		GoogleMap		object,
passing	in	one	of	the	map-type	constants.

Override	the		onOptionsItemSelected()		method.	Paste	the	following	code	to	change	the
map	type	when	the	user	selects	one	of	the	menu	options:

Introduction

306

https://developer.android.com/reference/android/support/v7/app/AppCompatActivity.html

	@Override

	public	boolean	onOptionsItemSelected(MenuItem	item)	{

				//	Change	the	map	type	based	on	the	user's	selection.

				switch	(item.getItemId())	{

								case	R.id.normal_map:

												mMap.setMapType(GoogleMap.MAP_TYPE_NORMAL);

												return	true;

								case	R.id.hybrid_map:

												mMap.setMapType(GoogleMap.MAP_TYPE_HYBRID);

												return	true;

								case	R.id.satellite_map:

												mMap.setMapType(GoogleMap.MAP_TYPE_SATELLITE);

												return	true;

								case	R.id.terrain_map:

												mMap.setMapType(GoogleMap.MAP_TYPE_TERRAIN);

												return	true;

								default:

												return	super.onOptionsItemSelected(item);

				}

	}

8.	 Run	the	app.	Use	the	menu	in	the	app	bar	to	change	the	map	type.	Notice	how	the
map's	appearance	changes.

2.2	Move	the	default	map	location

By	default,	the		onMapReady()		callback	includes	code	that	places	a	marker	in	Sydney,
Australia,	where	Google	Maps	was	created.	The	default	callback	also	animates	the	map	to
pan	to	Sydney.	In	this	step,	you	make	the	map	pan	to	your	home	location	without	placing	a
marker,	then	zoom	to	a	level	you	specify.

1.	 In	the		onMapReady()		method,	remove	the	code	that	places	the	marker	in	Sydney	and
moves	the	camera.

2.	 Go	to	www.google.com/maps	in	your	browser	and	find	your	home.
3.	 Right-click	on	the	location	and	select	What's	here?

Near	the	bottom	of	the	screen,	a	small	window	pops	up	with	location	information,
including	latitude	and	longitude.

4.	 Create	a	new		LatLng		object	called		home	.	In	the		LatLng		object,	use	the	coordinates
you	found	from	Google	Maps	in	the	browser.

5.	 Create	a		float		variable	called		zoom		and	set	the	variable	to	your	desired	initial	zoom
level.	The	following	list	gives	you	an	idea	of	what	level	of	detail	each	level	of	zoom
shows:

	1	:	World

Introduction

307

https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap.html#setMapType(int)
https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap

	5	:	Landmass/continent
	10	:	City
	15	:	Streets
	20	:	Buildings

6.	 Create	a		CameraUpdate		object	using		CameraUpdateFactory.newLatLngZoom()	,	passing	in
your		LatLng		object	and		zoom		variable.	Pan	and	zoom	the	camera	by	calling
	moveCamera()		on	the		GoogleMap		object,	passing	in	the	new		CameraUpdate		object:

	mMap.moveCamera(CameraUpdateFactory.newLatLngZoom(home,	zoom));

7.	 Run	the	app.	The	map	should	pan	to	your	home	and	zoom	into	the	desired	level.

2.3	Add	map	markers

Google	Maps	can	single	out	a	location	using	a	marker,	which	you	create	using	the		Marker	

class.	The	default	marker	uses	the	standard	Google	Maps	icon:	

You	can	extend	markers	to	show	contextual	information	in	info	windows.

In	this	step,	you	add	a	marker	when	the	user	touches	and	holds	a	location	on	the	map.	You
then	add	an		InfoWindow		that	displays	the	coordinates	of	the	marker	when	the	marker	is
tapped.

Introduction

308

https://www.google.com/maps
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjB2LzT7InVAhXlrlQKHfhgDEUQFggnMAA&url=https%3A%2F%2Fdevelopers.google.com%2Fandroid%2Freference%2Fcom%2Fgoogle%2Fandroid%2Fgms%2Fmaps%2Fmodel%2FLatLng&usg=AFQjCNHZNH-oG3_V2yy9u-wEsdRddW-0zw
https://developers.google.com/android/reference/com/google/android/gms/maps/model/Marker
https://developers.google.com/maps/documentation/android-api/infowindows

Introduction

309

1.	 Create	a	method	stub	in		MapsActivity		called		setMapLongClick()		that	takes	a		final	
	GoogleMap		as	an	argument	and	returns		void	:

	private	void	setMapLongClick(final	GoogleMap	map)	{}

2.	 Use	the		GoogleMap		object's		setOnMapLongClickListener()		method	to	place	a	marker
where	the	user	touches	and	holds.	Pass	in	a	new	instance	of		OnMapLongClickListener	
that	overrides	the		onMapLongClick()		method.	The	incoming	argument	is	a		LatLng	
object	that	contains	the	coordinates	of	the	location	the	user	pressed:

	private	void	setMapLongClick(final	GoogleMap	map)	{

				map.setOnMapLongClickListener(new	GoogleMap.OnMapLongClickListener()	{

								@Override

								public	void	onMapLongClick(LatLng	latLng)	{

								}

				});

	}

3.	 Inside		onMapLongClick()	,	call	the		addMarker()		method.	Pass	in	a	new		MarkerOptions	
object	with	the	position	set	to	the	passed-in		LatLng	:

	map.addMarker(new	MarkerOptions().position(latLng));

4.	 Call		setMapLongClick()		at	the	end	of	the		onMapReady()		method.	Pass	in		mMap	.
5.	 Run	the	app.	Touch	and	hold	on	the	map	to	place	a	marker	at	a	location.
6.	 Tap	the	marker,	which	centers	it	on	the	screen.

Navigation	buttons	appear	at	the	bottom-left	side	of	the	screen,	allowing	the	user	to	use
the	Google	Maps	app	to	navigate	to	the	marked	position.

To	add	an	info	window	for	the	marker:

1.	 In	the		MarkerOptions		object,	set	the		title		field	and	the		snippet		field.
2.	 In		onMapLongClick()	,	set	the		title		field	to	"Dropped	Pin."	Set	the		snippet		field	to	the

location	coordinates	inside	the		addMarker()		method.

Introduction

310

https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap.OnMapLongClickListener
https://developers.google.com/android/reference/com/google/android/gms/maps/model/MarkerOptions
https://developers.google.com/android/reference/com/google/android/gms/maps/model/MarkerOptions

	map.setOnMapLongClickListener(new	GoogleMap.OnMapLongClickListener()	{

				@Override

				public	void	onMapLongClick(LatLng	latLng)	{

								String	snippet	=	String.format(Locale.getDefault(),

																"Lat:	%1$.5f,	Long:	%2$.5f",

																latLng.latitude,

																latLng.longitude);

								map.addMarker(new	MarkerOptions()

																.position(latLng)

																.title(getString(R.string.dropped_pin))

																.snippet(snippet));

				}

	});

3.	 Run	the	app.	Touch	and	hold	on	the	map	to	drop	a	location	marker.	Tap	the	marker	to
show	the	info	window.

2.4	Add	POI	listener

By	default,	points	of	interest	(POIs)	appear	on	the	map	along	with	their	corresponding	icons.
POIs	include	parks,	schools,	government	buildings,	and	more.	When	the	map	type	is	set	to
	normal	,	business	POIs	also	appear	on	the	map.	Business	POIs	represent	businesses	such
as	shops,	restaurants,	and	hotels.

In	this	step,	you	add	a		GoogleMap.OnPoiClickListener		to	the	map.	This	click-listener	places	a
marker	on	the	map	immediately,	instead	of	waiting	for	a	touch	&	hold.	The	click-listener	also
displays	the	info	window	that	contains	the	POI	name.

Introduction

311

https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap.OnPoiClickListener

Introduction

312

1.	 Create	a	method	stub	in		MapsActivity		called		setPoiClick()		that	takes	a		final	
	GoogleMap		as	an	argument,	and	returns		void	:

	private	void	setPoiClick(final	GoogleMap	map)	{}

2.	 In	the		setPoiClick()		method,	set	an		OnPoiClickListener		on	the	passed-in		GoogleMap	:

	map.setOnPoiClickListener(new	GoogleMap.OnPoiClickListener()	{

				@Override

				public	void	onPoiClick(PointOfInterest	poi)	{

				}

	});

3.	 In	the		onPoiClick()		method,	place	a	marker	at	the	POI	location.	Set	the	title	to	the
name	of	the	POI.	Save	the	result	to	a	variable	called		poiMarker	.

	public	void	onPoiClick(PointOfInterest	poi)	{

				Marker	poiMarker	=	mMap.addMarker(new	MarkerOptions()

								.position(poi.latLng)

								.title(poi.name);

	}

4.	 Call		showInfoWindow()		on		poiMarker		to	immediately	show	the	info	window.

	poiMarker.showInfoWindow();

5.	 Call		setPoiClick()		at	the	end	of		onMapReady()	.	Pass	in		mMap	.
6.	 Run	your	app	and	find	a	POI	such	as	a	park.	Tap	on	the	POI	to	place	a	marker	on	it	and

display	the	POI's	name	in	an	info	window.

Task	3.	Style	your	map
You	can	customize	Google	Maps	in	many	ways,	giving	your	map	a	unique	look	and	feel.

You	can	customize	a		MapFragment		object	using	the	available	XML	attributes,	as	you	would
customize	any	other	fragment.	However,	in	this	step	you	customize	the	look	and	feel	of	the
content	of	the		MapFragment	,	using	methods	on	the		GoogleMap		object.	You	use	the	online
Styling	Wizard	to	add	a	style	to	your	map	and	customize	your	markers.	You	also	add	a
	GroundOverlay		to	your	home	location	that	scales	and	rotates	with	the	map.

3.1	Add	a	style	to	your	map

Introduction

313

https://developers.google.com/android/reference/com/google/android/gms/maps/MapFragment
https://developer.android.com/training/basics/fragments/creating.html#AddInLayout
https://mapstyle.withgoogle.com/
https://developers.google.com/maps/documentation/android-api/groundoverlay

To	create	a	customized	style	for	your	map,	you	generate	a	JSON	file	that	specifies	how
features	in	the	map	are	displayed.You	don't	have	to	create	this	JSON	file	manually:	Google
provides	the	Styling	Wizard,	which	generates	the	JSON	for	you	after	you	visually	style	your
map.	In	this	practical,	you	style	the	map	for	"night	mode,"	meaning	that	the	map	uses	dim
colors	and	low	contrast	for	use	at	night.

Note:	Styling	only	applies	to	maps	that	use	the		normal		map	type.
1.	 Navigate	to	https://mapstyle.withgoogle.com/	in	your	browser.
2.	 Select	Create	a	Style.
3.	 Select	the	Night	theme.
4.	 Click	More	Options	at	the	bottom	of	the	menu.
5.	 At	the	bottom	of	the	Feature	type	list,	select	Water	>	Fill.	Change	the	color	of	the	water

to	a	dark	blue	(for	example,	#160064).
6.	 Click	Finish.	Copy	the	JSON	code	from	the	resulting	pop-up	window.
7.	 In	Android	Studio,	create	a	resource	directory	called		raw		in	the		res		directory.	Create

a	file	in		res/raw		called		map_style.json	.
8.	 Paste	the	JSON	code	into	the	new	resource	file.
9.	 To	set	the	JSON	style	to	the	map,	call		setMapStyle()		on	the		GoogleMap		object.	Pass	in

a		MapStyleOptions		object,	which	loads	the	JSON	file.	The		setMapStyle()		method
returns	a	boolean	indicating	the	success	of	the	styling.	If	the	file	can't	be	loaded,	the
method	throws	a		Resources.NotFoundException	.

Copy	the	following	code	into	the		onMapReady()		method	to	style	the	map.	You	may	need
to	create	a		TAG		string	for	your	log	statements:

		try	{

					//	Customize	the	styling	of	the	base	map	using	a	JSON	object	defined

					//	in	a	raw	resource	file.

					boolean	success	=	googleMap.setMapStyle(

								MapStyleOptions.loadRawResourceStyle(

																this,	R.raw.map_style));

					if	(!success)	{

									Log.e(TAG,	"Style	parsing	failed.");

					}

		}	catch	(Resources.NotFoundException	e)	{

					Log.e(TAG,	"Can't	find	style.	Error:	",	e);

		}

10.	 Run	your	app.	The	new	styling	should	be	visible	when	the	map	is	in		normal		mode.

Introduction

314

https://developers.google.com/maps/documentation/javascript/styling#styled_map_wizard
https://mapstyle.withgoogle.com/
https://developers.google.com/android/reference/com/google/android/gms/maps/model/MapStyleOptions.html#loadRawResourceStyle(android.content.Context,%20int)
https://developer.android.com/reference/android/content/res/Resources.NotFoundException.html

Introduction

315

3.2	Style	your	marker

You	can	personalize	your	map	further	by	styling	the	map	markers.	In	this	step,	you	change
the	default	red	markers	to	match	the	night	mode	color	scheme.

1.	 In	the		onMapLongClick()		method,	add	the	following	line	of	code	to	the		MarkerOptions()	
constructor	to	use	the	default	marker	but	change	the	color	to	blue:

	.icon(BitmapDescriptorFactory.defaultMarker

								(BitmapDescriptorFactory.HUE_BLUE))

2.	 Run	the	app.	The	markers	you	place	are	now	shaded	blue,	which	is	more	consistent
with	the	night-mode	theme	of	the	app.

Note	that	POI	markers	are	still	red,	because	you	didn't	add	styling	to	the		onPoiClick()	
method.

3.3	Add	an	overlay

One	way	you	can	customize	the	Google	Map	is	by	drawing	on	top	of	it.	This	technique	is
useful	if	you	want	to	highlight	a	particular	type	of	location,	such	as	popular	fishing	spots.
Three	types	of	overlays	are	supported:

Shapes:	You	can	add	polylines,	polygons,	and	circles	to	the	map.
	TileOverlay		objects:	A	tile	overlay	defines	a	set	of	images	that	are	added	on	top	of	the
base	map	tiles.	Tile	overlays	are	useful	when	you	want	to	add	extensive	imagery	to	the
map.	A	typical	tile	overlay	covers	a	large	geographical	area.
	GroundOverlay		objects:	A	ground	overlay	is	an	image	that	is	fixed	to	a	map.	Unlike
markers,	ground	overlays	are	oriented	to	the	Earth's	surface	rather	than	to	the	screen.
Rotating,	tilting,	or	zooming	the	map	changes	the	orientation	of	the	image.	Ground
overlays	are	useful	when	you	wish	to	fix	a	single	image	at	one	area	on	the	map

In	this	step,	you	add	a	ground	overlay	in	the	shape	of	an	Android	to	your	home	location.

1.	 Download	this	Android	image	and	save	it	in	your		res/drawable		folder.
2.	 In		onMapReady()	,	after	the	call	to	move	the	camera	to	the	home	position,	create	a

	GroundOverlayOptions		object.	Assign	the	object	to	a	variable	called		homeOverlay	:

	GroundOverlayOptions	homeOverlay	=	new	GroundOverlayOptions();

3.	 Use	the		BitmapDescriptorFactory.fromResource()		method	to	create	a		BitmapDescriptor	
object	from	the	above	image.	Pass	the	object	into	the		image()		method	of	the
	GroundOverlayOptions		object:

Introduction

316

https://developers.google.com/android/reference/com/google/android/gms/maps/model/MarkerOptions
https://developers.google.com/android/reference/com/google/android/gms/maps/model/Polyline
https://developers.google.com/android/reference/com/google/android/gms/maps/model/Polygon
https://developers.google.com/android/reference/com/google/android/gms/maps/model/Circle
https://developers.google.com/android/reference/com/google/android/gms/maps/model/TileOverlay.html
https://developers.google.com/android/reference/com/google/android/gms/maps/model/GroundOverlay
https://github.com/google-developer-training/android-advanced/blob/master/Wander/app/src/main/res/drawable/android.png
https://developers.google.com/android/reference/com/google/android/gms/maps/model/GroundOverlayOptions
https://developers.google.com/android/reference/com/google/android/gms/maps/model/BitmapDescriptorFactory.html#fromResource(int)

	GroundOverlayOptions	homeOverlay	=	new	GroundOverlayOptions()

					.image(BitmapDescriptorFactory.fromResource(R.drawable.android));

4.	 Set	the		position		property	for	the		GroundOverlayOptions		object	by	calling	the
	position()		method.	Pass	in	the		home			LatLng		object	and	a		float		for	the	width	in
meters	of	the	desired	overlay.	For	this	example,	a	width	of	100	m	works	well:

	GroundOverlayOptions	homeOverlay	=	new	GroundOverlayOptions()

						.image(BitmapDescriptorFactory.fromResource(R.drawable.android))

								.position(home,	100);

5.	 Call		addGroundOverlay()		on	the		GoogleMap		object.	Pass	in	your		GroundOverlayOptions	
object:

	mMap.addGroundOverlay(homeOverlay);

6.	 Run	the	app.	Zoom	in	on	your	home	location,	and	you	see	the	Android	image	as	an
overlay.

Task	4.	Enable	location	tracking	and	Street
View
Users	often	use	Google	Maps	to	see	their	current	location,	and	you	can	obtain	device
location	using	the	Location	Services	API.	To	display	the	device	location	on	your	map	without
further	use	of		Location		data,	you	can	use	the	location-data	layer.

The	location-data	layer	adds	a	My	Location	button	to	the	top-right	side	of	the	map.	When
the	user	taps	the	button,	the	map	centers	on	the	device's	location.	The	location	is	shown	as
a	blue	dot	if	the	device	is	stationary,	and	as	a	blue	chevron	if	the	device	is	moving.

Introduction

317

https://developer.android.com/training/location/index.html
https://developers.google.com/maps/documentation/android-api/location

Introduction

318

You	can	provide	additional	information	about	a	location	using	Google	Street	View,	which	is	a
navigable	panorama	photo	of	a	given	location.

In	this	task,	you	enable	the	location-data	layer	and	Street	View	so	that	when	the	user	taps
the	info	window	for	the	POI	marker,	the	map	goes	into	to	Street	View	mode.

4.1	Enable	location	tracking

Enabling	location	tracking	in	Google	Maps	requires	a	single	line	of	code.	However,	you	must
make	sure	that	the	user	has	granted	location	permissions	(using	the	runtime-permission
model).

In	this	step,	you	request	location	permissions	and	enable	the	location	tracking.

1.	 In	the		AndroidManifest.xml		file,	verify	that	the		FINE_LOCATION		permission	is	already
present.	Android	Studio	inserted	this	permission	when	you	selected	the	Google	Maps
template.

2.	 To	enable	location	tracking	in	your	app,	create	a	method	in	the		MapsActivity		called
	enableMyLocation()		that	takes	no	arguments	and	doesn't	return	anything.

3.	 Define	the		enableMyLocation()		method.	Check	for	the		ACCESS_FINE_LOCATION	
permission.	If	the	permission	is	granted,	enable	the	location	layer.	Otherwise,	request
the	permission:

	private	void	enableMyLocation()	{

				if	(ContextCompat.checkSelfPermission(this,

												Manifest.permission.ACCESS_FINE_LOCATION)

												==	PackageManager.PERMISSION_GRANTED)	{

								mMap.setMyLocationEnabled(true);

				}	else	{

								ActivityCompat.requestPermissions(this,	new	String[]

																								{Manifest.permission.ACCESS_FINE_LOCATION},

																REQUEST_LOCATION_PERMISSION);

				}

	}

4.	 Call		enableMyLocation()		from	the		onMapReady()		callback	to	enable	the	location	layer.

5.	 Override	the		onRequestPermissionsResult()		method.	If	the	permission	is	granted,	call
	enableMyLocation()	:

Introduction

319

	@Override

	public	void	onRequestPermissionsResult(int	requestCode,

								@NonNull	String[]	permissions,

								@NonNull	int[]	grantResults)	{

				//	Check	if	location	permissions	are	granted	and	if	so	enable	the

				//	location	data	layer.

				switch	(requestCode)	{

								case	REQUEST_LOCATION_PERMISSION:

												if	(grantResults.length	>	0

																				&&	grantResults[0]

																				==	PackageManager.PERMISSION_GRANTED)	{

																enableMyLocation();

																break;

												}

				}

	}

6.	 Run	the	app.	The	top-right	corner	now	contains	the	My	Location	button,	which	displays
the	device's	current	location.

Note:	When	you	run	the	app	on	an	emulator,	the	location	may	not	be	available.	If	you
haven't	used	the	emulator	settings	to	set	a	location,	the	location	button	will	be	unavailable.

4.2	Enable	Street	View

Google	Maps	provides	Street	View,	which	is	a	panoramic	view	of	a	location	with	controls	for
navigating	along	a	designated	path.	Street	View	does	not	have	global	coverage.

In	this	step,	you	enable	a	Street	View	panorama	that	is	activated	when	the	user	taps	a	POI's
info	window.	You	need	to	do	two	things:

1.	 Distinguish	POI	markers	from	other	markers,	because	you	want	your	app's	functionality
to	work	only	on	POI	markers.	This	way,	you	can	start	Street	View	when	the	user	taps	a
POI	info	window,	but	not	when	the	user	taps	any	other	type	of	marker.

The		Marker		class	includes	a		setTag()		method	that	allows	you	to	attach	data.	(The
data	can	be	anything	that	extends	from		Object).	You	will	set	a	tag	on	the	markers	that
are	created	when	users	click	POIs.

2.	 When	the	user	taps	a	tagged	info	window	in	an		OnInfoWindowClickListener	,	replace	the
	MapFragment		with	a		StreetViewPanoramaFragment	.	(The	code	below	uses
	SupportMapFragment		and		SupportStreetViewPanoramaFragment		to	support	Android
versions	below	API	12.)

If	any	of	the	fragments	change	at	runtime,	you	must	add	them	in	the	containing
	Activity		class,	and	not	statically	in	XML.

Introduction

320

https://www.google.com/streetview/understand/#where
https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap.OnInfoWindowClickListener
https://developers.google.com/android/reference/com/google/android/gms/maps/MapFragment
https://developers.google.com/android/reference/com/google/android/gms/maps/StreetViewPanoramaFragment

Tag	the	POI	marker

1.	 In	the		onPoiClick()		callback,	call		setTag()		on		poiMarker	.	Pass	in	any	arbitrary
string:

poiMarker.setTag("poi");

Replace	the	static	SupportMapFragment	with	a	runtime
instance

2.	 Open		activity_maps.xml		and	change	the	element	to	a	frame	layout	that	will	serve	as
the	container	for	your	fragments:

	<FrameLayout	xmlns:android="http://schemas.android.com/apk/res/android"

				android:id="@+id/fragment_container"

				android:layout_width="match_parent"

				android:layout_height="match_parent"	/>

3.	 In		onCreate()		in		MapsActivity	,	remove	the	code	that	finds	the		SupportMapFragment		by
ID,	because	there	is	no	longer	a	static		SupportMapFragment		in	the	XML.	Instead,	create
a	new	runtime	instance	of	the		SupportMapFragment		by	calling
	SupportMapFragment.newInstance()	:

	SupportMapFragment	mapFragment	=	SupportMapFragment.newInstance();

4.	 Add	the	fragment	to	the		FrameLayout		using	a	fragment	transaction	with	the
	FragmentManager	:

	getSupportFragmentManager().beginTransaction()

								.add(R.id.fragment_container,	mapFragment).commit();

5.	 Keep	the	line	of	code	that	triggers	the	asynchronous	loading	of	the	map:

	mapFragment.getMapAsync(this);

Set	an	OnInfoWindowClickListener	and	check	the
marker	tag

6.	 Create	a	method	stub	in		MapsActivity		called		setInfoWindowClickToPanorama()		that
takes	a		GoogleMap		as	an	argument	and	returns		void	:

Introduction

321

	private	void	setInfoWindowClickToPanorama(GoogleMap	map)	{}

7.	 Set	an		OnInfoWindowClickListener		to	the		GoogleMap	:

	map.setOnInfoWindowClickListener(

								new	GoogleMap.OnInfoWindowClickListener()	{

												@Override

												public	void	onInfoWindowClick(Marker	marker)	{

												}

								});

8.	 In	the		onInfoWindowClick()		method,	check	whether	the	marker	contains	the	string	tag
you	set	in	the		onPoiClick()		method:

	if	(marker.getTag()	==	"poi")	{}

Replace	the	SupportMapFragment	with	a
SupportStreetViewPanoramaFragment

9.	 In	the	case	where	the	marker	contains	the	tag,	specify	the	location	for	the	Street	View
panorama	by	using	a		StreetViewPanoramaOptions		object.	Set	the	object's		position	
property	to	the	position	of	the	passed-in	marker:

	StreetViewPanoramaOptions	options	=

								new	StreetViewPanoramaOptions().position(

																marker.getPosition());

10.	 Create	a	new	instance	of		SupportStreetViewPanoramaFragment	,	passing	in	the		options	
object	you	created:

	SupportStreetViewPanoramaFragment	streetViewFragment

								=	SupportStreetViewPanoramaFragment

								.newInstance(options);

11.	 Start	a	fragment	transaction.	Replace	the	contents	of	the	fragment	container	with	the
new	fragment,		streetViewFragment	.	Add	the	transaction	to	the	back	stack,	so	that
pressing	back	will	navigate	back	to	the		SupportMapFragment		and	not	exit	the	app:

	getSupportFragmentManager().beginTransaction()

								.replace(R.id.fragment_container,

																streetViewFragment)

								.addToBackStack(null).commit();

Introduction

322

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi-5e_ctpPVAhXIwFQKHcCmD-wQFggpMAA&url=https%3A%2F%2Fdevelopers.google.com%2Fandroid%2Freference%2Fcom%2Fgoogle%2Fandroid%2Fgms%2Fmaps%2FGoogleMap.OnInfoWindowClickListener&usg=AFQjCNEfeCuXnV9GbyAB-gVBp2FAbtpPLQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiynO3FuJPVAhXFx1QKHTusBugQFggnMAA&url=https%3A%2F%2Fdevelopers.google.com%2Fandroid%2Freference%2Fcom%2Fgoogle%2Fandroid%2Fgms%2Fmaps%2FStreetViewPanoramaOptions&usg=AFQjCNExOZol75be8WRyE3FHnxRFpqSWUQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiJ-4uruZPVAhUnllQKHfZWC2AQFgglMAA&url=https%3A%2F%2Fdevelopers.google.com%2Fandroid%2Freference%2Fcom%2Fgoogle%2Fandroid%2Fgms%2Fmaps%2FSupportStreetViewPanoramaFragment&usg=AFQjCNFGeeEFkaWydVNYuLuAZEaf8fE5qw

Note:	The	argument	for	the		addToBackStack()		method	is	an	optional	name.	The	name
is	used	to	manipulate	the	back	stack	state.	In	this	case,	the	name	is	not	used	again,	so
you	can	pass	in		null	.

12.	 Call		setInfoWindowClickToPanorama(mMap)		in		onMapReady()		after	the	call	to
	setPoiClick().	

13.	 Run	the	app.	Zoom	into	a	city	that	has	Street	View	coverage,	such	as	Mountain	View
(home	of	Google	HQ),	and	find	a	POI,	such	as	a	park.	Tap	on	the	POI	to	place	a	marker
and	show	the	info	window.	Tap	the	info	window	to	enter	Street	View	mode	for	the
location	of	the	marker.	Press	the	back	button	to	return	to	the	map	fragment.

Introduction

323

https://www.google.com/streetview/understand/

Introduction

324

Coding	challenge
Note:	All	coding	challenges	are	optional.
Challenge:	If	you	tap	the	info	window	for	a	POI	in	a	location	where	there	is	no	Street	View
coverage,	you	see	a	black	screen.

To	check	whether	Street	View	is	available	in	an	area,	implement	the
	OnStreetViewPanomaraReady		callback	in	combination	with	the
	StreetViewPanorama.OnStreetViewPanoramaChangeListener	.
If	Street	View	isn't	available	in	a	selected	area,	go	back	to	the	map	fragment	and	show
an	error.

Solution	code
	Wander		solution	code.	(Doesn't	include	the	Challenge	solution.)

Summary
To	use	the	Maps	API,	you	need	an	API	key	from	the	Google	API	Console.
In	Android	Studio,	using	the	Google	Maps	Activity	template	generates	an		Activity	
with	a	single		SupportMapFragment		in	the	app's	layout.	The	template	also	adds	the
	ACCESS_FINE_PERMISSION		to	the	app	manifest,	implements	the		OnMapReadyCallback		in
your	activity,	and	overrides	the	required		onMapReady()		method.
Google	Maps	can	be	in	one	of	the	following	map	types:

Normal	:	Typical	road	map.	Shows	roads,	some	features	built	by	humans,	and
important	natural	features	like	rivers.	Road	and	feature	labels	are	also	visible.
Hybrid	:	Satellite	photograph	data	with	road	maps	added.	Road	and	feature	labels
are	also	visible.
Satellite	:	Photograph	data.	Road	and	feature	labels	are	not	visible.
Terrain	:	Topographic	data.	The	map	includes	colors,	contour	lines	and	labels,	and
perspective	shading.	Some	roads	and	labels	are	also	visible.
None	:	No	map.

You	can	change	the	map	type	at	runtime	by	using	the		GoogleMap.setMapType()	.	method.
A	marker	is	an	indicator	for	a	specific	geographic	location.
When	tapped,	the	default	behavior	for	a	marker	is	to	display	an	info	window	with
information	about	the	location.

Introduction

325

https://developers.google.com/android/reference/com/google/android/gms/maps/OnStreetViewPanoramaReadyCallback
https://developers.google.com/android/reference/com/google/android/gms/maps/StreetViewPanorama.OnStreetViewPanoramaChangeListener
https://github.com/google-developer-training/android-advanced/tree/master/Wander
https://console.developers.google.com
https://developers.google.com/android/reference/com/google/android/gms/maps/SupportMapFragment
https://developers.google.com/android/reference/com/google/android/gms/maps/OnMapReadyCallback
https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap
https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap.html#setMapType(int)

By	default,	points	of	interest	(POIs)	appear	on	the	base	map	along	with	their
corresponding	icons.	POIs	include	parks,	schools,	government	buildings,	and	more.
In	addition,	business	POIs	(shops,	restaurants,	hotels,	and	more)	appear	by	default	on
the	map	when	the	map	type	is		normal	.
You	can	capture	clicks	on	POIs	using	the		OnPoiClickListener	.
You	can	change	the	visual	appearance	of	almost	all	elements	of	a	Google	Map	using
the	Styling	Wizard.	The	Styling	Wizard	generates	a	JSON	file	that	you	pass	into	the
Google	Map	using	the		setMapStyle()		method.
You	can	customize	your	markers	by	changing	the	default	color,	or	replacing	the	default
marker	icon	with	a	custom	image.
Use	a	ground	overlay	to	fix	an	image	to	a	geographic	location.
Use	a		GroundOverlayOptions		object	to	specify	the	image,	the	image's	size	in	meters,
and	the	image's	position.	Pass	this	object	to	the		GoogleMap.addGroundOverlay()		method
to	set	the	overlay	to	the	map.
Provided	that	your	app	has	the		ACCESS_FINE_LOCATION		permission,	you	can	enable
location	tracking	using	the		mMap.setMyLocationEnabled(true)		method.
Google	Street	View	provides	panoramic	360-degree	views	from	designated	roads
throughout	its	coverage	area.
Use	the		StreetViewPanoramaFragment.newInstance()		method	to	create	a	new	Street	View
fragment.
To	specify	the	options	for	the	view,	use	a		StreetViewPanoramaOptions		object.	Pass	the
object	into	the		newInstance()		method.

Related	concept
The	related	concept	documentation	is	in	9.1	C:	Google	Maps	API.

Learn	more
Android	developer	documentation:

Getting	Started	with	the	Google	Maps	Android	API
Adding	a	Map	with	a	Marker
Map	Objects
Adding	a	Styled	Map
Street	View
Ground	Overlays

Reference	documentation:

Introduction

326

https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap.OnPoiClickListener
https://mapstyle.withgoogle.com/
https://developers.google.com/android/reference/com/google/android/gms/maps/model/GroundOverlay
https://developers.google.com/android/reference/com/google/android/gms/maps/model/GroundOverlayOptions
https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap.html#addGroundOverlay(com.google.android.gms.maps.model.GroundOverlayOptions)
https://developers.google.com/android/reference/com/google/android/gms/maps/StreetViewPanoramaOptions
https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-4-add-geo-features-to-your-apps/lesson-9-mapping/9-1-c-google-maps-api/9-1-c-google-maps-api.html
https://developers.google.com/maps/documentation/android-api/start
https://developers.google.com/maps/documentation/android-api/map-with-marker
https://developers.google.com/maps/documentation/android-api/map
https://developers.google.com/maps/documentation/android-api/styling
https://developers.google.com/maps/documentation/android-api/streetview
https://developers.google.com/maps/documentation/android-api/groundoverlay

	GoogleMap	

	SupportMapFragment	

	SupportStreetViewPanoramaFragment	

Introduction

327

https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap
https://developers.google.com/android/reference/com/google/android/gms/maps/SupportMapFragment
https://developers.google.com/android/reference/com/google/android/gms/maps/SupportStreetViewPanoramaFragment

10.1A:	Creating	a	custom	view	from	a	View
subclass
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Customize	an	EditText	view
Solution	code
Summary
Related	concept
Learn	more

Android	offers	a	large	set	of		View		subclasses,	such	as		Button	,		TextView	,		EditText	,
	ImageView	,		CheckBox	,	or		RadioButton	.	You	can	use	these	subclasses	to	construct	a	UI
that	enables	user	interaction	and	displays	information	in	your	app.	If	the		View		subclasses
don't	meet	your	needs,	you	can	create	a	custom	view	that	does.

After	you	create	a	custom	view,	you	can	add	it	to	different	layouts	in	the	same	way	you
would	add	a		TextView		or		Button	.	This	lesson	shows	you	how	to	create	and	use	custom
views	based	on		View		subclasses.

What	you	should	already	KNOW
You	should	be	able	to:

Create	and	run	apps	in	Android	Studio.
Use	the	Layout	Editor	to	create	a	UI.
Edit	a	layout	in	XML.
Use	touch,	text,	and	click	listeners	in	your	code.

What	you	will	LEARN
You	will	learn	how	to:

Extend	the		View		subclass		EditText		to	create	a	custom	text-editing	view.
Use	listeners	to	handle	user	interaction	with	the	custom	view.

Introduction

328

https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/widget/Button.html
https://developer.android.com/reference/android/widget/TextView.html
https://developer.android.com/reference/android/widget/EditText.html
https://developer.android.com/reference/android/widget/ImageView.html
https://developer.android.com/reference/android/widget/CheckBox.html
https://developer.android.com/reference/android/widget/RadioButton.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/widget/EditText.html

Use	a	custom	view	in	a	layout.

What	you	will	DO
Add	a	new	class	that	extends	the		EditText		class	to	create	a	custom	view.
Use	listeners	to	provide	the	custom	view's	behavior.
Add	the	custom	view	to	a	layout.

App	overview
The	CustomEditText	app	demonstrates	how	to	extend		EditText		to	make	a	custom	text-
editing	view.	The	custom	view	includes	a	clear	(X)	button	for	clearing	text.	After	the	custom
view	is	created,	you	can	use	multiple	versions	of	it	in	layouts,	applying	different		EditText	
attributes	as	needed.

Task	1.	Customize	an	EditText	view
In	this	task,	you	create	an	app	with	a	customized		EditText		view	that	includes	a	clear	(X)
button	on	the	right	side	of	the		EditText	.	The	user	can	tap	the	X	to	clear	the	text.
Specifically,	you	will:

Introduction

329

https://developer.android.com/reference/android/widget/EditText.html

Create	an	app	with	an		EditText		view	as	a	placeholder.
Add	layout	attributes	to	position	the	view,	and	to	support	right-to-left	(RTL)	languages
for	text	input.
Extend	the		EditText		class	to	create	a	custom	view.
Initialize	the	custom	view	with	a		drawable		that	appears	at	the	end	of	the		EditText	.
Use	a	text	listener	to	show	the		drawable		only	when	text	is	entered	into	the		EditText	.
Use	a	touch	listener	to	clear	the	text	if	the	user	taps	the	drawable.
Replace	the	placeholder		EditText		with	the	custom	view	in	the	layout.

1.1	Create	an	app	with	an	EditText	view

In	this	step,	you	add	two		drawables		for	the	clear	(X)	button:

An	opaque	version	 	that	appears	when	the	user	enters	text.

A	black	version	 	that	appears	while	the	user	is	tapping	the	X.

You	also	change	a		TextView		to	an		EditText		with	attributes	for	controlling	its	appearance.	If
the	layout	direction	is	set	to	a	right-to-left	(RTL)	language,	these	attributes	change	the
direction	in	which	the	user	enters	text.	(For	more	about	supporting	RTL	languages,	see	the
lesson	on	localization.)

1.	 Create	an	app	named		CustomEditText		using	the	Empty	Activity	template.	Make	sure
that	Generate	Layout	File	is	selected	so	that	the		activity_main.xml		layout	file	is
generated.

2.	 Edit	the		build.gradle	(Module:	app)		file.	Change	the	minimum	SDK	version	to	17,	so
that	you	can	support	RTL	languages	and	place		drawables		in	either	the	left	or	right
position	in		EditText		views:

	minSdkVersion	17

3.	 Right-click	the		drawable/		folder	and	choose	New	>	Vector	Asset.	Click	the	Android
icon	and	choose	the	clear	(X)	icon.	Its	name	changes	to		ic_clear_black_24dp	.	Click
Next	and	Finish.

Introduction

330

4.	 Repeat	step	3,	choosing	the	clear	(X)	icon	again,	but	this	time	drag	the	Opacity	slider	to
50%	as	shown	below.	Change	the	icon's	name	to		ic_clear_opaque_24dp	.	

5.	 In		activity_main.xml	,	change	the	"Hello	World"		TextView		to	an		EditText		with	the
following	attributes:

Attribute Value
	android:id	 	"@+id/my_edit_text"	

	android:layout_width	 	"wrap_content"		

	android:layout_height	 	"wrap_content"		

	android:textAppearance	 	"@style/Base.TextAppearance.AppCompat.Display1"

	android:inputType	 	"textCapSentences"	

	android:layout_gravity	 	"start"	

	android:textAlignment	 	"viewStart"	

	app:layout_constraintBottom_toBottomOf	 	"parent"	

	app:layout_constraintLeft_toLeftOf	 	"parent"	

	app:layout_constraintRight_toRightOf	 	"parent"	

	app:layout_constraintTop_toTopOf	 	"parent"	

	android:hint	 	"Last	name"	

6.	 Extract	the	string	resource	for	"Last	name"	to		last_name	.

Introduction

331

7.	 Run	the	app.	It	displays	an		EditText		field	for	entering	text	(a	last	name),	and	uses	the
	textCapSentences		attribute	to	capitalize	the	first	letter.

Introduction

332

Introduction

333

1.2	Add	a	subclass	that	extends	EditText

1.	 Create	a	new	Java	class	called		EditTextWithClear		with	the	superclass	set	to
	android.support.v7.widget.AppCompatEditText	.		AppCompatEditText		is	an		EditText	
subclass	that	supports	compatible	features	on	older	version	of	the	Android	platform.

2.	 The	editor	opens		EditTextWithClear.java	.	A	red	bulb	appears	a	few	moments	after	you
click	the	class	definition	because	the	class	is	not	complete—it	needs	constructors.

3.	 Click	the	red	bulb	and	select	Create	constructor	matching	super.	Select	all	three
constructors	in	the	popup	menu,	and	click	OK.

The	three	constructors	are:

AppCompatEditText(context:Context):	Required	for	creating	an	instance	of	a	view
programmatically.
AppCompatEditText(context:Context,	attrs:AttributeSet):	Required	to	inflate	the
view	from	an	XML	layout	and	apply	XML	attributes.
AppCompatEditText(context:Context,	attrs:AttributeSet,	defStyleAttr:int):
Required	to	apply	a	default	style	to	all	UI	elements	without	having	to	specify	it	in	each
layout	file.

1.3	Initialize	the	custom	view

Create	a	helper	method	that	initializes	the	view,	and	call	that	method	from	each	constructor.
That	way,	you	don't	have	to	repeat	the	same	code	in	each	constructor.

1.	 Define	a	member	variable	for	the	drawable	(the	X	button	image).

	Drawable	mClearButtonImage;

2.	 Create	a		private		method	called		init()	,	with	no	parameters,	that	initializes	the
member	variable	to	the		drawable		resource		ic_clear_opaque_24dp	.

	private	void	init()	{

					mClearButtonImage	=	ResourcesCompat.getDrawable(getResources(),

																														R.drawable.ic_clear_opaque_24dp,	null);

					//	TODO:	If	the	clear	(X)	button	is	tapped,	clear	the	text.

					//	TODO:	If	the	text	changes,	show	or	hide	the	clear	(X)	button.

	}

The	code	includes	two		TODO		comments	for	upcoming	steps	of	this	task.

3.	 Add	the		init()		method	call	to	each	constructor:

Introduction

334

https://developer.android.com/reference/android/support/v7/widget/AppCompatEditText.html

	public	EditTextWithClear(Context	context)	{

									super(context);

									init();

	}

	public	EditTextWithClear(Context	context,	AttributeSet	attrs)	{

									super(context,	attrs);

									init();

	}

	public	EditTextWithClear(Context	context,	

																														AttributeSet	attrs,	int	defStyleAttr)	{

									super(context,	attrs,	defStyleAttr);

									init();

	}

1.4	Show	or	hide	the	X	button

If	the	user	enters	text,	the		EditTextWithClear		custom	view	shows	the	clear	(X)	button.	If
there	is	no	text	in	the	field,	the		EditTextWithClear		custom	view	hides	the	clear	(X)	button.

To	show	or	hide	the	button,	use	the		TextWatcher		interface,	whose	methods	are	called	if	the
text	changes.	Follow	these	steps:

1.	 Open		EditTextWithClear		and	create	two		private		methods	with	no	parameters,
	showClearButton()		and		hideClearButton()	.	In	these	methods,	use
	setCompoundDrawablesRelativeWithIntrinsicBounds()		to	show	or	hide	the	clear	(X)
button.

	/**

	*	Shows	the	clear	(X)	button.

	*/

	private	void	showClearButton()	{

									setCompoundDrawablesRelativeWithIntrinsicBounds

																	(null,																						//	Start	of	text.

																									null,															//	Above	text.

																									mClearButtonImage,		//	End	of	text.

																									null);														//	Below	text.

	}

	/**

	*	Hides	the	clear	button.

	*/

	private	void	hideClearButton()	{

									setCompoundDrawablesRelativeWithIntrinsicBounds

																	(null,													//	Start	of	text.

																									null,						//	Above	text.

																									null,						//	End	of	text.

																									null);					//	Below	text.

	}

Introduction

335

https://developer.android.com/reference/android/text/TextWatcher.html
https://developer.android.com/reference/android/widget/TextView.html#setCompoundDrawablesRelativeWithIntrinsicBounds(android.graphics.drawable.Drawable,%20android.graphics.drawable.Drawable,%20android.graphics.drawable.Drawable,%20android.graphics.drawable.Drawable)

In		showClearButton()	,	the		setCompoundDrawablesRelativeWithIntrinsicBounds()		method
sets	the		drawable			mClearButtonImage		to	the	end	of	the	text.	The	method
accommodates	right-to-left	(RTL)	languages	by	using	the	arguments	as	"start"	and
"end"	positions	rather	than	"left"	and	"right"	positions.	For	more	about	supporting	RTL
languages,	see	the	lesson	on	localization.

Use		null		for	positions	that	should	not	show	a		drawable	.	In		hideClearButton()	,	the
	setCompoundDrawablesRelativeWithIntrinsicBounds()		method	replaces	the		drawable	
with		null		in	the	end	position.

The		setCompoundDrawablesRelativeWithIntrinsicBounds()		method	returns	the	exact	size
of	the		drawable	.	This	method	requires	a	minimum	Android	API	level	17	or	newer.	Be
sure	to	edit	your		build.gradle	(Module:	app)		file	to	use		minSdkVersion	17	.

2.	 In		EditTextWithClear	,	add	a		TextWatcher()		inside	the		init()		method,	replacing	the
second		TODO		comment	(TODO:	If	the	text	changes,	show	or	hide	the	clear	(X)
button).	Let	Android	Studio	do	the	work	for	you:	start	by	entering	addText:

	//	If	the	text	changes,	show	or	hide	the	clear	(X)	button.

	addText

3.	 After	entering	addText,	choose	the	suggestion	that	appears	for
addTextChangedListener(TextWatcher	watcher).	The	code	changes	to	the	following,
and	a	red	bulb	appears	as	a	warning.

	addTextChangedListener()

4.	 In	the	code	shown	above,	enter	new	T	inside	the	parentheses:

	addTextChangedListener(new	T)

5.	 Choose	the	TextWatcher{...}	suggestion	that	appears.	Android	Studio	creates	the
	beforeTextChanged()	,		onTextChanged()	,	and		afterTextChanged()		methods	inside	the
	addTextChangedListener()		method,	as	shown	in	the	code	below:

Introduction

336

https://developer.android.com/reference/android/text/TextWatcher.html

	addTextChangedListener(new	TextWatcher()	{

					@Override

					public	void	beforeTextChanged(CharSequence	s,	int	start,	

																																													int	count,	int	after)	{

					}

					@Override

					public	void	onTextChanged(CharSequence	s,	int	start,	

																																													int	before,	int	count)	{

					}

					@Override

					public	void	afterTextChanged(Editable	s)	{

					}

	});

6.	 In	the		onTextChanged()		method,	call	the		showClearButton()		method	for	showing	the
clear	(X)	button.	You	implement	only		onTextChanged()		in	this	practical,	so	leave
	beforeTextChanged()		and		afterTextChanged()		alone,	or	just	add	comments	to	them.

	public	void	onTextChanged(CharSequence	s,	int	start,	

																																													int	before,	int	count)	{

					showClearButton();

	}

1.5	Add	touch	and	text	listeners

Other	behaviors	of	the		EditTextWithClear		custom	view	are	to:

Clear	the	text	from	the	field	if	the	user	taps	the	clear	(X)	button.
Render	the	clear	(X)	button	as	opaque	before	the	user	taps	it,	and	black	while	the	user
is	tapping	it.

To	detect	the	tap	and	clear	the	text,	use	the		View.OnTouchListener		interface.	The	interface's
	onTouch()		method	is	called	when	a	touch	event	occurs	with	the	button.

Tip:	To	learn	more	about	event	listeners,	see	Input	Events.

You	should	design	the		EditTextWithClear		class	to	be	useful	in	both	left-to-right	(LTR)	and
right-to-left	(RTL)	language	layouts.	However,	the	button	is	on	the	right	side	in	an	LTR
layout,	and	on	the	left	side	of	an	RTL	layout.	The	code	needs	to	detect	whether	the	touch
occurred	on	the	button	itself.	It	checks	to	see	if	the	touch	occurred	after	the	start	location	of

Introduction

337

https://developer.android.com/reference/android/view/View.OnTouchListener.html
https://developer.android.com/guide/topics/ui/ui-events.html

the	button.	The	start	location	of	the	button	is	different	in	an	RTL	layout	than	it	is	in	an	LTR
layout,	as	shown	in	the	figure.

In	the	figure	above:

1.	 The	start	location	of	the	button	in	an	LTR	layout.	Moving	to	the	right,	the	touch	must
occur	after	this	location	on	the	screen	and	before	the	right	edge.

2.	 The	start	location	of	the	button	in	an	RTL	layout.	Moving	to	the	left,	the	touch	must
occur	after	this	location	on	the	screen	and	before	the	left	edge.

Tip:	To	learn	more	about	reporting	finger	movement	events,	see		MotionEvent	.

Follow	these	steps	to	use	the		View.OnTouchListener		interface:

1.	 In	the		init()		method,	replace	the	first		TODO		comment	(TODO:	If	the	clear	(X)	button
is	tapped,	clear	the	text)	with	the	following	code.	If	the	clear	(X)	button	is	visible,	this
code	sets	a	touch	listener	that	responds	to	events	inside	the	bounds	of	the	button.

	//	If	the	clear	(X)	button	is	tapped,	clear	the	text.

	setOnTouchListener(new	OnTouchListener()	{

					@Override

					public	boolean	onTouch(View	v,	MotionEvent	event)	{

									return	false;

					}

	});

2.	 In	the		onTouch()		method,	replace	the	single		return	false		statement	with	the
following:

					if	((getCompoundDrawablesRelative()[2]	!=	null))	{

									float	clearButtonStart;	//	Used	for	LTR	languages

									float	clearButtonEnd;		//	Used	for	RTL	languages

									boolean	isClearButtonClicked	=	false;

									//	TODO:	Detect	the	touch	in	RTL	or	LTR	layout	direction.

									//	TODO:	Check	for	actions	if	the	button	is	tapped.

					}

					return	false;

In	the	previous	step,	you	set	the	location	of	the	clear	(X)	button	using
	setCompoundDrawablesRelativeWithIntrinsicBounds()	:

Introduction

338

https://developer.android.com/reference/android/view/MotionEvent.html
https://developer.android.com/reference/android/view/View.OnTouchListener.html
https://developer.android.com/reference/android/widget/TextView.html#setCompoundDrawablesRelativeWithIntrinsicBounds(android.graphics.drawable.Drawable,%20android.graphics.drawable.Drawable,%20android.graphics.drawable.Drawable,%20android.graphics.drawable.Drawable)

Location	0:	Start	of	text	(set	to		null).
Location	1:	Top	of	text	(set	to		null).
Location	2:	End	of	text	(set	to		mClearButtonImage).
Location	3:	Bottom	of	text	(set	to		null).

In	the	above	step,	you	use	the		getCompoundDrawablesRelative()[2]		expression,	which
uses		getCompoundDrawablesRelative()		to	return	the		drawable		at	the	end	of	the	text
	[2]	.	If	no		drawable		is	present,	the	expression	returns		null	.	The	code	executes	only
if	that	location	is	not		null	—which	means	that	the	clear	(X)	button	is	in	that	location.
Otherwise,	the	code	returns		false	.

1.6	Recognize	the	user's	tap

To	recognize	the	user's	tap	on	the	clear	(X)	button,	you	need	to	get	the	intrinsic	bounds	of
the	button	and	compare	it	with	the	touch	event.

For	an	LTR	language,	the	clear	(X)	button	starts	on	the	right	side	of	the	field.	Any	touch
occurring	after	the	start	point	is	a	touch	on	the	button	itself.
For	an	RTL	language,	the	clear	(X)	button	ends	on	the	left	side	of	the	field.	Any	touch
occurring	before	the	endpoint	is	a	touch	on	the	button	itself.

Follow	these	steps:

1.	 Use		getLayoutDirection()		to	get	the	current	layout	direction.	Use	the		MotionEvent	
	getX()		method	to	determine	whether	the	touch	occurred	after	the	start	of	the	button	in
an	LTR	layout,	or	before	the	end	of	the	button	in	an	RTL	layout.	In	the		onTouch()	
method,	replace	the	first		TODO		comment	(TODO:	Detect	the	touch	in	RTL	or	LTR	layout
direction):

Introduction

339

https://developer.android.com/reference/android/widget/TextView.html#getCompoundDrawablesRelative()
https://developer.android.com/reference/android/support/v4/view/ViewCompat.html#getLayoutDirection(android.view.View)
https://developer.android.com/reference/android/view/MotionEvent.html#getX()

							//	Detect	the	touch	in	RTL	or	LTR	layout	direction.

							if	(getLayoutDirection()	==	LAYOUT_DIRECTION_RTL)	{

											//	If	RTL,	get	the	end	of	the	button	on	the	left	side.

											clearButtonEnd	=	mClearButtonImage

																																	.getIntrinsicWidth()	+	getPaddingStart();

											//	If	the	touch	occurred	before	the	end	of	the	button,

											//	set	isClearButtonClicked	to	true.

											if	(event.getX()	<	clearButtonEnd)	{

															isClearButtonClicked	=	true;

											}

							}	else	{

											//	Layout	is	LTR.

											//	Get	the	start	of	the	button	on	the	right	side.

											clearButtonStart	=	(getWidth()	-	getPaddingEnd()

																																	-	mClearButtonImage.getIntrinsicWidth());

											//	If	the	touch	occurred	after	the	start	of	the	button,

											//	set	isClearButtonClicked	to	true.

											if	(event.getX()	>	clearButtonStart)	{

															isClearButtonClicked	=	true;

											}

							}

2.	 Check	for	actions	if	the	clear	(X)	button	is	tapped.	On		ACTION_DOWN	,	you	want	to	show
the	black	version	of	the	button	as	a	highlight.	On		ACTION_UP	,	you	want	to	switch	back	to
the	default	version	of	the	button,	clear	the	text,	and	hide	the	button.	In	the		onTouch()	
method,	replace	the	second		TODO		comment	(TODO:	Check	for	actions	if	the	button	is
tapped):

Introduction

340

							//	Check	for	actions	if	the	button	is	tapped.

							if	(isClearButtonClicked)	{

											//	Check	for	ACTION_DOWN	(always	occurs	before	ACTION_UP).

											if	(event.getAction()	==	MotionEvent.ACTION_DOWN)	{

															//	Switch	to	the	black	version	of	clear	button.

															mClearButtonImage	=	

																					ResourcesCompat.getDrawable(getResources(),

																					R.drawable.ic_clear_black_24dp,	null);

															showClearButton();

											}

											//	Check	for	ACTION_UP.

											if	(event.getAction()	==	MotionEvent.ACTION_UP)	{

															//	Switch	to	the	opaque	version	of	clear	button.

															mClearButtonImage	=

																					ResourcesCompat.getDrawable(getResources(),

																					R.drawable.ic_clear_opaque_24dp,	null);

															//	Clear	the	text	and	hide	the	clear	button.

															getText().clear();

															hideClearButton();

															return	true;

											}

							}	else	{

											return	false;

							}

The	first	touch	event	is		ACTION_DOWN	.	Use	it	to	check	if	the	clear	(X)	button	is	touched
(ACTION_DOWN).	If	it	is,	switch	the	clear	button	to	the	black	version.

The	second	touch	event,		ACTION_UP		occurs	when	the	gesture	is	finished.	Your	code
can	then	clear	the	text,	hide	the	clear	(X)	button,	and	return		true	.	Otherwise	the	code
returns		false	.

1.7	Change	the	EditText	view	to	the	custom	view

The		EditTextWithClear		class	is	now	ready	to	be	used	in	place	of	the		EditText		view	in	the
layout:

1.	 In		activity_main.xml	,	change	the		EditText		tag	for	the		my_edit_text		element	to
	com.example.android.customedittext.EditTextWithClear	.

The		EditTextWithClear		class	inherits	the	attributes	defined	for	the	original		EditText	,
so	there	is	no	need	to	change	any	of	them	for	this	step.

If	you	see	the	message	"classes	missing"	in	the	preview,	click	the	link	to	rebuild	the
project.

Introduction

341

https://developer.android.com/reference/android/view/MotionEvent.html#ACTION_DOWN
https://developer.android.com/reference/android/view/MotionEvent.html#ACTION_UP

2.	 Run	the	app.	Enter	text,	and	then	tap	the	clear	(X)	button	to	clear	the	text.	

1.8	Run	the	app	with	an	RTL	language

To	test	an	RTL	language,	you	can	add	Hebrew	in	the	Translations	Editor,	switch	the	device
or	emulator	to	Hebrew,	and	run	the	app.	Follow	these	steps:

1.	 Open	the		strings.xml		file,	and	click	the	Open	editor	link	in	the	top	right	corner	to	open
the	Translations	Editor.

2.	 Click	the	globe	button	in	the	top	left	corner	of	the	Translations	Editor	pane,	and	select
Hebrew	(iw)	in	Israel	(IL)	in	the	dropdown	menu.

After	you	choose	a	language,	a	new	column	with	blank	entries	appears	in	the
Translations	Editor	for	that	language,	and	the	keys	that	have	not	yet	been	translated
appear	in	red.

3.	 Enter	the	Hebrew	translation	of	"Last	name"	for	the		last_name		key	by	selecting	the
key's	cell	in	the	column	for	the	language	(Hebrew),	and	entering	the	translation	in	the
Translation	field	at	the	bottom	of	the	pane.	(For	instructions	on	using	the	Translations
Editor,	see	the	chapter	on	localization.)	When	finished,	close	the	Translations	Editor.

4.	 On	your	device	or	emulator,	find	the	Languages	&	input	settings	in	the	Settings	app.
For	devices	using	Android	Oreo	(8)	or	newer,	the	Languages	&	input	choice	is	under
System.

Introduction

342

Be	sure	to	remember	the	globe	icon	for	the	Languages	&	input	choice,	so	that	you	can

find	it	again	if	you	switch	to	a	language	you	do	not	understand.	

5.	 Choose	Languages	(or	Language	on	Android	6	or	older),	which	is	easy	to	find
because	it	is	the	first	choice	on	the	Languages	&	input	screen.

6.	 For	devices	and	emulators	running	Android	6	or	older,	select	 תירִבעִ 	for	Hebrew.	For
devices	and	emulators	running	Android	7	or	newer,	click	Add	a	language,	select	 תירִבעִ ,
select	(ישראל)	עברית	for	the	locale,	and	then	use	the	move	icon	on	the	right	side	of	the
Language	preferences	screen	to	drag	the	language	to	the	top	of	the	list.

7.	 Run	the	app.	The		EditTextWithClear		element	should	be	reversed	for	an	RTL	language,
with	the	clear	(X)	button	on	the	left	side,	as	shown	below.

8.	 Put	a	finger	on	the	clear	(X)	button,	or	if	you're	using	a	mouse,	click	and	hold	on	the
clear	button.	Then	drag	away	from	the	clear	button.	The	button	changes	from	gray	to
black,	indicating	that	it	is	still	touched.

Introduction

343

Introduction

344

9.	 To	change	back	from	Hebrew	to	English,	repeat	Steps	4-6	above	with	the	selection
English	for	language	and	United	States	for	locale.

Solution	code
Android	Studio	project:	CustomEditText

Summary
To	create	a	custom	view	that	inherits	the	look	and	behavior	of	a		View		subclass	such	as
	EditText	,	add	a	new	class	that	extends	the	subclass	(such	as		EditText),	and	make
adjustments	by	overriding	some	of	the	subclass	methods.
Add	listeners	such	as		View.OnClickListener		to	the	custom	view	to	define	the	view's
interactive	behavior.
Add	the	custom	view	to	an	XML	layout	file	with	attributes	to	define	the	view's
appearance,	as	you	would	with	other	UI	elements.

Tip:	View	the	different	methods	of	the		View		subclasses,	such	as		TextView	,		Button	,	and
	ImageView	,	to	see	how	you	can	modify	a		View		subclass	by	overriding	these	methods.	For
example,	you	can	override	the		setCompoundDrawablesRelativeWithIntrinsicBounds()		method
of	a		TextView		(or	an		EditText	,	which	is	a	subclass	of		TextView)	to	set	a		drawable		to
appear	to	the	start	of,	above,	to	the	end	of,	and	below	the	text.

Related	concept
The	related	concept	documentation	is	Custom	views.

Learn	more
Android	developer	documentation:

Creating	Custom	Views
Custom	Components
	View	

Input	Events
	onDraw()	

	Canvas	

	drawCircle()	

Introduction

345

https://github.com/google-developer-training/android-advanced/tree/master/CustomEditText
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/widget/EditText.html
https://developer.android.com/reference/android/view/View.OnClickListener.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/widget/TextView.html
https://developer.android.com/reference/android/widget/Button.html
https://developer.android.com/reference/android/widget/ImageView.html
https://developer.android.com/reference/android/widget/TextView.html#setCompoundDrawablesRelativeWithIntrinsicBounds(int,%20int,%20int,%20int)
https://developer.android.com/reference/android/widget/EditText.html
https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-5-advanced-graphics-and-views/lesson-10-custom-views/10-1-c-custom-views/10-1-c-custom-views.html
https://developer.android.com/training/custom-views/index.html
https://developer.android.com/guide/topics/ui/custom-components.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/guide/topics/ui/ui-events.html
https://developer.android.com/reference/android/view/View.html#onDraw(android.graphics.Canvas)
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html#drawCircle(float,%20float,%20float,%20android.graphics.Paint)

	drawText()	

	Paint	

Video:

Quick	Intro	to	Creating	a	Custom	View	in	Android
Android	Custom	View	Tutorial

Introduction

346

https://developer.android.com/reference/android/graphics/Canvas.html#drawText(java.lang.String,%20int,%20int,%20float,%20float,%20android.graphics.Paint)
https://developer.android.com/reference/android/graphics/Paint.html
https://youtu.be/ktbYUrlN_Ws
https://youtu.be/sb9OEl4k9Dk

10.1B:	Creating	a	custom	view	from
scratch
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Create	a	custom	view	from	scratch
Task	1	solution	code
Coding	challenge	1
Challenge	1	solution	code
Coding	challenge	2
Challenge	2	solution	code
Summary
Related	concept
Learn	more

By	extending		View		directly,	you	can	create	an	interactive	UI	element	of	any	size	and	shape
by	overriding	the		onDraw()		method	for	the		View		to	draw	it.	After	you	create	a	custom	view,
you	can	add	it	to	different	layouts	in	the	same	way	you	would	add	any	other		View	.	This
lesson	shows	you	how	to	create	a	custom	view	from	scratch	by	extending		View		directly.

What	you	should	already	KNOW
You	should	be	able	to:

Create	and	run	apps	in	Android	Studio.
Use	the	Layout	Editor	to	create	a	UI.
Edit	a	layout	in	XML.
Use	touch,	text,	and	click	listeners	in	your	code.
Create	an	app	with	an	options	menu

What	you	will	LEARN
You	will	learn	how	to:

Introduction

347

https://developer.android.com/reference/android/view/View.html

Extend		View		to	create	a	custom	view.
Draw	a	simple	custom	view	that	is	circular	in	shape.
Use	listeners	to	handle	user	interaction	with	the	custom	view.
Use	a	custom	view	in	a	layout.

What	you	will	DO
Extend		View		to	create	a	custom	view.
Initialize	the	custom	view	with	drawing	and	painting	values.
Override		onDraw()		to	draw	the	view.
Use	listeners	to	provide	the	custom	view's	behavior.
Add	the	custom	view	to	a	layout.

App	overview
The	CustomFanController	app	demonstrates	how	to	create	a	custom	view	subclass	from
scratch	by	extending	the		View		class.	The	app	displays	a	circular	UI	element	that	resembles
a	physical	fan	control,	with	settings	for	off	(0),	low	(1),	medium	(2),	and	high	(3).	You	can
modify	the	subclass	to	change	the	number	of	settings,	and	use	standard	XML	attributes	to
define	its	appearance.

Introduction

348

https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/View.html#onDraw(android.graphics.Canvas)
https://github.com/google-developer-training/android-advanced/tree/master/CustomFanController

Task	1.	Create	a	custom	view	from	scratch
In	this	task	you	will:

Create	an	app	with	an		ImageView		as	a	placeholder	for	the	custom	view.
Extend		View		to	create	the	custom	view.
Initialize	the	custom	view	with	drawing	and	painting	values.
Override		onDraw()		to	draw	the	dial	with	an	indicator	and	text	labels	for	the	settings:	0
(off),	1	(low),	2	(medium),	and	3	(high).
Use	the		View.OnClickListener		interface	to	move	the	dial	indicator	to	the	next	selection,
and	change	the	dial's	color	from	gray	to	green	for	selections	1	through	3	(indicating	that
the	fan	power	is	on).
In	the	layout,	replace	the		ImageView		placeholder	with	the	custom	view.

All	the	code	to	draw	the	custom	view	is	provided	in	this	task.	(You	learn	more	about
	onDraw()		and	drawing	on	a		Canvas		object	with	a		Paint		object	in	another	lesson.)

1.1	Create	an	app	with	an	ImageView	placeholder

1.	 Create	an	app	with	the	title		CustomFanController		using	the	Empty	Activity	template,	and
make	sure	the	Generate	Layout	File	option	is	selected.

2.	 Open		activity_main.xml	.	The	"Hello	World"		TextView		appears	centered	within	a
	ConstraintLayout	.	Click	the	Text	tab	to	edit	the	XML	code,	and	delete	the
	app:layout_constraintBottom_toBottomOf		attribute	from	the		TextView	.

3.	 Add	or	change	the	following		TextView		attributes,	leaving	the	other	layout	attributes
(such	as		layout_constraintTop_toTopOf)	the	same:

	TextView		attribute Value
	android:id	 	"@+id/customViewLabel"	

	android:textAppearance	 	"@style/Base.TextAppearance.AppCompat.Display1"	

	android:padding	 	"16dp"	

	android:layout_marginLeft	 	"8dp"	

	android:layout_marginStart	 	"8dp"	

	android:layout_marginEnd	 	"8dp"	

	android:layout_marginRight	 	"8dp"	

	android:layout_marginTop	 	"24dp"	

	android:text	 	"Fan	Control"	

4.	 Add	an		ImageView		as	a	placeholder,	with	the	following	attributes:

Introduction

349

https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/View.html#onDraw(android.graphics.Canvas)
https://developer.android.com/reference/android/view/View.OnClickListener.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Paint.html

	ImageView		attribute Value
	android:id	 	"@+id/dialView"	

	android:layout_width	 	"200dp"		

	android:layout_height	 	"200dp"		

	android:background	 	"@android:color/darker_gray"	

	app:layout_constraintTop_toBottomOf	 	"@+id/customViewLabel"	

	app:layout_constraintLeft_toLeftOf	 	"parent"	

	app:layout_constraintRight_toRightOf	 	"parent"	

	android:layout_marginLeft	 	"8dp"	

	android:layout_marginRight	 	"8dp"	

	android:layout_marginTop	 	"8dp"	

5.	 Extract	string	and	dimension	resources	in	both	UI	elements.

The	layout	should	look	like	the	figure	below.

In	the	above	figure:

1.	 Component	Tree	with	layout	elements	in		activity_main.xml	
2.	 	ImageView		to	be	replaced	with	a	custom	view
3.	 	ImageView		attributes

1.2	Extend	View	and	initialize	the	view

Introduction

350

1.	 Create	a	new	Java	class	called		DialView	,	whose	superclass	is		android.view.View	.
2.	 Click	the	red	bulb	for	the	new		DialView		class,	and	choose	Create	constructor

matching	super.	Select	the	first	three	constructors	in	the	popup	menu	(the	fourth
constructor	requires	API	21	and	is	not	needed	for	this	example).

3.	 At	the	top	of		DialView		define	the	member	variables	you	need	in	order	to	draw	the
custom	view:

	private	static	int	SELECTION_COUNT	=	4;	//	Total	number	of	selections.

	private	float	mWidth;																			//	Custom	view	width.

	private	float	mHeight;																		//	Custom	view	height.

	private	Paint	mTextPaint;															//	For	text	in	the	view.

	private	Paint	mDialPaint;															//	For	dial	circle	in	the	view.

	private	float	mRadius;																		//	Radius	of	the	circle.

	private	int	mActiveSelection;											//	The	active	selection.

	//	String	buffer	for	dial	labels	and	float	for	ComputeXY	result.

	private	final	StringBuffer	mTempLabel	=	new	StringBuffer(8);

	private	final	float[]	mTempResult	=	new	float[2];

The		SELECTION_COUNT		defines	the	total	number	of	selections	for	this	custom	view.	The
code	is	designed	so	that	you	can	change	this	value	to	create	a	control	with	more	or
fewer	selections.

The		mTempLabel		and		mTempResult		member	variables	provide	temporary	storage	for	the
result	of	calculations,	and	are	used	to	reduce	the	memory	allocations	while	drawing.

4.	 As	in	the	previous	app,	use	a	separate	method	to	initialize	the	view.	This		init()		helper
initializes	the	above	instance	variables:

	private	void	init()	{

					mTextPaint	=	new	Paint(Paint.ANTI_ALIAS_FLAG);

					mTextPaint.setColor(Color.BLACK);

					mTextPaint.setStyle(Paint.Style.FILL_AND_STROKE);

					mTextPaint.setTextAlign(Paint.Align.CENTER);

					mTextPaint.setTextSize(40f);

					mDialPaint	=	new	Paint(Paint.ANTI_ALIAS_FLAG);

					mDialPaint.setColor(Color.GRAY);

					//	Initialize	current	selection.	

					mActiveSelection	=	0;

					//	TODO:	Set	up	onClick	listener	for	this	view.

	}

	Paint		styles	for	rendering	the	custom	view	are	created	in	the		init()		method	rather
than	at	render-time	with		onDraw()	.	This	is	to	improve	performance,	because		onDraw()	
is	called	frequently.	(You	learn	more	about		onDraw()		and	drawing	on	a		Canvas		object
with	a		Paint		object	in	another	lesson.)

Introduction

351

https://developer.android.com/reference/android/view/View.html#onDraw(android.graphics.Canvas)
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Paint.html

5.	 Call		init()		from	each	constructor.

6.	 Because	a	custom	view	extends		View	,	you	can	override		View		methods	such	as
	onSizeChanged()		to	control	its	behavior.	In	this	case	you	want	to	determine	the	drawing
bounds	for	the	custom	view's	dial	by	setting	its	width	and	height,	and	calculating	its
radius,	when	the	view	size	changes,	which	includes	the	first	time	it	is	drawn.	Add	the
following	to		DialView	:

	@Override

	protected	void	onSizeChanged(int	w,	int	h,	int	oldw,	int	oldh)	{

					//	Calculate	the	radius	from	the	width	and	height.

					mWidth	=	w;

					mHeight	=	h;

					mRadius	=	(float)	(Math.min(mWidth,	mHeight)	/	2	*	0.8);

	}

The		onSizeChanged()		method	is	called	when	the	layout	is	inflated	and	when	the	view
has	changed.	Its	parameters	are	the	current	width	and	height	of	the	view,	and	the	"old"
(previous)	width	and	height.

1.3	Draw	the	custom	view

To	draw	the	custom	view,	your	code	needs	to	render	an	outer	grey	circle	to	serve	as	the	dial,
and	a	smaller	black	circle	to	serve	as	the	indicator.	The	position	of	the	indicator	is	based	on
the	user's	selection	captured	in		mActiveSelection	.	Your	code	must	calculate	the	indicator
position	before	rendering	the	view.	After	adding	the	code	to	calculate	the	position,	override
the		onDraw()		method	to	render	the	view.

The	code	for	drawing	this	view	is	provided	without	explanation	because	the	focus	of	this
lesson	is	creating	and	using	a	custom	view.	The	code	uses	the		Canvas		methods
	drawCircle()		and		drawText()	.

1.	 Add	the	following		computeXYForPosition()		method	to		DialView		to	compute	the	X	and	Y
coordinates	for	the	text	label	and	indicator	(0,	1,	2,	or	3)	of	the	chosen	selection,	given
the	position	number	and	radius:

	private	float[]	computeXYForPosition

																										(final	int	pos,	final	float	radius)	{

					float[]	result	=	mTempResult;

					Double	startAngle	=	Math.PI	*	(9	/	8d);			//	Angles	are	in	radians.

					Double	angle	=	startAngle	+	(pos	*	(Math.PI	/	4));

					result[0]	=	(float)	(radius	*	Math.cos(angle))	+	(mWidth	/	2);

					result[1]	=	(float)	(radius	*	Math.sin(angle))	+	(mHeight	/	2);

					return	result;

	}

Introduction

352

https://developer.android.com/reference/android/view/View.html#onSizeChanged(int,%20int,%20int,%20int)
https://developer.android.com/reference/android/view/View.html#onDraw(android.graphics.Canvas)
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html#drawCircle(float,%20float,%20float,%20android.graphics.Paint)
https://developer.android.com/reference/android/graphics/Canvas.html#drawText(java.lang.String,%20int,%20int,%20float,%20float,%20android.graphics.Paint)

The		pos		parameter	is	a	position	index	(starting	at	0).	The		radius		parameter	is	for	the
outer	circle.

You	will	use	the		computeXYForPosition()		method	in	the		onDraw()		method.	It	returns	a
two-element	array	for	the	position,	in	which	element	0	is	the	X	coordinate,	and	element
1	is	the	Y	coordinate.

2.	 To	render	the	view	on	the	screen,	use	the	following	code	to	override	the		onDraw()	
method	for	the	view.	It	uses		drawCircle()		to	draw	a	circle	for	the	dial,	and	to	draw	the
indicator	mark.	It	uses		drawText()		to	place	text	for	labels,	using	a		StringBuffer		for	the
label	text.

	@Override

	protected	void	onDraw(Canvas	canvas)	{

					super.onDraw(canvas);

					//	Draw	the	dial.

					canvas.drawCircle(mWidth	/	2,	mHeight	/	2,	mRadius,	mDialPaint);

					//	Draw	the	text	labels.

					final	float	labelRadius	=	mRadius	+	20;

					StringBuffer	label	=	mTempLabel;

					for	(int	i	=	0;	i	<	SELECTION_COUNT;	i++)	{

									float[]	xyData	=	computeXYForPosition(i,	labelRadius);

									float	x	=	xyData[0];

									float	y	=	xyData[1];

									label.setLength(0);

									label.append(i);

									canvas.drawText(label,	0,	label.length(),	x,	y,	mTextPaint);

					}

					//	Draw	the	indicator	mark.

					final	float	markerRadius	=	mRadius	-	35;

					float[]	xyData	=	computeXYForPosition(mActiveSelection,	

																																																					markerRadius);

					float	x	=	xyData[0];

					float	y	=	xyData[1];

					canvas.drawCircle(x,	y,	20,	mTextPaint);

	}

(You	learn	more	about	drawing	on	a		Canvas		object	in	another	lesson.)

1.4	Add	the	custom	view	to	the	layout

You	can	now	replace	the		ImageView		with	the	custom		DialView		class	in	the	layout,	in	order
to	see	what	it	looks	like:

1.	 In		activity_main.xml	,	change	the		ImageView		tag	for	the		dialView		to
	com.example.customfancontroller.DialView	,	and	delete	the		android:background	
attribute.

Introduction

353

https://developer.android.com/reference/android/graphics/Canvas.html#drawCircle(float,%20float,%20float,%20android.graphics.Paint)
https://developer.android.com/reference/android/graphics/Canvas.html#drawText(java.lang.String,%20int,%20int,%20float,%20float,%20android.graphics.Paint)
https://developer.android.com/reference/java/lang/StringBuffer.html
https://developer.android.com/reference/android/graphics/Canvas.html

The		DialView		class	inherits	the	attributes	defined	for	the	original		ImageView	,	so	there
is	no	need	to	change	the	other	attributes.

2.	 Run	the	app.

Introduction

354

Introduction

355

1.5	Add	a	click	listener

To	add	behavior	to	the	custom	view,	add	an		OnClickListener()		to	the		DialView			init()	
method	to	perform	an	action	when	the	user	taps	the	view.	Each	tap	should	move	the
selection	indicator	to	the	next	position:	0-1-2-3	and	back	to	0.	Also,	if	the	selection	is	1	or
higher,	change	the	background	from	gray	to	green	(indicating	that	the	fan	power	is	on):

1.	 Add	the	following	after	the		TODO		comment	in	the		init()		method:

	setOnClickListener(new	OnClickListener()	{

					@Override

					public	void	onClick(View	v)	{

									//	Rotate	selection	to	the	next	valid	choice.

									mActiveSelection	=	(mActiveSelection	+	1)	%	SELECTION_COUNT;

									//	Set	dial	background	color	to	green	if	selection	is	>=	1.

									if	(mActiveSelection	>=	1)	{

													mDialPaint.setColor(Color.GREEN);

									}	else	{

													mDialPaint.setColor(Color.GRAY);

									}

									//	Redraw	the	view.

									invalidate();

					}

	});

The		invalidate()		method	of		View		invalidates	the	entire	view,	forcing	a	call	to
	onDraw()		to	redraw	the	view.	If	something	in	your	custom	view	changes	and	the
change	needs	to	be	displayed,	you	need	to	call		invalidate()	.

2.	 Run	the	app.	Tap	the		DialView		element	to	move	the	indicator	from	0	to	1.	The	dial
should	turn	green.	With	each	tap,	the	indicator	should	move	to	the	next	position.	When
the	indicator	reaches	0,	the	dial	should	turn	gray.	

Introduction

356

https://developer.android.com/reference/android/view/View.OnClickListener.html
https://developer.android.com/reference/android/view/View.html#invalidate()

Task	1	solution	code
Android	Studio	project:	CustomFanController

Coding	challenge	1
Note:	All	coding	challenges	are	optional.
Challenge:	Define	two	custom	attributes	for	the		DialView		custom	view	dial	colors:
	fanOnColor		for	the	color	when	the	fan	is	set	to	the	"on"	position,	and		fanOffColor		for	the
color	when	the	fan	is	set	to	the	"off"	position.

Hints

For	this	challenge	you	need	to	do	the	following:

Create	the		attrs.xml		file	in	the		values		folder	to	define	the	custom	attributes:

Introduction

357

https://github.com/google-developer-training/android-advanced/tree/master/CustomFanController

<resources>

				<declare-styleable	name="DialView">

								<attr	name="fanOnColor"	format="reference|color"	/>

								<attr	name="fanOffColor"	format="reference|color"	/>

				</declare-styleable>

</resources>

Define	color	values	in	the		colors.xml		file	in	the		values		folder:

<resources>

				<color	name="red1">#FF2222</color>

				<color	name="green1">#22FF22</color>

				<color	name="blue1">#2222FF</color>

				<color	name="cyan1">#22FFFF</color>

				<color	name="gray1">#8888AA</color>

				<color	name="yellow1">#ffff22</color>

</resources>

Specify	the		fanOnColor		and		fanOffColor		custom	attributes	with		DialView		in	the
layout:

<com.example.customfancontroller.DialView

								android:id="@+id/dialView"

								android:layout_width="@dimen/dial_width"

								android:layout_height="@dimen/dial_height"

								android:layout_marginTop="@dimen/standard_margin"

								android:layout_marginRight="@dimen/standard_margin"

								android:layout_marginLeft="@dimen/standard_margin"

								app:fanOffColor="@color/gray1"

								app:fanOnColor="@color/cyan1"

								app:layout_constraintTop_toBottomOf="@+id/customViewLabel"

								app:layout_constraintRight_toRightOf="parent"

								app:layout_constraintLeft_toLeftOf="parent"	/>

Create	three	constructors	for		DialView	,	which	call	the		init()		method.	Include	in	the
	init()		method	the	default	color	settings,	and	paint	the	initial	"off"	state	of	the
	DialView		with		mFanOffColor	:

//	Set	default	fan	on	and	fan	off	colors

mFanOnColor	=	Color.CYAN;

mFanOffColor	=	Color.GRAY;

//	...	Rest	of	init()	code	to	paint	the	DialView.

mDialPaint.setColor(mFanOffColor);

Use	the	following	code	in	the		init()		method	to	supply	the	attributes	to	the	custom
view.	The	code	uses	a	typed	array	for	the	attributes:

Introduction

358

//	Get	the	custom	attributes	(fanOnColor	and	fanOffColor)	if	available.

if	(attrs!	=	null)	{

				TypedArray	typedArray	=	getContext().obtainStyledAttributes(attrs,

																												R.styleable.DialView,

																												0,	0);

				//	Set	the	fan	on	and	fan	off	colors	from	the	attribute	values.

				mFanOnColor	=	typedArray.getColor(R.styleable.DialView_fanOnColor,

																				mFanOnColor);

				mFanOffColor	=	typedArray.getColor(R.styleable.DialView_fanOffColor,

																				mFanOffColor);

				typedArray.recycle();

In	the		init()		method,	change	the		onClick()		method	for	the		DialView		to	use
	mFanOnColor		and		mFanOffColor		to	set	the	colors	when	the	dial	is	clicked:

//	Set	up	onClick	listener	for	the	DialView.

setOnClickListener(new	OnClickListener()	{

				@Override

				public	void	onClick(View	view)	{

								//	Rotate	selection	forward	to	the	next	valid	choice.

								mActiveSelection	=	(mActiveSelection	+	1)	%	SELECTION_COUNT;

								//	Set	dial	background	color	if	selection	is	>=	1.

								if	(mActiveSelection	>=	1)	{

												mDialPaint.setColor(mFanOnColor);

								}	else	{

												mDialPaint.setColor(mFanOffColor);

								}

								//	Redraw	the	view.

								invalidate();

				}

});

Run	the	app.	The	dial's	color	for	the	"off"	position	should	be	gray	(as	before),	and	the	color
for	any	of	the	"on"	positions	should	be	cyan—defined	as	the	default	colors	for		mFanOnColor	
and		mFanOffColor	.

Introduction

359

Change	the		fanOnColor		and		fanOffColor		custom	attributes	in	the	layout:

app:fanOffColor="@color/blue1"

app:fanOnColor="@color/red1"

Introduction

360

Run	the	app	again.	The	dial's	color	for	the	"off"	position	should	be	blue,	and	the	color	for	any
of	the	"on"	positions	should	be	red.	Try	other	combinations	of	colors	that	you	defined	in

	colors.xml	.	

You	have	successfully	created	custom	attributes	for		DialView		that	you	can	change	in	your
layout	to	suit	the	color	choices	for	the	overall	UI	that	will	include	the		DialView	.

Challenge	1	solution	code
Android	Studio	project:	CustomFanChallenge

Coding	challenge	2
Note:	All	coding	challenges	are	optional.

Introduction

361

https://github.com/google-developer-training/android-advanced/tree/master/CustomFanChallenge

Challenge:	Enable	the	app	user	to	change	the	number	of	selections	on	the	circular	dial	in
the		DialView	,	as	shown	in	the	figure	below.

For	four	selections	(0,	1,	2,	and	3)	or	fewer,	the	selections	should	still	appear	as	before
along	the	top	half	of	the	circular	dial.	For	more	than	four	selections,	the	selections	should	be
symmetrical	around	the	dial.

To	enable	the	user	to	change	the	number	of	selections,	use	the	options	menu	in
	MainActivity	.	Note	that	because	you	are	adding	the	number	of	selections	as	a	custom
attribute,	you	can	set	the	initial	number	of	selections	in	the	XML	layout	file	(as	you	did	with
colors).

Preliminary	steps

Add	an	options	menu	to	the	app.	Because	this	involves	also	changing	the		styles.xml		file
and	the	code	for	showing	the	app	bar,	you	may	find	it	easier	to	do	the	following:

1.	 Start	a	new	app	using	the	Basic	Activity	template,	which	provides	a		MainActivity		with
an	options	menu	and	a	floating	action	button.	Remove	the	floating	action	button.

2.	 Add	a	new		Activity		using	the	Empty	Activity	template.	Copy	the		DialView		custom
view	code	from	the	CustomFanController	app	or	CustomFanChallenge	app	and	paste	it
into	the	new		Activity	.

3.	 Add	the	elements	of	the		activity_main.xml		layout	from	the	CustomFanController	app
or	CustomFanChallenge	app	to		content_main.xml		in	the	new	app.

Hints

The		DialView		custom	view	is	hardcoded	to	have	4	selections	(0,	1,	2,	and	3),	which	are
defined	by	the	integer	constant		SELECTION_COUNT	.	However,	if	you	change	the	code	to	use
an	integer	variable	(mSelectionCount)	and	expose	a	method	to	set	the	number	of	selections,

Introduction

362

then	the	user	can	customize	the	number	of	selections	for	the	dial.	The	following	code
elements	are	all	you	need:

A	custom	attribute,		selectionIndicators	,	in	the		res/values/attrs.xml		file
A	"setter"	method,		setSelectionCount(int	count)	,	in	the		DialView		class.	This	method
sets	or	updates	the	value	of	the		selectionIndicators		attribute.
A	simple	UI	(the	options	menu)	in		MainActivity		for	choosing	the	number	of	selections

In		DialView.java	:

Set		mSelectionCount		to	the	attribute	value	in	the		TypedArray	:

mSelectionCount	=	

										typedArray.getInt(R.styleable.DialView_selectionIndicators,

										mSelectionCount);

Use		mSelectionCount		in	place	of	the		SELECTION_COUNT		constant	in	the		onClick()	,
	onDraw()	,	and		computeXYForPosition()		methods.
Change	the		computeXYForPosition()		method	to	calculate	selection	positions	for
selections	greater	than	4,	and	add	a	parameter	called		isLabel	.	The		isLabel	
parameter	will	be		true		if	drawing	the	text	labels,	and		false		if	drawing	the	dot
indicator	mark:

Introduction

363

private	float[]	computeXYForPosition(final	int	pos,	final	float	radius	,	boolean	isLab

el)	{

				float[]	result	=	mTempResult;

				Double	startAngle;

				Double	angle;

				if	(mSelectionCount	>	4)	{

								startAngle	=	Math.PI	*	(3	/	2d);

								angle=	startAngle	+	(pos	*	(Math.PI	/	mSelectionCount));

								result[0]	=	(float)	(radius	*	Math.cos(angle	*	2))	

																																																	+	(mWidth	/	2);

								result[1]	=	(float)	(radius	*	Math.sin(angle	*	2))	

																																																	+	(mHeight	/	2);

								if((angle	>	Math.toRadians(360))	&&	isLabel)	{

												result[1]	+=	20;

								}

				}	else	{

								startAngle	=	Math.PI	*	(9	/	8d);

								angle=	startAngle	+	(pos	*	(Math.PI	/	mSelectionCount));

								result[0]	=	(float)	(radius	*	Math.cos(angle))	

																																																	+	(mWidth	/	2);

								result[1]	=	(float)	(radius	*	Math.sin(angle))	

																																																+	(mHeight	/	2);

				}

				return	result;

}

Change	the		onDraw()		code	that	calls		computeXYForPosition()		to	include	the		isLabel	
argument:

//...	For	text	labels:

float[]	xyData	=	computeXYForPosition(i,	labelRadius,	true);

//...	For	the	indicator	mark:

float[]	xyData	=	computeXYForPosition(mActiveSelection,	markerRadius,	false);

Add	a	"setter"	method	that	sets	the	selection	count,	and	resets	the	active	selection	to
zero	and	the	color	to	the	"off"	color:

public	void	setSelectionCount(int	count)	{

								this.mSelectionCount	=	count;

								this.mActiveSelection	=	0;

								mDialPaint.setColor(mFanOffColor);

								invalidate();

}

In	the		menu_main.xml		file,	add	menu	items	for	the	options	menu:

Provide	the	text	for	a	menu	item	for	each	dial	selection	from	3	through	9.

Introduction

364

Use	the		android:orderInCategory		attribute	to	order	the	menu	items	from	3	through	9.
For	example,	for	"Selections:	4,"	which	corresponds	to	the	string	resource
	dial_settings4	:

<item

								android:orderInCategory="4"

								android:title="@string/dial_settings4"

								app:showAsAction="never"	/>

In		MainActivity.java	:

Create	an	instance	of	the	custom	view	in		MainActivity	:

DialView	mCustomView;

After	setting	the	content	view	in		onCreate()	,	assign	the		dialView		resource	in	the
layout	to		mCustomView	:

mCustomView	=	findViewById(R.id.dialView);

Use	the		onOptionsItemSelected()		method	to	call	the	"setter"	method
	setSelectionCount()	.	Use		item.getOrder()		to	get	the	selection	count	from	the
	android:orderInCategory		attribute	of	the	menu	items:

int	n	=	item.getOrder();

						mCustomView.setSelectionCount(n);

						return	super.onOptionsItemSelected(item);

Run	the	app.	You	can	now	change	the	number	of	selections	on	the	dial	using	the	options
menu,	as	shown	in	the	previous	figure.

Challenge	2	solution	code
Android	Studio	project:	CustomFanControllerSettings

Summary
To	create	a	custom	view	of	any	size	and	shape,	add	a	new	class	that	extends		View	.
Override		View		methods	such	as		onDraw()		to	define	the	view's	shape	and	basic

Introduction

365

https://github.com/google-developer-training/android-advanced/tree/master/CustomFanControllerSettings
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/View.html#onDraw(android.graphics.Canvas)

appearance.
Use		invalidate()		to	force	a	draw	or	redraw	of	the	view.
To	optimize	performance,	assign	any	required	values	for	drawing	and	painting	before
using	them	in		onDraw()	,	such	as	in	the	constructor	or	the		init()		helper	method.
Add	listeners	such	as		View.OnClickListener		to	the	custom	view	to	define	the	view's
interactive	behavior.
Add	the	custom	view	to	an	XML	layout	file	with	attributes	to	define	its	appearance,	as
you	would	with	other	UI	elements.
Create	the		attrs.xml		file	in	the		values		folder	to	define	custom	attributes.	You	can
then	use	the	custom	attributes	for	the	custom	view	in	the	XML	layout	file.

Related	concept
The	related	concept	documentation	is	Custom	views.

Learn	more
Android	developer	documentation:

Creating	Custom	Views
Custom	Components
View
Input	Events
onDraw()
Canvas
drawCircle()
drawText()
Paint

Video:

Quick	Intro	to	Creating	a	Custom	View	in	Android
Android	Custom	View	Tutorial

Introduction

366

https://developer.android.com/reference/android/view/View.html#invalidate()
https://developer.android.com/reference/android/view/View.OnClickListener.html
https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-5-advanced-graphics-and-views/lesson-10-custom-views/10-1-c-custom-views/10-1-c-custom-views.html
https://developer.android.com/training/custom-views/index.html
https://developer.android.com/guide/topics/ui/custom-components.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/guide/topics/ui/ui-events.html
https://developer.android.com/reference/android/view/View.html#onDraw(android.graphics.Canvas)
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html#drawCircle(float,%20float,%20float,%20android.graphics.Paint)
https://developer.android.com/reference/android/graphics/Canvas.html#drawText(java.lang.String,%20int,%20int,%20float,%20float,%20android.graphics.Paint)
https://developer.android.com/reference/android/graphics/Paint.html
https://youtu.be/ktbYUrlN_Ws
https://youtu.be/sb9OEl4k9Dk

11.1A:	Creating	a	simple	Canvas	object
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Create	a	canvas	and	draw	on	it
Solution	code
Summary
Related	concept
Learn	more

When	you	want	to	create	your	own	custom	2D	drawings	for	Android,	you	can	do	so	in	the
following	ways.

1.	 Draw	your	graphics	or	animations	on	a		View		object	in	your	layout.	By	using	this	option,
the	system's	rendering	pipeline	handles	your	graphics—it's	your	responsibility	to	define
the	graphics	inside	the	view.

2.	 Draw	your	graphics	in	a		Canvas		object.	To	use	this	option,	you	pass	your		Canvas		to
the	appropriate	class'		onDraw(Canvas)		method.	You	can	also	use	the	drawing	methods
in		Canvas	.	This	option	also	puts	you	in	control	of	any	animation.

Drawing	to	a	view	is	a	good	choice	when	you	want	to	draw	simple	graphics	that	don't	need
to	change	dynamically,	and	when	your	graphics	aren't	part	of	a	performance-intensive	app
such	as	a	game.	For	example,	you	should	draw	your	graphics	into	a	view	when	you	want	to
display	a	static	graphic	or	predefined	animation,	within	an	otherwise	static	app.	For	more
information,	read		Drawables	.

Drawing	to	a	canvas	is	better	when	your	app	needs	to	regularly	redraw	itself.	Apps,	such	as
video	games,	should	draw	to	the	canvas	on	their	own.	This	practical	shows	you	how	to
create	a	canvas,	associate	it	with	a	bitmap,	and	associate	the	bitmap	with	an		ImageView		for
display.

When	you	want	to	draw	shapes	or	text	into	a	view	on	Android,	you	need:

A		Canvas		object.	Very	simplified,	a		Canvas		is	a	logical	2D	drawing	surface	that
provides	methods	for	drawing	onto	a	bitmap.
An	instance	of	the		Bitmap		class	which	represents	the	physical	drawing	surface	and
gets	pushed	to	the	display	by	the	GPU.

Introduction

367

https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/view/View.html#onDraw(android.graphics.Canvas)
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/guide/topics/graphics/2d-graphics.html#drawables
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Bitmap.html

A		View		instance	associated	with	the	bitmap.
A		Paint		object	that	holds	the	style	and	color	information	about	how	to	draw
geometries,	text,	and	on	bitmap.
The		Canvas		class	also	provides	methods	for	clipping	views.	Clipping	is	the	action	of
defining	geometrically	what	portion	of	the	canvas	the	user	sees	in	the	view.	This	visible
portion	is	called	the	viewport	in	graphics	terminology.

The	figure	below	shows	all	the	pieces	required	to	draw	to	a	canvas.

You	do	not	need	a	custom	view	to	draw,	as	you	learn	in	this	practical.	Typically	you	draw	by
overriding	the		onDraw()		method	of	a		View	,	as	shown	in	the	next	practicals.

See	the	Graphics	Architecture	series	of	articles	for	an	in-depth	explanation	of	how	the
Android	framework	draws	to	the	screen.

What	you	should	already	KNOW
You	should	be	able	to:

Create	apps	with	Android	Studio	and	run	them	on	a	physical	or	virtual	mobile	device.
Add	a	click	event	handler	to	a		View	.
Create	and	display	a	custom		View	.

What	you	will	LEARN
You	will	learn	how	to:

Create	a		Canvas		object,	associate	it	with	a		Bitmap		object,	and	display	the	bitmap	in	an
	ImageView	.
Style	drawing	properties	with	a		Paint		object.
Draw	on	a	canvas	in	response	to	a	click	event.

Introduction

368

https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/graphics/Paint.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://source.android.com/devices/graphics/

What	you	will	DO
Create	an	app	that	draws	on	the	screen	in	response	to	touch	events.

App	overview
As	you	build	the	SimpleCanvas	app,	you	learn	how	to	create	a	canvas,	associate	it	with	a
bitmap,	and	associate	the	bitmap	with	an		ImageView		for	display.

When	the	user	clicks	in	the	app,	a	rectangle	appears.	As	the	user	continues	to	click,	the	app
draws	increasingly	smaller	rectangles	onto	the	canvas.

When	you	start	the	app,	you	see	a	white	surface,	the	default	background	for	the		ImageView	.

Tap	the	screen,	and	it	fills	with	orange	color,	and	the	underlined	text	"Keep	tapping"	is
drawn.	For	the	next	four	taps,	four	differently	colored	inset	rectangles	are	drawn.	On	the	final
tap,	a	circle	with	centered	text	tells	you	that	you	are	"Done!",	as	shown	in	the	screenshot
below.

If	the	device	is	rotated,	the	drawing	is	reset,	because	the	app	does	not	save	state.	In	this
case,	this	behavior	is	"by	design,"	to	give	you	a	quick	way	of	clearing	the	canvas.

Introduction

369

https://github.com/google-developer-training/android-advanced/tree/master/SimpleCanvas

Introduction

370

Task	1.	Create	a	canvas	and	draw	on	it
You	can	associate	a		Canvas		with	an		ImageView		and	draw	on	it	in	response	to	user	actions.
This	basic	implementation	of	drawing	does	not	require	a	custom		View	.	You	create	an	app
with	a	layout	that	includes	an		ImageView		that	has	a	click	handler.	You	implement	the	click
handler	in		MainActivity		to	draw	on	and	display	the		Canvas	.

Note:	The	benefit	of	doing	an	example	without	a	custom	view	is	that	you	can	focus	on
drawing	on	the	canvas.	For	a	real-world	application,	you	are	likely	to	need	a	custom	view.

1.1	Create	the	SimpleCanvas	project	and	layout

1.	 Create	the	SimpleCanvas	project	with	the	Empty	Activity	template.
2.	 In		activity_main.xml	,	replace	the		TextView		with	an		ImageView		that	fills	the	parent.
3.	 Add	an		onClick		property	to	the		ImageView		and	create	a	stub	for	the	click	handler

called		drawSomething()	.	Your	XML	code	should	look	similar	to	this.

	<?xml	version="1.0"	encoding="utf-8"?>

	<android.support.constraint.ConstraintLayout

				xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:tools="http://schemas.android.com/tools"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				tools:context="com.example.simplecanvas.MainActivity">

				<ImageView

								android:id="@+id/myimageview"

								android:layout_width="match_parent"

								android:layout_height="match_parent"

								android:onClick="drawSomething"/>

	</android.support.constraint.ConstraintLayout>

4.	 Add	the	following	color	resources	to	the		colors.xml		file.

	<color	name="colorRectangle">#455A64</color>

	<color	name="colorBackground">#FFFFD600</color>

5.	 Add	the	following	string	resources	to	the		strings.xml		file.

	<string	name="keep_tapping">Keep	tapping.</string>

	<string	name="done">Done!</string>

Introduction

371

1.2	Create	the	SimpleCanvas	member	variables	and
constants

In		MainActivity.java	:

1.	 Create	a		Canvas		member	variable		mCanvas	.

The		Canvas		object	stores	information	on	what	to	draw	onto	its	associated	bitmap.	For
example,	lines,	circles,	text,	and	custom	paths.

private	Canvas	mCanvas;

2.	 Create	a		Paint		member	variable		mPaint		and	initialize	it	with	default	values.

The		Paint		objects	store	how	to	draw.	For	example,	what	color,	style,	line	thickness,	or
text	size.		Paint		offers	a	rich	set	of	coloring,	drawing,	and	styling	options.	You
customize	them	below.

private	Paint	mPaint	=	new	Paint();

3.	 Create	a		Paint		object	for	underlined	text.		Paint		offers	a	full	complement	of
typographical	styling	methods.	You	can	supply	these	styling	flags	when	you	initialize	the
object	or	set	them	later.

	private	Paint	mPaintText	=	new	Paint(Paint.UNDERLINE_TEXT_FLAG);

4.	 Create	a		Bitmap		member	variable		mBitmap	.

The		Bitmap		represents	the	pixels	that	are	shown	on	the	display.

private	Bitmap	mBitmap;

5.	 Create	a	member	variable	for	the		ImageView	,		mImageView	.

A	view,	in	this	example	an		ImageView	,	is	the	container	for	the	bitmap.	Layout	on	the
screen	and	all	user	interaction	is	through	the	view.

private	ImageView	mImageView;

6.	 Create	two		Rect		variables,		mRect		and		mBounds		and	initialize	them	to	rectangles.

	private	Rect	mRect	=	new	Rect();

	private	Rect	mBounds	=	new	Rect();

Introduction

372

https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Paint.html
https://developer.android.com/reference/android/graphics/Bitmap.html

7.	 Create	a	constant		OFFSET		initialized	to	120,	and	initialize	a	member	variable		mOffset	
with	the	constant.	This	offset	is	the	distance	of	a	rectangle	you	draw	from	the	edge	of
the	canvas.

	private	static	final	int	OFFSET	=	120;

	private	int	mOffset	=	OFFSET;

8.	 Create	a		MULTIPLIER		constant	initialized	to	100.	You	will	need	this	constant	later,	for
generating	random	colors.

	private	static	final	int	MULTIPLIER	=	100;

9.	 Add	the	following	private	member	variables	for	colors.

	private	int	mColorBackground;

	private	int	mColorRectangle;

	private	int	mColorAccent;

1.3	Fix	the	onCreate	method	and	customize	the	mPaint
member	variable

In	MainActivity.java:

1.	 Verify	that		onCreate()		looks	like	the	code	below.

	@Override

	protected	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.activity_main);

	}

2.	 In		onCreate()	,	get	color	resources	and	assign	them	to	the	color	member	variables.

	mColorBackground	=	ResourcesCompat.getColor(getResources(),

									R.color.colorBackground,	null);

	mColorRectangle	=	ResourcesCompat.getColor(getResources(),

									R.color.colorRectangle,	null);

	mColorAccent	=	ResourcesCompat.getColor(getResources(),

									R.color.colorAccent,	null);

3.	 In		onCreate()	,	set	the	color	of		mPaint		to		mColorBackground	.

	mPaint.setColor(mColorBackground);

4.	 In		onCreate()	,	set	the	color	for		mPaintText		to	the	theme	color		colorPrimaryDark	,	and
set	the	text	size	to	70.	Depending	on	the	screen	size	of	your	device,	you	may	need	to

Introduction

373

adjust	the	text	size.

	mPaintText.setColor(

					ResourcesCompat.getColor(getResources(),

									R.color.colorPrimaryDark,	null)

);

	mPaintText.setTextSize(70);

5.	 Get	a	reference	to	the	image	view.

	mImageView	=	(ImageView)	findViewById(R.id.myimageview);

Important:	You	cannot	create	the		Canvas		in		onCreate()	,	because	the	views	have	not
been	laid	out,	so	their	final	size	is	not	available.	When	you	create	a	custom	view	in	a
later	lesson,	you	learn	different	ways	to	initialize	your	drawing	surface.

1.4	Implement	the	drawSomething()	click	handler	method

The		drawSomething()		method	is	where	all	the	interaction	with	the	user	and	drawing	on	the
canvas	are	implemented.

The		drawSomething()		click	handler	responds	to	user	taps	by	drawing	an	increasingly	smaller
rectangle	until	it	runs	out	of	room.	Then	it	draws	a	circle	with	the	text	"Done!"	to	demonstrate
basics	of	drawing	on	canvas.

You	always	need	to	do	at	least	the	following:

1.	 Create		Bitmap	.
2.	 Associate		Bitmap		with		View	.
3.	 Create		Canvas		with		Bitmap	.
4.	 Draw	on		Canvas	.
5.	 Call		invalidate()		on	the		View		to	force	redraw.

Inside	the		drawSomething()		method,	add	code	as	follows.

1.	 Create	or	verify	the	signature	for	the		drawSomething()		method.

	public	void	drawSomething(View	view)	{}

2.	 Get	the	width	and	height	of	the	view	and	create	convenience	variables	for	half	the	width
and	height.	You	must	do	this	step	every	time	the	method	is	called,	because	the	size	of
the	view	can	change	(for	example,	when	the	device	is	rotated).

Introduction

374

	int	vWidth	=	view.getWidth();

	int	vHeight	=	view.getHeight();

	int	halfWidth	=	vWidth	/	2;

	int	halfHeight	=	vHeight	/	2;

3.	 Add	an	if-else	statement	for		(mOffset	==	OFFSET)	.

When		drawSomething()		is	called,	the	app	is	in	one	of	three	states:

4.	 	mOffset	==	OFFSET	.	The	app	is	only	in	this	state	the	first	time	the	user	taps.	Create	the
	Bitmap	,	associate	it	with	the		View	,	create	the		Canvas	,	fill	the	background,	and	draw
some	text.	Increase	the	offset.

5.	 	mOffset	!=	OFFSET		and	the	offset	is	smaller	than	half	the	screen	width	and	height.	Draw
a	rectangle	with	a	computed	color	and	increase	the	offset.

6.	 	mOffset	!=	OFFSET		and	the	offset	is	equal	to	or	larger	than	half	the	screen	width	and
height.	Draw	a	circle	with	the	text	"Done!".

if	(mOffset	==	OFFSET)	{

}	else	{

		if	(mOffset	<	halfWidth	&&	mOffset	<	halfHeight)	{

		}	else	{

		}

}

7.	 Inside	the	outer		if		statement		(mOffset	==	OFFSET)	,	create	a		Bitmap	.

8.	 Supply	the	width	and	height	for	the	bitmap,	which	are	going	to	be	the	same	as	the	width
and	height	of	the	view.

9.	 Pass	in	a		Bitmap.config		configuration	object.	A	bitmap	configuration	describes	how
pixels	are	stored.	How	pixels	are	stored	affects	the	quality	(color	depth)	as	well	as	the
ability	to	display	transparent/translucent	colors.	The		ARGB_8888		format	supports		Alpha	,
Red,	Green,	and	Blue	channels	for	each	pixel.	Each	color	is	encoded	in	8	bits,	for	a
total	of	4	bytes	per	pixel.

mBitmap	=	Bitmap.createBitmap(vWidth,	vHeight,	Bitmap.Config.ARGB_8888);

10.	 Associate	the	bitmap	with	the		ImageView	.

	mImageView.setImageBitmap(mBitmap);

11.	 Create	a		Canvas		and	associate	it	with		mBitmap	,	so	that	drawing	on	the	canvas	draws
on	the	bitmap.

Introduction

375

https://developer.android.com/reference/android/graphics/Bitmap.Config.html

	mCanvas	=	new	Canvas(mBitmap);

12.	 Fill	the	entire	canvas	with	the	background	color.

	mCanvas.drawColor(mColorBackground);

13.	 Draw	the	"Keep	tapping"	text	onto	the	canvas.	You	need	to	supply	a	string,	x	and	y
positions,	and	a		Paint		object	for	styling.

	mCanvas.drawText(getString(R.string.keep_tapping),	100,	100,	mPaintText);

14.	 Increase	the	offset.

	mOffset	+=	OFFSET;

15.	 At	the	end	of	the		drawSomething()		method,		invalidate()		the	view	so	that	the	system
redraws	the	view	every	time		drawSomething()		is	executed.

When	a	view	is	invalidated,	the	system	does	not	draw	the	view	with	the	values	it	already
has.	Instead,	the	system	recalculates	the	view	with	the	new	values	that	you	supply.	The
screen	refreshes	60	times	a	second,	so	the	view	is	drawn	60	times	per	second.	To	save
work	and	time,	the	system	can	reuse	the	existing	view	until	it	is	told	that	the	view	has
changed,	the	existing	view	is	invalid,	and	the	system	thus	has	to	recalculate	an	updated
version	of	the	view.

view.invalidate();

Note:	If	you	run	the	app	at	this	point,	it	should	start	with	a	blank	screen,	and	when	you
tap,	the	screen	fills	and	the	text	appears.

16.	 In	the		else		block,	inside	the		if		statement

17.	 Set	the	color	of		mPaint	.	This	code	generates	the	next	color	by	subtracting	the	current
offset	times	a	multiplier	from	the	original	color.	A	color	is	represented	by	a	single
number,	so	you	can	manipulate	it	in	this	way	for	some	fun	effects.

18.	 Change	the	size	of	the		mRect		rectangle	to	the	width	of	the	view,	minus	the	current
offset.

19.	 Draw	the	rectangle	with		mPaint		styling.
20.	 Increase	the	offset.

Below	is	the	complete	if	portion	of	the	code.

Introduction

376

if	(mOffset	<	halfWidth	&&	mOffset	<	halfHeight)	{

						//	Change	the	color	by	subtracting	an	integer.

						mPaint.setColor(mColorRectangle	-	MULTIPLIER*mOffset);

						mRect.set(

										mOffset,	mOffset,	vWidth	-	mOffset,	vHeight	-	mOffset);

						mCanvas.drawRect(mRect,	mPaint);

						//	Increase	the	indent.

						mOffset	+=	OFFSET;

}

1.	 In	the		else		statement,	when	the	offset	is	too	large	to	draw	another	rectangle:

2.	 Set	the	color	of		mPaint	.

3.	 Draw	a	circle	with	the	paint.
4.	 Get	the	"Done"	string	and	calculate	its	bounding	box,	then	calculate	x	and	y	to	draw	the

text	at	the	center	of	the	circle.	The	bounding	box	defines	a	rectangle	that	encloses	the
string.	You	cannot	make	calculations	on	a	string,	but	you	can	use	the	dimensions	of	the
bounding	box	to	calculate,	its	center.

else	{

		mPaint.setColor(mColorAccent);

		mCanvas.drawCircle(halfWidth,	halfHeight,	halfWidth	/	3,	mPaint);

		String	text	=	getString(R.string.done);

		//	Get	bounding	box	for	text	to	calculate	where	to	draw	it.

		mPaintText.getTextBounds(text,	0,	text.length(),	mBounds);

		//	Calculate	x	and	y	for	text	so	it's	centered.

		int	x	=	halfWidth	-	mBounds.centerX();

		int	y	=	halfHeight	-	mBounds.centerY();

		mCanvas.drawText(text,	x,	y,	mPaintText);

}

5.	 Run	your	app	and	tap	multiple	times	to	draw.	Rotate	the	screen	to	reset	the	app.

Solution	code
Android	Studio	project:	SimpleCanvas.

Summary
To	draw	on	the	display	of	a	mobile	device	with	Android	you	need	a		View	,	a		Canvas	,	a
	Paint		,	and	a		Bitmap		object.
The		Bitmap		is	the	physical	drawing	surface.	The		Canvas		provides	an	API	to	draw	on
the	bitmap,	the		Paint		is	for	styling	what	you	draw,	and	the		View		displays	the		Bitmap	.

Introduction

377

https://github.com/google-developer-training/android-advanced/tree/master/SimpleCanvas

You	create	a		Bitmap	,	associate	it	with	a		View	,	create	a		Canvas		with	a		Paint		object
for	the		Bitmap	,	and	then	you	can	draw.
You	must		invalidate()		the	view	when	your	are	done	drawing,	so	that	the	Android
System	redraws	the	display.
All	drawing	happens	on	the	UI	thread,	so	performance	matters.

Related	concepts
The	related	concept	documentation	is	in	The	Canvas	class.

Learn	more
Android	developer	documentation:

	Canvas		class
	Bitmap		class
	View		class
	Paint		class
	Bitmap.config		configurations
Canvas	and	Drawables
Graphics	Architecture	series	of	articles	(advanced)

Introduction

378

https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-5-advanced-graphics-and-views/lesson-11-canvas/11-1-c-the-canvas-class/11-1-c-the-canvas-class.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Bitmap.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/graphics/Paint.html
https://developer.android.com/reference/android/graphics/Bitmap.Config.html
https://developer.android.com/guide/topics/graphics/2d-graphics.html
https://source.android.com/devices/graphics/

11.1B:	Drawing	on	a	Canvas	object
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Create	a	canvas	and	respond	to	user	events
Solution	code
Coding	challenge
Summary
Related	concept
Learn	more

In	a	previous	practical,	you	learned	the	fundamentals	of	2D	custom	drawing	in	Android	by
drawing	on	a		Canvas		in	response	to	user	input.

A	more	common	pattern	for	using	the		Canvas		class	is	to	subclass	one	of	the		View		classes,
override	its		onDraw()		and		onSizeChanged()		methods	to	draw,	and	override	the
	onTouchEvent()		method	to	handle	user	touches.

In	this	practical,	you	write	an	app	that	uses	that	pattern.

What	you	should	already	KNOW
You	should	be	able	to:

Create	apps	with	Android	Studio	and	run	them	on	a	physical	or	virtual	mobile	device.
Add	event	handlers	to	views.
Create	a	custom		View	.
Create	a	bitmap	and	associate	it	with	a	view.	Create	a	canvas	for	a	bitmap.	Create	and
customize	a		Paint		object	for	styling.	Draw	on	the		Canvas		and	refresh	the	display.

What	you	will	LEARN
You	will	learn	how	to:

Create	a	custom		View,		capture	the	user's	motion	event,	and	interpret	it	to	draw	lines
onto	the	canvas.

Introduction

379

https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/view/View.html

What	you	will	DO
Create	an	app	that	draws	lines	on	the	screen	in	response	to	motion	events	such	as	the
user	touching	the	screen.

App	overview
The	CanvasExample	uses	a	custom	view	to	display	a	line	in	response	to	user	touches,	as
shown	in	the	screenshot	below.

Introduction

380

Introduction

381

Task	1.	Create	a	canvas	and	respond	to	user
events

1.1	Create	the	CanvasExample	project

1.	 Create	a	CanvasExample	project	with	the	Empty	Activity	template.	Do	not	add	a
layout	file	as	you	won't	need	it.

2.	 Add	the	following	two	colors	to	the	colors.xml	file.

	<color	name="opaque_orange">#FFFF5500</color>

	<color	name="opaque_yellow">#FFFFEB3B</color>

3.	 In		styles.xml	,	set	the	parent	of	the	default	style	to		NoActionBar		to	remove	the	action
bar,	so	that	you	can	draw	fullscreen.

	<style	name="AppTheme"	parent="Theme.AppCompat.Light.NoActionBar">

1.2	Create	the	MyCanvasView	class

1.	 In	a	separate	file,	create	a	new	class	called		MyCanvasView	.
2.	 Make	the		MyCanvasView		class	extend	the		View		class.
3.	 Add	member	variables	for		Paint		and		Path		objects.	Import		android.graphics.Path		for

the		Path	.	The		path		holds	the	path	that	you	are	currently	drawing	while	the	user
moves	their	finger	across	the	screen.

4.	 Add	member	variables	for		Canvas		and		Bitmap		objects;	call	these		mExtraCanvas		and
	mExtraBitmap	,	because	they	are	not	the	default	canvas	and	bitmap	used	in	the
	onDraw()		method.

5.	 Add		int		variables		mDrawColor		and		mBackgroundColor	.

	private	Paint	mPaint;

	private	Path	mPath;

	private	int	mDrawColor;

	private	int	mBackgroundColor;

	private	Canvas	mExtraCanvas;

	private	Bitmap	mExtraBitmap;

6.	 Add	constructors	to	initialize	the		mPath	,		mPaint	,	and		mDrawColor		variables.	(You	only
need	these	two	constructors	of	all	that	are	available.)

	Paint.Style		specifies	if	the	primitive	being	drawn	is	filled,	stroked,	or	both	(in	the
same	color).

Introduction

382

https://developer.android.com/reference/android/graphics/Paint.Style.html

	Paint.Join		specifies	how	lines	and	curve	segments	join	on	a	stroked	path.
	Paint.Cap		specifies	how	the	beginning	and	ending	of	stroked	lines	and	paths.

See		Paint		documentation	for	a	list	of	attributes	that	can	be	set.

Here	is	the	code:

MyCanvasView(Context	context)	{

			this(context,	null);

}

public	MyCanvasView(Context	context,	AttributeSet	attributeSet)	{

			super(context);

			mBackgroundColor	=	ResourcesCompat.getColor(getResources(),

																			R.color.opaque_orange,	null);

			mDrawColor	=	ResourcesCompat.getColor(getResources(),

											R.color.opaque_yellow,	null);

			//	Holds	the	path	we	are	currently	drawing.

			mPath	=	new	Path();

			//	Set	up	the	paint	with	which	to	draw.

			mPaint	=	new	Paint();

			mPaint.setColor(mDrawColor);

			//	Smoothes	out	edges	of	what	is	drawn	without	affecting	shape.

			mPaint.setAntiAlias(true);

			//	Dithering	affects	how	colors	with	higher-precision	device

			//	than	the	are	down-sampled.

			mPaint.setDither(true);

			mPaint.setStyle(Paint.Style.STROKE);	//	default:	FILL

			mPaint.setStrokeJoin(Paint.Join.ROUND);	//	default:	MITER

			mPaint.setStrokeCap(Paint.Cap.ROUND);	//	default:	BUTT

			mPaint.setStrokeWidth(12);	//	default:	Hairline-width	(really	thin)

}

1.	 In		MainActivity,		edit	the		onCreate()		method:

Create	a	variable		myCanvasView		of	type		MyCanvasView	.
Create	an	instance	of		MyCanvasView		and	assign	it	to		myCanvasView	.
Set	the		SYSTEM_UI_FLAG_FULLSCREEN		flag	on		myCanvasView		so	that	the	app	fills	the
screen.
Set	the		myCanvasView		view	as	the	content	view.	You	cannot	get	the	size	of	the	view
in	the		onCreate()		method.

Here	is	the	code:

Introduction

383

https://developer.android.com/reference/android/graphics/Paint.Join.html
https://developer.android.com/reference/android/graphics/Paint.Cap.html
https://developer.android.com/reference/android/graphics/Paint.html

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

super.onCreate(savedInstanceState);

MyCanvasView	myCanvasView;

//	No	XML	file;	just	one	custom	view	created	programmatically.

myCanvasView	=	new	MyCanvasView(this);

//	Request	the	full	available	screen	for	layout.

myCanvasView.setSystemUiVisibility(View.SYSTEM_UI_FLAG_FULLSCREEN);

setContentView(myCanvasView);

}

2.	 In		MyCanvasView	,	override	the		onSizeChanged()		method.

The		onSizeChanged()		method	is	called	whenever	a	view	changes	size.	Because	the
view	starts	out	with	no	size,	the		onSizeChanged()		method	is	also	called	after	the	activity
first	inflates	the	view.	This	method	is	thus	the	ideal	place	to	create	and	set	up	the
canvas.

Create	a		Bitmap	,	create	a		Canvas		with	the		Bitmap	,	and	fill	the		Canvas		with	color.

The	width	and	height	of	this		Bitmap		are	the	same	as	the	width	and	height	of	the
screen.	You	will	use	this		Bitmap		to	store	the	path	that	the	user	draws	on	the	screen.

@Override

protected	void	onSizeChanged(int	width,	int	height,

																									int	oldWidth,	int	oldHeight)	{

super.onSizeChanged(width,	height,	oldWidth,	oldHeight);

//	Create	bitmap,	create	canvas	with	bitmap,	fill	canvas	with	color.

mExtraBitmap	=	Bitmap.createBitmap(width,	height,

																						Bitmap.Config.ARGB_8888);

mExtraCanvas	=	new	Canvas(mExtraBitmap);

//	Fill	the	Bitmap	with	the	background	color.

mExtraCanvas.drawColor(mBackgroundColor);

}

3.	 In		MyCanvasView	,	override	the		onDraw()		method.	All	the	drawing	work	for
	MyCanvasView		happens	in	the		onDraw()		method.	In	this	case,	you	draw	the	bitmap	that
contains	the	path	that	the	user	has	drawn.	You	will	create	and	save	the	path	in
response	to	user	motion	in	the	next	series	of	steps.	Notice	that	the	canvas	that	is
passed	to		onDraw()		is	different	than	the	one	created	in	the		onSizeChanged()		method.
When	the	screen	first	displays,	the	user	has	not	drawn	anything	so	the	screen	simply
displays	the	colored	bitmap.

Here	is	the	code:

Introduction

384

@Override

protected	void	onDraw(Canvas	canvas)	{

super.onDraw(canvas);

//	Draw	the	bitmap	that	stores	the	path	the	user	has	drawn.

//	Initially	the	user	has	not	drawn	anything

//	so	we	see	only	the	colored	bitmap.

canvas.drawBitmap(mExtraBitmap,	0,	0,	null);

}

4.	 Run	your	app.	The	whole	screen	should	fill	with	orange	color.

1.3	Respond	to	motion	on	the	display

The		onTouchEvent()		method	of	the	view	is	called	whenever	the	user	touches	the	display.

1.	 Override	the		onTouchEvent()		method.

Get	the	x	and	y	coordinates	of	the	event.
Use	a		switch		statement	to	handle	the	events	you	are	interested	in.	There	are
many	more	touch	events	available.	See	the		MotionEvent		class	documentation	for
a	full	list.
Call	a	utility	method	for	each	type	of	event.	You	implement	those	methods	next.
You	must	call		invalidate()		to	redraw	the	view	after	it	changes.	You	call	it	inside
the		case		statement	because	you	do	not	want	to	call		invalidate()		when	the	event
is	not	one	of	interest.

Here	is	the	code:

Introduction

385

https://developer.android.com/reference/android/view/MotionEvent.html

@Override

public	boolean	onTouchEvent(MotionEvent	event)	{

float	x	=	event.getX();

float	y	=	event.getY();

//	Invalidate()	is	inside	the	case	statements	because	there	are	many

//	other	types	of	motion	events	passed	into	this	listener,

//	and	we	don't	want	to	invalidate	the	view	for	those.

switch	(event.getAction())	{

				case	MotionEvent.ACTION_DOWN:

								touchStart(x,	y);

								//	No	need	to	invalidate	because	we	are	not	drawing	anything.

								break;

				case	MotionEvent.ACTION_MOVE:

								touchMove(x,	y);

								invalidate();

								break;

				case	MotionEvent.ACTION_UP:

								touchUp();

								//	No	need	to	invalidate	because	we	are	not	drawing	anything.

								break;

				default:

								//	Do	nothing.

}

return	true;

}

2.	 Add	member	variables	to	hold	the	latest	x	and	y	values,	which	are	the	starting	point	for
the	next	path.

	private	float	mX,	mY;

3.	 Add	a		TOUCH_TOLERANCE			float		constant	and	set	it	to	4.	This	tolerance	serves	two
functions:

If	the	finger	has	barely	moved,	there	is	no	need	to	draw.
Using	the	path,	it	is	not	necessary	to	draw	every	pixel	and	request	a	refresh	of	the
display.	Instead,	you	can	interpolate	for	much	better	performance.

Here	is	the	code:

private	static	final	float	TOUCH_TOLERANCE	=	4;

4.	 Implement	the		touchStart()		method.

When	the	user	starts	to	draw	a	new	line,	set	the	beginning	of	the	contour	(line)	to	x,
y	and	save	the	beginning	coordinates.

Here	is	the	code:

Introduction

386

private	void	touchStart(float	x,	float	y)	{

mPath.moveTo(x,	y);

mX	=	x;

mY	=	y;

}

5.	 Add	the		touchMove()		method.

Calculate	the	distance	that	has	been	moved	(dx,	dy).
If	the	movement	was	further	than	the	touch	tolerance,	add	a	segment	to	the	path.
Set	the	starting	point	for	the	next	segment	to	the	endpoint	of	this	segment.
Using		quadTo()		instead	of		lineTo()		creates	a	smoothly	drawn	line	without
corners.	See	Bezier	Curves.

Here	is	the	code:

private	void	touchMove(float	x,	float	y)	{

float	dx	=	Math.abs(x	-	mX);

float	dy	=	Math.abs(y	-	mY);

if	(dx	>=	TOUCH_TOLERANCE	||	dy	>=	TOUCH_TOLERANCE)	{

				//	QuadTo()	adds	a	quadratic	bezier	from	the	last	point,

				//	approaching	control	point	(x1,y1),	and	ending	at	(x2,y2).

				mPath.quadTo(mX,	mY,	(x	+	mX)/2,	(y	+	mY)/2);

				//	Reset	mX	and	mY	to	the	last	drawn	point.

				mX	=	x;

				mY	=	y;

				//	Save	the	path	in	the	extra	bitmap,

				//	which	we	access	through	its	canvas.

				mExtraCanvas.drawPath(mPath,	mPaint);

}

}

6.	 Finally,	add	the		touchUp()		method.	Reset	the	path	so	it	doesn't	get	drawn	again	when
you	draw	more	lines	on	the	screen.

Here	is	the	code:

private	void	touchUp()	{

//	Reset	the	path	so	it	doesn't	get	drawn	again.

mPath.reset();

}

7.	 Run	your	app.	When	the	app	opens,	use	your	finger	to	draw.	(Rotate	the	device	to	clear
the	screen.)

1.4	Draw	a	frame	around	the	sketch

Introduction

387

https://developer.android.com/reference/android/graphics/Path.html#quadTo(float,%20float,%20float,%20float)
https://en.wikipedia.org/wiki/B%C3%A9zier_curve

As	the	user	draws	on	the	screen,	your	app	constructs	the	path	and	saves	it	in	the	bitmap
	mExtraBitmap	.	The		onDraw()		method	displays	the	extra	bitmap	in	the	view's	canvas.	You
can	do	more	drawing	in		onDraw()		if	you	want.	For	example,	you	could	draw	shapes	after
drawing	the	bitmap.

In	this	step	you	will	draw	a	frame	around	the	edge	of	the	picture.

1.	 In		MyCanvasView	,	add	a	member	variable	called		mFrame		that	holds	a		Rect		object.
2.	 Update		onSizeChanged()		to	create	the		Rect		that	will	be	used	for	the	frame.

	@Override

	protected	void	onSizeChanged(int	width,	int	height,

								int	oldWidth,	int	oldHeight)	{

				//	rest	of	method	is	here	...

				//	Calculate	the	rect	a	frame	around	the	picture.

				int	inset	=	40;

				mFrame	=	new	Rect	(inset,	inset,	width	-	inset,	height	-	inset);

	}

3.	 Update		onDraw()		to	draw	a	rectangle	inset	slightly	from	the	edge	of	the	frame.	Draw
the	frame	before	drawing	the	bitmap:

	@Override

	protected	void	onDraw(Canvas	canvas)	{

				super.onDraw(canvas);

				//	Draw	a	frame	around	the	picture.

				canvas.drawRect(mFrame,	mPaint);

				//	Draw	the	bitmap	that	has	the	saved	path.

				canvas.drawBitmap(mExtraBitmap,	0,	0,	null);

	}

4.	 Run	the	app.	Does	the	frame	appear?	Why	not?
5.	 In		onDraw()	,	move	the	code	that	draws	the	frame	to	after	the	call	to	draw	the	bitmap.
6.	 Run	the	app.	Does	the	frame	appear	now?	Does	it	still	appear	when	you	draw	a	sketch

on	the	screen?
7.	 Feel	free	to	try	drawing	other	shapes	in		onDraw()	.	Also	experiment	with	creating	a	new

	Paint		object	and	drawing	the	frame	in	a	different	color	than	the	path.

Solution	code
Android	Studio	project:	CanvasExample

Introduction

388

https://github.com/google-developer-training/android-advanced/tree/master/CanvasExample

Coding	challenge
Note:	All	coding	challenges	are	optional.

Create	an	app	that	lets	the	user	draw	overlapping	rectangles.	First,	implement	it	so	that
tapping	the	screen	creates	the	rectangles.
Add	functionality	where	the	rectangle	starts	at	a	very	small	size.	If	the	user	drags	their
finger,	let	the	rectangle	increase	in	size	until	the	user	lifts	the	finger	off	the	screen.

Summary
A	common	pattern	for	working	with	a	canvas	is	to	create	a	custom	view	and	override	the
	onDraw()		and		onSizeChanged()		methods.
Override	the		onTouchEvent()		method	to	capture	user	touches	and	respond	to	them	by
drawing	things.

Related	concepts
The	related	concept	documentation	is	in	The	Canvas	class.

Learn	more
Android	developer	documentation:

	Canvas		class
	Bitmap		class
	View		class
	Paint		class
	Bitmap.config		configurations
	Path		class
Bezier	curves	Wikipedia	page
Canvas	and	Drawables
Graphics	Architecture	series	of	articles	(advanced)

Introduction

389

https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-5-advanced-graphics-and-views/lesson-11-canvas/11-1-c-the-canvas-class/11-1-c-the-canvas-class.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Bitmap.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/graphics/Paint.html
https://developer.android.com/reference/android/graphics/Bitmap.Config.html
https://developer.android.com/reference/android/graphics/Path.html
https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://developer.android.com/guide/topics/graphics/2d-graphics.html
https://source.android.com/devices/graphics/

11.1C:	Applying	clipping	to	a	Canvas
object
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Create	an	app	that	demonstrates	clipping	regions
Solution	code
Summary
Related	concept
Learn	more

For	the	purpose	of	this	practical,		clipping		is	a	method	for	defining	regions	of	an	image,
canvas,	or	bitmap	that	are	selectively	drawn	or	not	drawn	onto	the	screen.	One	purpose	of
clipping	is	to	reduce	overdraw	.	You	can	also	use	clipping	to	create	interesting	effects	in	user
interface	design	and	animation.

For	example,	when	you	draw	a	stack	of	overlapping	cards	as	shown	below,	instead	of	fully
drawing	each	card,	it	is	usually	more	efficient	to	only	draw	the	visible	portions.	"Usually",

because	clipping	operations	also	have	a	cost.	

You	do	this	by	specifying	a	clipping	region	for	each	card.	For	example	in	the	diagram	below,
when	a	clipping	rectangle	is	applied	to	an	image,	only	the	portion	inside	that	rectangle	is
displayed.	The	clipping	region	is	commonly	a	rectangle,	but	it	can	be	any	shape	or
combination	of	shapes.	You	can	also	specify	whether	you	want	the	region	inside	the	clipping

Introduction

390

https://en.wikipedia.org/wiki/Clipping_(computer_graphics)
https://developer.android.com/topic/performance/rendering/overdraw.html

region	included	or	excluded.	The	screenshot	below	shows	an	example.	When	a	clipping
rectangle	is	applied	to	an	image,	only	the	portion	inside	that	rectangle	is	displayed.

What	you	should	already	KNOW
You	should	be	able	to:

Create	apps	with	Android	Studio	and	run	them	on	a	physical	or	virtual	mobile	device.
Add	event	handlers	to	views.
Create	a	custom		View	.
Create	and	draw	on	a		Canvas	.
Create	a		Bitmap		and	associate	it	with	a		View	;	create	a		Canvas		for	a		Bitmap	;	create
and	customize	a		Paint		object	for	styling;	draw	on	the	canvas	and	refresh	the	display.
Create	a	custom		View	,	override		onDraw()		and		onSizeChanged()	.

What	you	will	LEARN
You	will	learn	how	to:

Apply	different	kinds	of	clipping	to	a	canvas.
How	to	save	and	restore	drawing	states	of	a	canvas.

What	you	will	DO

Introduction

391

Create	an	app	that	draws	clipped	shapes	on	the	screen.

App	overview
The	ClippingExample	app	demonstrates	how	you	can	use	and	combine	shapes	to	specify
which	portions	of	a	canvas	are	displayed	in	a	view.

Introduction

392

Introduction

393

Task	1.	Create	an	app	that	demonstrates
clipping	regions

1.1	Create	the	ClippingExample	project

1.	 Create	the	ClippingExample	app	with	the	Empty	Activity	template.	Uncheck	Generate
layout	file	as	you	don't	need	it.

2.	 In	the		MainActivity		class,	in	the		onCreate()		method,	set	the	content	view	to	a	new
instance	of		ClippedView	.

	@Override

	protected	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(new	ClippedView(this));

	}

3.	 Create	a	new	class	for	a	custom	view	called		ClippedView		which	extends		View	.	The
rest	of	the	work	will	all	be	inside		ClippedView	.

	private	static	class	ClippedView	extends	View	{...}

1.2	Add	convenience	variables	for	the	ClippedView	class

1.	 Define	member	variables		mPaint		and		mPath		in	the		ClippedView		class.

	private	Paint	mPaint;

	private	Path	mPath;

2.	 For	the	app	to	look	correct	on	smaller	screens,	define	dimensions	for	the	smaller	screen
in	the	default		dimens.xml		file.

Introduction

394

	<dimen	name="clipRectRight">90dp</dimen>

	<dimen	name="clipRectBottom">90dp</dimen>

	<dimen	name="clipRectTop">0dp</dimen>

	<dimen	name="clipRectLeft">0dp</dimen>

	<dimen	name="rectInset">8dp</dimen>

	<dimen	name="smallRectOffset">40dp</dimen>

	<dimen	name="circleRadius">30dp</dimen>

	<dimen	name="textOffset">20dp</dimen>

	<dimen	name="strokeWidth">4dp</dimen>

	<dimen	name="textSize">18sp</dimen>

3.	 Create	a		values-sw480dp		folder	and	define	values	for	the	larger	screens	in		dimens.xml	
in	the		values-sw480dp		folder.	(Note:	If	the	empty	folder	does	not	show	up	in	Android
Studio,	manually	add	a	resource	file	to	the		ClippingExample/app/src/main/res/values-
sw480dp		directory.	This	makes	the	folder	show	in	your	Project	pane.)

	<dimen	name="clipRectRight">120dp</dimen>

	<dimen	name="clipRectBottom">120dp</dimen>

	<dimen	name="rectInset">10dp</dimen>

	<dimen	name="smallRectOffset">50dp</dimen>

	<dimen	name="circleRadius">40dp</dimen>

	<dimen	name="textOffset">25dp</dimen>

	<dimen	name="strokeWidth">6dp</dimen>

4.	 In		ClippedView	,	add	convenience	member	variables	for	dimensions,	so	that	you	only
have	to	fetch	the	resources	once.

Introduction

395

	private	int	mClipRectRight	=

								(int)	getResources().getDimension(R.dimen.clipRectRight);

	private	int	mClipRectBottom	=

								(int)	getResources().getDimension(R.dimen.clipRectBottom);

	private	int	mClipRectTop	=

								(int)	getResources().getDimension(R.dimen.clipRectTop);

	private	int	mClipRectLeft	=

								(int)	getResources().getDimension(R.dimen.clipRectLeft);

	private	int	mRectInset	=

								(int)	getResources().getDimension(R.dimen.rectInset);

	private	int	mSmallRectOffset	=

								(int)	getResources().getDimension(R.dimen.smallRectOffset);

	private	int	mCircleRadius	=

								(int)	getResources().getDimension(R.dimen.circleRadius);

	private	int	mTextOffset	=

								(int)	getResources().getDimension(R.dimen.textOffset);

	private	int	mTextSize	=

								(int)	getResources().getDimension(R.dimen.textSize);

5.	 In		ClippedView	,	add	convenience	member	variables	for	row	and	column	coordinates	so
that	you	only	have	to	calculate	them	once.

	private	int	mColumnOne	=	mRectInset;

	private	int	mColumnnTwo	=	mColumnOne	+	mRectInset	+	mClipRectRight;

	private	int	mRowOne	=	mRectInset;

	private	int	mRowTwo	=	mRowOne	+	mRectInset	+	mClipRectBottom;

	private	int	mRowThree	=	mRowTwo	+	mRectInset	+	mClipRectBottom;

	private	int	mRowFour	=	mRowThree	+	mRectInset	+	mClipRectBottom;

	private	int	mTextRow	=	mRowFour	+	(int)(1.5	*	mClipRectBottom);

6.	 In		ClippedView	,	add	a	private	final	member	variable	for	a	rectangle	of	type		RectF	:

	private	final	RectF	mRectF;

1.3	Add	constructors	for	the	ClippedView	class

1.	 Add	a	constructor	that	initializes	the		Paint		and		Path		objects	for	the	canvas.

Note	that	the		Paint.Align		property	specifies	which	side	of	the	text	to	align	to	the	origin
(not	which	side	of	the	origin	the	text	goes,	or	where	in	the	region	it	is	aligned!).	Aligning
the	right	side	of	the	text	to	the	origin	places	it	on	the	left	of	the	origin.

Introduction

396

https://developer.android.com/reference/android/graphics/Paint.html
https://developer.android.com/reference/android/graphics/Path.html
https://developer.android.com/reference/android/graphics/Paint.Align.html

	public	ClippedView(Context	context)	{

				this(context,null);

	}

	public	ClippedView(Context	context,	AttributeSet	attributeSet)	{

				super(context,	attributeSet);

				setFocusable(true);

				mPaint	=	new	Paint();

				//	Smooth	out	edges	of	what	is	drawn	without	affecting	shape.

				mPaint.setAntiAlias(true);

				mPaint.setStrokeWidth(

												(int)	getResources().getDimension(R.dimen.strokeWidth));

				mPaint.setTextSize((int)	getResources().getDimension(R.dimen.textSize));

				mPath	=	new	Path();

				mRectF	=	new	RectF(new	Rect(mRectInset,	mRectInset,

												mClipRectRight-mRectInset,	mClipRectBottom-mRectInset));

	}

2.	 Run	your	app	to	make	sure	the	code	is	correct.	You	should	see	the	name	of	the	app
and	a	white	screen.

1.4	Understand	the	drawing	algorithm

In		onDraw()	,	you	define	seven	different	clipped	rectangles	as	shown	in	the	app	screenshot
below.	The	rectangles	are	all	drawn	the	same	way;	the	only	difference	is	their	defined
clipping	regions.

Introduction

397

Introduction

398

The	algorithm	used	to	draw	the	rectangles	works	as	shown	in	the	screenshot	and
explanation	below.	In	summary,	drawing	a	series	of	rectangles	by	moving	the	origin	of	the
	Canvas	.	(1)	Translate		Canvas	.	(2)	Draw	rectangle.	(3)	Restore		Canvas		and		Origin	.

1.	 Fill	the		Canvas		with	the	gray	background	color.
2.	 Save	the	current	state	of	the		Canvas		so	you	can	reset	to	that	initial	state.
3.	 Translate	the		Origin		of	the	canvas	to	the	location	where	you	want	to	draw	the	next

rectangle.	That	is,	instead	of	calculating	where	the	next	rectangle	and	all	the	other
shapes	need	to	be	drawn,	you	move	the		Canvas		origin,	that	is,	its	coordinate	system,
and	then	draw	the	shapes	at	the	same	location	in	the	translated	coordinate	system.	This
is	simpler	and	slightly	more	efficient.

4.	 Apply	clipping	shapes	and	paths.
5.	 Draw	the	rectangle.
6.	 Restore	the	state	of	the		Canvas	.
7.	 GOTO	Step	2	and	repeat	until	all	rectangles	are	drawn.

1.5	Add	a	helper	method	to	draw	clipped	rectangles

Introduction

399

The	app	draws	the	rectangle	below	seven	times,	first	with	no	clipping,	then	six	time	with

various	clipping	paths	applied.	

The		drawClippedRectangle()		method	factors	out	the	code	for	drawing	one	rectangle.

1.	 Create	a		drawClippedRectangle()		method	that	takes	a		Canvas			canvas		argument.

	private	void	drawClippedRectangle(Canvas	canvas)	{...}

2.	 Apply	a	clipping	rectangle	that	constraints	to	drawing	only	the	square	to	the		canvas	.

	canvas.clipRect(mClipRectLeft,	mClipRectTop,

																	mClipRectRight,	mClipRectBottom);

The		Canvas.clipRect(left,	top,	right,	bottom)		method	reduces	the	region	of	the
screen	that	future	draw	operations	can	write	to.	It	sets	the	clipping	boundaries
(clipBounds)	to	be	the	spatial	intersection	of	the	current	clipping	rectangle	and	the
rectangle	specified.	There	are	lot	of	variants	of	the		clipRect()		method	that	accept
different	forms	for	regions	and	allow	different	operations	on	the	clipping	rectangle.

3.	 Fill	the		canvas		with	white	color.	Because	of	the	clipping	rectangle,	only	the	region
defined	by	the	clipping	rectangle	is	filled,	creating	a	white	rectangle.

	canvas.drawColor(Color.WHITE);

Introduction

400

https://developer.android.com/reference/android/graphics/Canvas.html

4.	 Draw	the	red	line,	green	circle,	and	text,	as	shown	in	the	completed	method	below.
5.	 After	you	paste	the	code,	create	a	string	resource		"Clipping"		to	get	rid	of	the	error	for

	R.string.clipping		in	the	last	line.

	private	void	drawClippedRectangle(Canvas	canvas)	{

				//	Set	the	boundaries	of	the	clipping	rectangle	for	whole	picture.

				canvas.clipRect(mClipRectLeft,	mClipRectTop,

												mClipRectRight,	mClipRectBottom);

				//	Fill	the	canvas	with	white.

				//	With	the	clipped	rectangle,	this	only	draws

				//	inside	the	clipping	rectangle.

				//	The	rest	of	the	surface	remains	gray.

				canvas.drawColor(Color.WHITE);

				//	Change	the	color	to	red	and

				//	draw	a	line	inside	the	clipping	rectangle.

				mPaint.setColor(Color.RED);

				canvas.drawLine(mClipRectLeft,	mClipRectTop,

												mClipRectRight,	mClipRectBottom,	mPaint);

				//	Set	the	color	to	green	and

				//	draw	a	circle	inside	the	clipping	rectangle.

				mPaint.setColor(Color.GREEN);

				canvas.drawCircle(mCircleRadius,	mClipRectBottom	-	mCircleRadius,

												mCircleRadius,	mPaint);

				//	Set	the	color	to	blue	and	draw	text	aligned	with	the	right	edge

				//	of	the	clipping	rectangle.

				mPaint.setColor(Color.BLUE);

				//	Align	the	RIGHT	side	of	the	text	with	the	origin.

				mPaint.setTextAlign(Paint.Align.RIGHT);

				canvas.drawText(getContext().getString(R.string.clipping),

												mClipRectRight,	mTextOffset,	mPaint);

	}

6.	 If	you	run	your	app,	you	still	only	see	the	white	screen,	because	you	have	not
overridden		onDraw()		and	thus	are	not	drawing	anything	yet.

1.6	Override	the	onDraw()	method

In	the		onDraw()		method	you	apply	various	combinations	of	clipping	regions	to	achieve
graphical	effects	and	learn	how	you	can	combine	clipping	regions	to	create	any	shape	you
need.

When	you	use		View		classes	provided	by	the	Android	system,	the	system	clips	views	for
you	to	minimize	overdraw.	When	you	use	custom		View		classes	and	override	the		onDraw()	
method,	clipping	what	you	draw	becomes	your	responsibility.

Introduction

401

WARNING:For	Android	O	some		clipPath()		methods	have	been	replaced	with
	clipOutPath()		and		clipOutRect		()		methods,	and	some		Region.Op		operators	have	been
deprecated.	Depending	on	the	version	of	Android	you	are	using,	you	may	need	to	adjust	the
methods	and	operators	you	use	to	create	the	exact	effects	shown	in	the	app	screenshot.
See	the		Canvas		and	documentation	for	details.
1.	 Create	the		onDraw()		method,	if	it	is	not	already	present	as	a	code	stub.

	@Override	protected	void	onDraw(Canvas	canvas)	{	...	}

Next,	add	code	to	draw	the	first	rectangle,	which	has	no	additional	clipping.	

2.	 In		onDraw()	,	fill	the		canvas		with	gray	color.

	canvas.drawColor(Color.GRAY);

3.	 Save	the	drawing	state	of	the		canvas	.

Context	maintains	a	stack	of	drawing	states.	Each	state	includes	the	currently	applied
transformations	and	clipping	regions.	Undoing	a	transformation	by	reversing	it	is	error-
prone,	as	well	as	chaining	too	many	transformations	relative	to	each	other.	Translation
is	straightforward	to	reverse,	but	if	you	also	stretch,	rotate,	or	custom	deform,	it	gets
complex	quickly.	Instead,	you	save	the	state	of	the	canvas,	apply	your	transformations,
draw,	and	then	restore	the	previous	state.

canvas.save();

4.	 Translate	the	origin	of	the	canvas	to	the	top-left	corner	of	the	first	rectangle.

	canvas.translate(mColumnOne,	mRowOne);

5.	 Call	the		drawClippedRectangle()		method	to	draw	the	first	rectangle.

	drawClippedRectangle(canvas);

6.	 Restore	the	previous	state	of	the	canvas.

	canvas.restore();

Introduction

402

https://developer.android.com/reference/android/graphics/Canvas.html#clipOutPath(android.graphics.Path)
https://developer.android.com/reference/android/graphics/Canvas.html#clipOutRect(int,%20int,%20int,%20int)
https://developer.android.com/reference/android/graphics/Region.Op.html
https://developer.android.com/reference/android/graphics/Canvas.html

7.	 Run	your	app.	You	should	now	see	the	first	rectangle	drawn	on	a	gray	background.

Next,	add	code	to	draw	the	second	rectangle,	which	uses	the	difference	between	two

clipping	rectangles	to	create	a	picture	frame	effect.	

Use	the	code	below	which	does	the	following:

1.	 Save	the	canvas.
2.	 Translate	the	origin	of	the	canvas	into	open	space	to	the	right	of	the	first	rectangle.
3.	 Apply	two	clipping	rectangles.	The		DIFFERENCE		operator	subtracts	the	second	rectangle

from	the	first	one.
4.	 Call	the		drawClippedRectangle()		method	to	draw	the	modified	canvas.
5.	 Restore	the	canvas	state.
6.	 Run	your	app.

	//	Draw	a	rectangle	that	uses	the	difference	between	two	

	//	clipping	rectangles	to	create	a	picture	frame	effect.

	canvas.save();

	//	Move	the	origin	to	the	right	for	the	next	rectangle.

	canvas.translate(mColumnnTwo,	mRowOne);

	//	Use	the	subtraction	of	two	clipping	rectangles	to	create	a	frame.

	canvas.clipRect(2	*	mRectInset,	2	*	mRectInset,

								mClipRectRight-2	*	mRectInset,	mClipRectBottom-2	*	mRectInset);

	canvas.clipRect(4	*	mRectInset,	4	*	mRectInset,

								mClipRectRight-4	*	mRectInset,	mClipRectBottom-4	*	mRectInset,

								Region.Op.DIFFERENCE);

	drawClippedRectangle(canvas);

	canvas.restore();

Next,	add	code	to	draw	the	third	rectangle,	which	uses	a	circular	clipping	region	created

from	a	circular	path.	

Here	is	the	code:

Introduction

403

//	Draw	a	rectangle	that	uses	a	circular	clipping	region	

//	created	from	a	circular	path.

canvas.save();

canvas.translate(mColumnOne,	mRowTwo);

//	Clears	any	lines	and	curves	from	the	path	but	unlike	reset(),

//	keeps	the	internal	data	structure	for	faster	reuse.

mPath.rewind();

mPath.addCircle(mCircleRadius,	mClipRectBottom-mCircleRadius,

							mCircleRadius,	Path.Direction.CCW);

canvas.clipPath(mPath,	Region.Op.DIFFERENCE);

drawClippedRectangle(canvas);

canvas.restore();

Next,	add	code	to	draw	the	intersection	of	two	clipping	rectangles.	

Here	is	the	code:

//	Use	the	intersection	of	two	rectangles	as	the	clipping	region.

canvas.save();

canvas.translate(mColumnnTwo,	mRowTwo);

canvas.clipRect(mClipRectLeft,	mClipRectTop,

							mClipRectRight-mSmallRectOffset,

							mClipRectBottom-mSmallRectOffset);

canvas.clipRect(mClipRectLeft+mSmallRectOffset,

							mClipRectTop+mSmallRectOffset,

							mClipRectRight,	mClipRectBottom,	Region.Op.INTERSECT);

drawClippedRectangle(canvas);

canvas.restore();

Next,	combine	shapes	and	draw	any	path	to	define	a	clipping	region.	

Here	is	the	code:

Introduction

404

//	You	can	combine	shapes	and	draw	any	path	to	define	a	clipping	region.

canvas.save();

canvas.translate(mColumnOne,	mRowThree);

mPath.rewind();

mPath.addCircle(mClipRectLeft+mRectInset+mCircleRadius,

							mClipRectTop+mCircleRadius+mRectInset,

							mCircleRadius,	Path.Direction.CCW);

mPath.addRect(mClipRectRight/2-mCircleRadius,

							mClipRectTop+mCircleRadius+mRectInset,

							mClipRectRight/2+mCircleRadius,

							mClipRectBottom-mRectInset,Path.Direction.CCW);

canvas.clipPath(mPath);

drawClippedRectangle(canvas);

canvas.restore();

Next,	add	a	rounded	rectangle	which	is	a	commonly	used	clipping	shape:

Here	is	the	code:

//	Use	a	rounded	rectangle.	Use	mClipRectRight/4	to	draw	a	circle.

canvas.save();

canvas.translate(mColumnnTwo,	mRowThree);

mPath.rewind();

mPath.addRoundRect(mRectF,	(float)mClipRectRight/4,

							(float)mClipRectRight/4,	Path.Direction.CCW);

canvas.clipPath(mPath);

drawClippedRectangle(canvas);

canvas.restore();

Next,	clip	the	outside	around	the	rectangle.	

Here	is	the	code:

Introduction

405

//	Clip	the	outside	around	the	rectangle.

canvas.save();

//	Move	the	origin	to	the	right	for	the	next	rectangle.

canvas.translate(mColumnOne,	mRowFour);

canvas.clipRect(2	*	mRectInset,	2	*	mRectInset,

							mClipRectRight-2*mRectInset,

							mClipRectBottom-2*mRectInset);

drawClippedRectangle(canvas);

canvas.restore();

Finally,	draw	and	transform	text.	

In	the	previous	steps	you	used	the	translate	transform	to	move	the	origin	of	the	canvas.	You
can	apply	transformations	to	any	shape,	including	text,	before	you	draw	it,	as	shown	in	the
following	example.

//	Draw	text	with	a	translate	transformation	applied.

canvas.save();

mPaint.setColor(Color.CYAN);

//	Align	the	RIGHT	side	of	the	text	with	the	origin.

mPaint.setTextAlign(Paint.Align.LEFT);

//	Apply	transformation	to	canvas.

canvas.translate(mColumnnTwo,	mTextRow);

//	Draw	text.

canvas.drawText(

								getContext().getString(R.string.translated),	0,	0,	mPaint);

canvas.restore();

//	Draw	text	with	a	translate	and	skew	transformations	applied.

canvas.save();

mPaint.setTextSize(mTextSize);

mPaint.setTextAlign(Paint.Align.RIGHT);

//	Position	text.

			canvas.translate(mColumnnTwo,	mTextRow);

			//	Apply	skew	transformation.

			canvas.skew(0.2f,	0.3f);

			canvas.drawText(

											getContext().getString(R.string.skewed),	0,	0,	mPaint);

			canvas.restore();

}	//	End	of	onDraw()

Solution	code
Android	Studio	project:	ClippingExample

Introduction

406

https://github.com/google-developer-training/android-advanced/tree/master/ClippingExample

Summary
The		Context		of	an	activity	maintains	a	state	that	preserves	transformations	and
clipping	regions	for	the		Canvas	.
Use		canvas.save()		and		canvas.restore()		to	draw	and	return	to	the	original	state	of
your	canvas.
To	draw	multiple	shapes	on	a	canvas,	you	can	either	calculate	their	location,	or	you	can
move	(translate)	the	origin	of	your	drawing	surface.	The	latter	can	make	it	easier	to
create	utility	methods	for	repeated	draw	sequences.
Clipping	regions	can	be	any	shape,	combination	of	shapes	or	path.
You	can	add,	subtract,	and	intersect	clipping	regions	to	get	exactly	the	region	you	need.
You	can	apply	transformations	to	text.

Related	concepts
The	related	concept	documentation	is	in	The	Canvas	class.

Learn	more
Android	developer	documentation:

	Canvas		class
	Bitmap		class
	View		class
	Paint		class
	Bitmap.config		configurations
	Region.Op		operators
	Path		class

Introduction

407

https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-5-advanced-graphics-and-views/lesson-11-canvas/11-1-c-the-canvas-class/11-1-c-the-canvas-class.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Bitmap.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/graphics/Paint.html
https://developer.android.com/reference/android/graphics/Bitmap.Config.html
https://developer.android.com/reference/android/graphics/Region.Op.html
https://developer.android.com/reference/android/graphics/Path.html

11.2:	Creating	a	SurfaceView	object
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Create	the	SurfaceView	example	app
Solution	code
Summary
Related	concept
Learn	more

When	you	create	a	custom	view	and	override	its		onDraw()		method,	all	drawing	happens	on
the	UI	thread.	Drawing	on	the	UI	thread	puts	an	upper	limit	on	how	long	or	complex	your
drawing	operations	can	be,	because	your	app	has	to	complete	all	its	work	for	every	screen
refresh.

One	option	is	to	move	some	of	the	drawing	work	to	a	different	thread	using	a		SurfaceView	.

All	the	views	in	your	view	hierarchy	are	rendered	onto	one		Surface		in	the	UI	thread.
In	the	context	of	the	Android	framework,		Surface		refers	to	a	lower-level	drawing
surface	whose	contents	are	eventually	displayed	on	the	user's	screen.
A		SurfaceView		is	a	view	in	your	view	hierarchy	that	has	its	own	separate		Surface	,	as
shown	in	the	diagram	below.	You	can	draw	to	it	in	a	separate	thread.
To	draw,	start	a	thread,	lock	the		SurfaceView	's	canvas,	do	your	drawing,	and	post	it	to
the		Surface	.

The	following	diagram	shows	a	View	Hierarchy	with	a		Surface		for	the	views	and	another

separate		Surface		for	the		SurfaceView	.	

Introduction

408

https://developer.android.com/reference/android/view/SurfaceView.html
https://developer.android.com/reference/android/view/Surface.html
https://developer.android.com/reference/android/view/Surface.html
https://developer.android.com/reference/android/view/SurfaceView.html

What	you	should	already	KNOW
You	should	be	able	to:

Create	a	custom		View	.
Draw	on	and	clip	a		Canvas	.
Add	event	handlers	to	views.
Understand	basic	threading.

What	you	will	LEARN
You	will	learn	how	to:

How	to	use	a		SurfaceView		to	draw	to	the	screen	from	a	different	thread.
A	basic	app	architecture	for	simple	games.

What	you	will	DO
Create	an	app	that	uses	a		SurfaceView		to	implement	a	simple	game.

App	overview
The	SurfaceViewExample	app	lets	you	search	for	an	Android	image	on	a	dark	phone	screen
using	a	"flashlight."

1.	 At	app	startup,	the	user	sees	a	black	screen	with	a	white	circle,	the	"flashlight."
2.	 While	the	user	drags	their	finger,	the	white	circle	follows	the	touch.
3.	 When	the	white	circle	intersects	with	the	hidden	Android	image,	the	screen	lights	up	to

reveal	the	complete	image	and	a	"win"	message.
4.	 When	the	user	lifts	their	finger	and	touches	the	screen	again,	the	screen	turns	black	and

the	Android	image	is	hidden	in	a	new	random	location.

Introduction

409

https://github.com/google-developer-training/android-advanced/tree/master/SurfaceViewExample

The	following	is	a	screenshot	of	the	SurfaceViewExample	app	at	startup,	and	after	the	user
has	found	the	Android	image	by	moving	around	the	flashlight.

Additional	features:

Size	of	the	flashlight	is	a	ratio	of	the	smallest	screen	dimension	of	the	device.
Flashlight	is	not	centered	under	the	finger,	so	that	the	user	can	see	what's	inside	the
circle.

Task	1.	Create	the	SurfaceViewExample	app
You	are	going	to	build	the	SurfaceViewExample	app	from	scratch.	The	app	consists	of	the
following	three	classes:

MainActivity—Locks	screen	orientation,	gets	the	display	size,	creates	the		GameView	,
and	sets	the		GameView		as	its	content	view.	Overrides		onPause()		and		onResume()		to
pause	and	resume	the	game	thread	along	with	the		MainActivity	.

Introduction

410

FlashlightCone—Represents	the	cone	of	a	flashlight	with	a	radius	that's	proportional	to
the	smaller	screen	dimension	of	the	device.	Has	get	methods	for	the	location	and	size
of	the	cone	and	a	set	method	for	the	cone's	location.
GameView—A	custom		SurfaceView		where	game	play	takes	place.	Responds	to	motion
events	on	the	screen.	Draws	the	game	screen	in	a	separate	thread,	with	the	flashlight
cone	at	the	current	position	of	the	user's	finger.	Shows	the	"win"	message	when	winning
conditions	are	met.

1.1	Create	an	app	with	an	empty	activity

1.	 Create	an	app	using	the	Empty	Activity	template.	Call	the	app	SurfaceViewExample.
2.	 Uncheck	Generate	Layout	File.	You	do	not	need	a	layout	file.

1.2	Create	the	FlashlightCone	class

1.	 Create	a	Java	class	called		FlashlightCone	.

		public	class	FlashlightCone	{}

2.	 Add	member	variables	for	x,	y,	and	the	radius.

		private	int	mX;

		private	int	mY;

		private	int	mRadius;

3.	 Add	methods	to	get	values	for	x,	y,	and	the	radius.	You	do	not	need	any	methods	to	set
them.

	public	int	getX()	{

					return	mX;

	}

	public	int	getY()	{

					return	mY;

	}

	public	int	getRadius()	{

								return	mRadius;

	}

4.	 Add	a	constructor	with	integer	parameters		viewWidth		and		viewHeight	.
5.	 In	the	constructor,	set		mX		and		mY		to	position	the	circle	at	the	center	of	the	screen.
6.	 Calculate	the	radius	for	the	flashlight	circle	to	be	one	third	of	the	smaller	screen

dimension.

Introduction

411

	public	FlashlightCone(int	viewWidth,	int	viewHeight)	{

				mX	=	viewWidth	/	2;

				mY	=	viewHeight	/	2;

				//	Adjust	the	radius	for	the	narrowest	view	dimension.

				mRadius	=	((viewWidth	<=	viewHeight)	?	mX	/	3	:	mY	/	3);

	}

7.	 Add	a		public			void	update()		method.	The	method	takes	integer	parameters		newX	
and		newY	,	and	it	sets		mX		to		newX		and		mY		to		newY	.

	public	void	update(int	newX,	int	newY)	{

				mX	=	newX;

				mY	=	newY;

	}

1.3	Create	a	new	SurfaceView	class

1.	 Create	a	new	Java	class	and	call	it		GameView	.
2.	 Let	it	extend		SurfaceView		and	implement		Runnable	.		Runnable		adds	a		run()		method

to	your	class	to	run	its	operations	on	a	separate	thread.

	public	class	GameView	extends	SurfaceView	implements	Runnable	{}

3.	 Implement	methods	to	add	a	stub	for	the	only	required	method,		run()	.

	@Override

	public	void	run(){}

4.	 Add	the	stubs	for	the	constructors	and	have	each	constructor	call		init()	.

	public	GameView(Context	context)	{

				super(context);

				init(context);

	}

	public	GameView(Context	context,	AttributeSet	attrs)	{

				super(context,	attrs);

				init(context);

	}

	public	GameView(Context	context,	AttributeSet	attrs,	int	defStyleAttr)	{

				super(context,	attrs,	defStyleAttr);

				init(context);

	}

5.	 Add	private		init()		method	and	set	the		mContext		member	variable	to		context	.

Introduction

412

https://developer.android.com/reference/java/lang/Runnable.html

	private	void	init(Context	context)	{

				mContext	=	context;

	}

6.	 In	the		GameView		class,	add	stubs	for	the		pause()		and		resume()	methods.	Later,	you
will	manage	your	thread	from	these	two	methods.

1.4	Finish	the	MainActivity

1.	 In		MainActivity	,	create	a	member	variable	for	the		GameView		class.

	private	GameView	mGameView;

In	the		onCreate()		method:

2.	 Lock	the	screen	orientation	into	landscape.	Games	often	lock	the	screen	orientation.

	setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

3.	 Create	an	instance	of		GameView	.
4.	 Set		mGameView		to	completely	fill	the	screen.
5.	 Set		mGameView		as	the	content	view	for		MainActivity	.

	mGameView	=	new	GameView(this);

	//	Android	4.1	and	higher	simple	way	to	request	fullscreen.

	mGameView.setSystemUiVisibility(View.SYSTEM_UI_FLAG_FULLSCREEN);

	setContentView(mGameView);

6.	 Still	in		MainActivity	,	override	the		onPause()		method	to	also	pause	the		mGameView	
object.	This		onPause()		method	shows	an	error,	because	you	have	not	implemented	the
	pause()		method	in	the		GameView		class.

	@Override

	protected	void	onPause()	{

				super.onPause();

				mGameView.pause();

	}

7.	 Override		onResume()		to	resume	the		mGameView	.	The		onResume()		method	shows	an
error,	because	you	have	not	implemented	the		resume()		method	in	the		GameView	.

Introduction

413

	@Override

	protected	void	onResume()	{

				super.onResume();

				mGameView.resume();

	}

1.5	Finish	the	init()	method	for	the	GameView	class

In	the	constructor	for	the		GameView		class:

1.	 Assign	the		context		to		mContext	.
2.	 Get	a	persistent	reference	to	the		SurfaceHolder	.	Surfaces	are	created	and	destroyed

by	the	system	while	the	holder	persists.
3.	 Create	a		Paint		object	and	initialize	it.
4.	 Create	a		Path		to	hold	drawing	instructions.	If	prompted,	import

	android.graphics.Path	.	

Here	is	the	code	for	the		init()		method.

private	void	init(Context	context)	{

mContext	=	context;

mSurfaceHolder	=	getHolder();

mPaint	=	new	Paint();

mPaint.setColor(Color.DKGRAY);

mPath	=	new	Path();

}

5.	 After	copy/pasting	the	code,	define	the	missing	member	variables.

1.6	Add	the	setUpBitmap()	method	to	the	GameView	class

The		setUpBitmap()		method	calculates	a	random	location	on	the	screen	for	the	Android
image	that	the	user	has	to	find.	You	also	need	a	way	to	calculate	whether	the	user	has	found
the	bitmap.

1.	 Set		mBitmapX		and		mBitmapY		to	random	x	and	y	positions	that	fall	inside	the	screen.
2.	 Define	a	rectangular	bounding	box	that	contains	the	Android	image.
3.	 Define	the	missing	member	variables.

Introduction

414

https://developer.android.com/reference/android/view/SurfaceHolder.html
https://developer.android.com/reference/android/graphics/Paint.html
https://developer.android.com/reference/android/graphics/Path.html

	private	void	setUpBitmap()	{

				mBitmapX	=	(int)	Math.floor(

												Math.random()	*	(mViewWidth	-	mBitmap.getWidth()));

				mBitmapY	=	(int)	Math.floor(

												Math.random()	*	(mViewHeight	-	mBitmap.getHeight()));

				mWinnerRect	=	new	RectF(mBitmapX,	mBitmapY,

												mBitmapX	+	mBitmap.getWidth(),

												mBitmapY	+	mBitmap.getHeight());

	}

1.7	Implement	the	methods	to	pause	and	resume	the
GameView	class

The		pause()		and		resume()		methods	on	the		GameView		are	called	from	the		MainActivity	
when	it	is	paused	or	resumed.	When	the		MainActivity		pauses,	you	need	to	stop	the
	GameView		thread.	When	the		MainActivity		resumes,	you	need	to	create	a	new		GameView	
thread.

1.	 Add	the		pause()		and	r	esume()		methods	using	the	code	below.	The		mRunning	
member	variable	tracks	the	thread	status,	so	that	you	do	not	try	to	draw	when	the
activity	is	not	running	anymore.

	public	void	pause()	{

				mRunning	=	false;

				try	{

								//	Stop	the	thread	(rejoin	the	main	thread)

								mGameThread.join();

				}	catch	(InterruptedException	e)	{

				}

	}

	public	void	resume()	{

				mRunning	=	true;

				mGameThread	=	new	Thread(this);

				mGameThread.start();

	}

2.	 As	before,	add	the	missing	member	variables.

Thread	management	can	become	a	lot	more	complex	after	you	have	multiple	threads	in	your
game.	See	Sending	Operations	to	Multiple	Threads	for	lessons	in	thread	management.

1.8	Implement	the	onSizeChanged()	method

Introduction

415

https://developer.android.com/training/multiple-threads/index.html

There	are	several	ways	in	which	to	set	up	the	view	after	the	system	has	fully	initialized	the
view.	The		onSizeChangedMethod()		is	called	every	time	the	view	changes.The	view	starts	out
with	0	dimensions.	When	the	view	is	first	inflated,	its	size	changes	and
	onSizeChangedMethod()		is	called.	Unlike	in		onCreate()	,	the	view's	correct	dimensions	are
available.

1.	 Get	the	image	of	Android	on	a	skateboard	from	github	and	add	it	to	your	drawable
folder,	or	use	a	small	image	of	your	own	choice.

2.	 In		GameView	,	override	the		onSizeChanged()		method.	Both	the	new	and	the	old	view
dimensions	are	passed	as	parameters	as	shown	below.

	@Override

	protected	void	onSizeChanged(int	w,	int	h,	int	oldw,	int	oldh)	{

				super.onSizeChanged(w,	h,	oldw,	oldh);

	}

Inside	the		onSizeChanged()		method:

3.	 Store	the	width	and	height	in	member	variables		mViewWidth		and		mViewHeight	.

	mViewWidth	=	w;

	mViewHeight	=	h;

4.	 Create	a		FlashlightCone		and	pass	in		mViewWidth		and		mViewHeight	.

	mFlashlightCone	=	new	FlashlightCone(mViewWidth,	mViewHeight);

5.	 Set	the	font	size	proportional	to	the	view	height.

	mPaint.setTextSize(mViewHeight	/	5);

6.	 Create	a		Bitmap		and	call		setupBitmap()	.

	mBitmap	=	BitmapFactory.decodeResource(

									mContext.getResources(),	R.drawable.android);

	setUpBitmap();

1.9	Implement	the	run()	method	in	the	GameView	class

The	interesting	stuff,	such	as	drawing	and	screen	refresh	synchronization,	happens	in	the
	run()		method.	Inside	your		run()		method	stub,	do	the	following:

1.	 Declare	a		Canvas			canvas		variable	at	the	top	of	the		run()		method:

Introduction

416

https://github.com/google-developer-training/android-advanced/blob/master/SurfaceViewExample/app/src/main/res/drawable/android.png

	Canvas	canvas;

2.	 Create	a	loop	that	only	runs	while		mRunning		is	true.	All	the	following	code	must	be
inside	that	loop.

	while	(mRunning)	{

	}

3.	 Check	whether	there	is	a	valid		Surface		available	for	drawing.	If	not,	do	nothing.

		if	(mSurfaceHolder.getSurface().isValid())	{

All	code	that	follows	must	be	inside	this		if		statement.

4.	 Because	you	will	use	the	flashlight	cone	coordinates	and	radius	multiple	times,	create
local	helper	variables	inside	the		if		statement.

	int	x	=	mFlashlightCone.getX();

	int	y	=	mFlashlightCone.getY();

	int	radius	=	mFlashlightCone.getRadius();

5.	 Lock	the	canvas.

In	an	app,	with	more	threads,	you	must	enclose	this	with	a		try/catch		block	to	make
sure	only	one	thread	is	trying	to	write	to	the		Surface	.

canvas	=	mSurfaceHolder.lockCanvas();

1.	 Save	the	current	canvas	state.

	canvas.save();

2.	 Fill	the	canvas	with	white	color.

	canvas.drawColor(Color.WHITE);

3.	 Draw	the	Skateboarding	Android	bitmap	on	the	canvas.

		canvas.drawBitmap(mBitmap,	mBitmapX,	mBitmapY,	mPaint);

4.	 Add	a	circle	that	is	the	size	of	the	flashlight	cone	to		mPath	.

Introduction

417

	mPath.addCircle(x,	y,	radius,	Path.Direction.CCW);

5.	 Set	the	circle	as	the	clipping	path	using	the		DIFFERENCE		operator,	so	that's	what's	inside
the	circle	is	clipped	(not	drawn).

canvas.clipPath(mPath,	Region.Op.DIFFERENCE);

6.	 Fill	everything	outside	of	the	circle	with	black.

canvas.drawColor(Color.BLACK);

7.	 Check	whether	the	the	center	of	the	flashlight	circle	is	inside	the	winning	rectangle.	If
so,	color	the	canvas	white,	redraw	the	Android	image,	and	draw	the	winning	message.

if	(x	>	mWinnerRect.left	&&	x	<	mWinnerRect.right

			&&	y	>	mWinnerRect.top	&&	y	<	mWinnerRect.bottom)	{

canvas.drawColor(Color.WHITE);

canvas.drawBitmap(mBitmap,	mBitmapX,	mBitmapY,	mPaint);

canvas.drawText(

							"WIN!",	mViewWidth	/	3,	mViewHeight	/	2,	mPaint);

}

8.	 Drawing	is	finished,	so	you	need	to	rewind	the	path,	restore	the	canvas,	and	release	the
lock	on	the	canvas.

mPath.rewind();

canvas.restore();

mSurfaceHolder.unlockCanvasAndPost(canvas);

Run	your	app.	It	should	display	a	black	screen	with	a	white	circle	at	the	center	of	the
screen.

1.10	Respond	to	motion	events

For	the	game	to	work,	your	app	needs	to	detect	and	respond	to	the	user's	motions	on	the
screen.

1.	 In		GameView	,	override	the		onTouchEvent()		method	and	update	the	flashlight	position	on
the		ACTION_DOWN		and		ACTION_MOVE		events.

Introduction

418

	@Override

	public	boolean	onTouchEvent(MotionEvent	event)	{

				float	x	=	event.getX();

				float	y	=	event.getY();

				//	Invalidate()	is	inside	the	case	statements	because	there	are

				//	many	other	motion	events,	and	we	don't	want	to	invalidate

				//	the	view	for	those.

				switch	(event.getAction())	{

								case	MotionEvent.ACTION_DOWN:

												setUpBitmap();

												updateFrame((int)	x,	(int)	y);

												invalidate();

												break;

								case	MotionEvent.ACTION_MOVE:

												updateFrame((int)	x,	(int)	y);

												invalidate();

												break;

								default:

												//	Do	nothing.

				}

				return	true;

	}

2.	 Implement	the		updateFrame()		method	called	in		onTouchEvent()		to	set	the	new
coordinates	of	the		FlashlightCone	.

	private	void	updateFrame(int	newX,	int	newY)	{

				mFlashlightCone.update(newX,	newY);

	}

3.	 Run	your	app	and	GAME	ON!
4.	 After	you	win,	tap	the	screen	to	play	again.

Solution	code
Android	Studio	project:	SurfaceViewExample

Summary
To	offload	drawing	to	a	different	thread,	create	a	custom	view	that	extends		SurfaceView	
and	implements		Runnable	.	The		SurfaceView		is	part	of	your	view	hierarchy	but	has	a
drawing		Surface		that	is	separate	from	the	rest	of	the	view	hierarchy.
Create	an	instance	of	your	custom	view	and	set	it	as	the	content	view	of	your	activity.

Introduction

419

https://github.com/google-developer-training/android-advanced/tree/master/SurfaceViewExample
https://developer.android.com/reference/android/view/SurfaceView.html
https://developer.android.com/reference/java/lang/Runnable.html
https://developer.android.com/reference/android/view/Surface.html

Add		pause()		and		resume()		methods	to	the		SurfaceView		that	stop	and	start	a	thread.
Override		onPause()		and		onResume()		in	the	activity	to	call	the		pause()		and		resume()	
methods	of	the		SurfaceView	.
If	appropriate,	handle	touch	events,	for	example,	by	overriding		onTouchEvent()	.
Add	code	to	update	your	data.
In	the		SurfaceView	,	implement	the		run()		method	to:

Check	whether	a		Surface		is	available.
Lock	the	canvas.
Draw.
Unlock	the	canvas	and	post	to	the		Surface	.

Related	concept
The	related	concept	documentation	is	in	The	SurfaceView	class.

Learn	more
Android	developer	documentation:

	SurfaceView		class
	SurfaceHolder		interface
	Runnable		interface
Sending	Operations	to	Multiple	Threads
	Paint		class
	Path		class
	ClippingBasic		code	sample
Graphics	architecture	for	a	comprehensive	introduction

Introduction

420

https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-5-advanced-graphics-and-views/lesson-11-canvas/11-2-c-the-surfaceview-class/11-2-c-the-surfaceview-class.html
https://developer.android.com/reference/android/view/SurfaceView.html
https://developer.android.com/reference/android/view/SurfaceHolder.html
https://developer.android.com/reference/java/lang/Runnable.html
https://developer.android.com/training/multiple-threads/index.html
https://developer.android.com/reference/android/graphics/Paint.html
https://developer.android.com/reference/android/graphics/Path.html
https://github.com/googlesamples/android-ClippingBasic/#readme
https://source.android.com/devices/graphics/architecture

12.1:	Creating	property	animations
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Creating	the	PropertyAnimation	app
Solution	code
Coding	challenge
Summary
Related	concept
Learn	more

The	Property	Animation	system	allows	you	to	animate	almost	any	property	of	an	object.	You
can	define	an	animation	to	change	any	object	property	(a	field	in	an	object)	over	time,
regardless	of	whether	the	change	draws	to	the	screen	or	not.	A	property	animation	changes
a	property's	value	over	a	specified	length	of	time.	For	example,	you	can	animate	a	circle	to
grow	bigger	by	increasing	its	radius.

With	the	property	animation	system,	you	assign	animators	to	the	properties	that	you	want	to
animate,	such	as	color,	position,	or	size.	You	also	define	aspects	of	the	animation	such	as
interpolation.	For	example,	you	would	create	an	animator	for	the	radius	of	a	circle	whose
size	you	want	to	change.

The	property	animation	system	lets	you	define	the	following	characteristics	of	an	animation:

Duration:	You	can	specify	the	duration	of	an	animation.	The	default	length	is	300
milliseconds.
Time	interpolation:	You	can	specify	how	the	values	for	the	property	are	calculated	as	a
function	of	the	animation's	current	elapsed	time.	You	can	choose	from	provided
interpolators	or	create	your	own.
Repeat	count	and	behavior:	You	can	specify	whether	or	not	to	have	an	animation	repeat
when	it	reaches	the	end	of	a	duration,	and	how	many	times	to	repeat	the	animation.	You
can	also	specify	whether	you	want	the	animation	to	play	back	in	reverse.	Setting	it	to
reverse	plays	the	animation	forwards	then	backwards	repeatedly,	until	the	number	of
repeats	is	reached.
Animator	sets:	You	can	group	animations	into	logical	sets	that	play	together	or
sequentially	or	after	specified	delays.

Introduction

421

https://developer.android.com/guide/topics/graphics/prop-animation.html

Frame-refresh	delay:	You	can	specify	how	often	to	refresh	frames	of	your	animation.
The	default	is	set	to	refresh	every	10	ms,	but	the	speed	in	which	your	application	can
refresh	frames	ultimately	depends	on	how	busy	the	system	is	overall	and	how	fast	the
system	can	service	the	underlying	timer.

What	you	should	already	KNOW
You	should	be	able	to:

Create	and	run	apps	in	Android	Studio.
Create	a	custom		View		object.
Draw	to	the	screen	using	a		Canvas		object.

What	you	will	LEARN
You	will	learn	how	to:

Create	a	custom		View		that	includes	a		radius		property.
Create	simple	radius-based	animations	using		ObjectAnimator		objects.
Combine	and	sequence	animations	using	an		AnimatorSet		object.

What	you	will	DO
Create	an	app	with	a	single	activity	and	a		PulseAnimationView		custom	view.
Add	an		mRadius		property	to	the		PulseAnimationView		class	and	a		setRadius()		"setter"
method	for	that	custom	property.	The		Animator		instance	will	call	the		setRadius()	
method	to	change	the	size	of		mRadius		during	the	animation.
Override	the		onDraw()		method	to	draw	a	circle	of	size		mRadius	.	The	circle	is	created
at	the	place	where	the	user	taps.
Create	three		Animator		instances	for	the	radius	property.
Use	an		AnimatorSet		to	play	the	animations	in	sequence	after	the	user	taps	the	screen.

App	overview

Introduction

422

PropertyAnimation	app	during	animation.	

Task	1.	Creating	the	PropertyAnimation	app
Note	that	in	this	advanced	practical,	you	are	expected	to	create	member	variables,	import
classes,	and	extract	values	as	needed.

1.1	Create	an	app	with	one	activity

Create	an	app	that	uses	the	Empty	Activity	template.	Make	sure	that	Backwards
Compatibility	and	Generate	Layout	File	are	enabled.

1.2	Create	the	custom	view	to	animate

1.	 Create	a	new	custom	view	class	called		PulseAnimationView		that	extends		View	.

	public	class	PulseAnimationView	extends	View	{}

2.	 Add	two	two	required	constructors.	When	you	create	your	custom	view	from	code
exclusively,	you	only	need	the	first	constructor.	When	you	inflate	your	custom	view	from
XML,	the	system	calls	the	second	constructor	and	if	it's	missing,	you	get	an	error.

Introduction

423

2.	 Add	two	two	required	constructors.	When	you	create	your	custom	view	from	code
exclusively,	you	only	need	the	first	constructor.	When	you	inflate	your	custom	view	from
XML,	the	system	calls	the	second	constructor	and	if	it's	missing,	you	get	an	error.

	public	PulseAnimationView(Context	context)	{this(context,	null);}

	public	PulseAnimationView(Context	context,	AttributeSet	attrs)	{

				super(context,	attrs);

	}

3.	 In		activity_main.xml	,	remove	the		TextView		and	add	a		PulseAnimationView		that
matches	the	size	of	the	parent.

	<com.example.android.propertyanimation.PulseAnimationView

				android:layout_width="match_parent"

				android:layout_height="match_parent"/>

4.	 Run	your	app.	It	shows	a	white	screen	and	the	name	of	the	app.

1.3	Implement	the	method	to	set	the	radius

This	app	uses	a	property	animator,	which	changes	a	property's	value	over	a	specified	length
of	time.	You	will	change	the		radius		property	of	the		PulseAnimationView		to	animate	a	circle
by	changing	its	size.

The	property	animator	needs	to	be	able	to	change	the	property	that	will	be	animated.	It	does
this	through	a	"setter"	method	for	the	property.	In	order	for	the	animator	to	find	and	use	the
setter,	the	following	conditions	need	to	be	met:

If	the	class	whose	property	is	being	animated	does	not	provide	a	setter	property,	you
have	to	create	one.	For	the		PulseAnimationView	,	you	will	create	a	member	variable	for
the		radius		and	a		setRadius()		method	to	set	the	variable's	value.
The	property	setter's	name	needs	to	be	of	the	form		set			PropertyName			().	The
	PropertyName		can	be	any	valid	string.	When	you	create	the	animator,	you	will	pass	the
	PropertyName		as	string	to	the	constructor.
To	cause	the	object	to	be	redrawn	after	the	property	changes,	you	must	call	the
	invalidate()		method.	Calling		invalidate()		tells	the	system	that	something	about	the
view	has	changed,	and	the	system	measures,	lays	out,	and	redraw	the	views.

Create	a	member	variable	for	the	radius	in		PulseAnimationView	.

	private	float	mRadius;

Introduction

424

	public	void	setRadius(float	radius)	{

				mRadius	=	radius;

				invalidate();

	}

To	make	the	animation	more	interesting,	use	the	radius	to	affect	other	aspects	of	the
animation.	For	example,	you	could	play	a	sound	as	the	circle	grows,	and	the	sound
could	change	as	a	function	of	the	radius.	For	the	PropertyAnimation	app,	in	addition	to
changing	the	size,	you	are	going	to	change	the	color	of	the	circle	as	a	function	of	the
radius.

Create	and	initialize	a		mPaint		member	variable.

	private	final	Paint	mPaint	=	new	Paint();

Create	a	constant		COLOR_ADJUSTER		and	set	it	to	5.	You	will	use	this	constant	in	the	next
step.

	private	static	final	int	COLOR_ADJUSTER	=	5;

Inside	the		setRadius()		method,	after	setting		mRadius		and	before	calling	the
	invalidate()		method,	change	the	color	of	the		mPaint		variable.	Colors	are	integers
and	can	thus	be	used	in	integer	operations.	You	can	change	the	value	of	the
	COLOR_ADJUSTER		constant	to	see	how	it	affects	the	color	of	the	circle.	You	can	also	use	a
more	sophisticated	color	function,	if	you	want	to.

	mPaint.setColor(Color.GREEN	+	(int)	radius	/	COLOR_ADJUSTER);

1.4	Add	code	to	respond	to	touch	events

In	the	PropertyAnimation	app,	animation	is	initiated	by	a	user	touch,	and	the	animation
originates	at	the	location	of	the	touch	event.

1.	 In	the	custom	view	class,	create		private	float		member	variables		mX		and		mY		to
store	the	event	coordinates.

	private	float	mX;

	private	float	mY;

2.	 Override	the		onTouchEvent()		method	to	get	the	event	coordinates	and	store	them	in	the
	mX		and		mY		variables.

Introduction

425

	mX		and		mY		variables.

	@Override

	public	boolean	onTouchEvent(MotionEvent	event)	{

				if	(event.getActionMasked()	==	MotionEvent.ACTION_DOWN)	{

								mX	=	event.getX();

								mY	=	event.getY();

				}

				return	super.onTouchEvent(event);

	}

1.5	Add	the	animation	code

The	animation	is	performed	by	an		Animator		object	that,	once	started,	changes	the	value	of
a	property	from	a	starting	value	towards	an	end	value	over	a	given	duration.

1.	 Create	class	constants	for	the	animation	duration	and	for	a	delay	before	the	animation
starts.	You	can	change	the	values	of	these	constants	later	and	explore	how	that	affects
the	appearance	of	the	animation.	The	time	is	in	milliseconds.

	private	static	final	int	ANIMATION_DURATION	=	4000;

	private	static	final	long	ANIMATION_DELAY	=	1000;

2.	 Override	the		onSizeChanged()		method.

	@Override

	public	void	onSizeChanged(int	w,	int	h,	int	oldw,	int	oldh)	{}

Inside	the		onSizeChanged()		method,	you	will	create	three		ObjectAnimator		objects	and
one		AnimatorSet		object.	You	cannot	create	them	in	the		onCreate()		method,	because
the	views	have	not	been	inflated,	and	so	the	call	to		getWidth()		used	below	would	not
return	a	valid	value.

3.	 In	the		onSizeChanged()		method,	create	an		ObjectAnimator		called		growAnimator	.	You
need	to	pass	in	a	reference	to	the	object	that	is	being	animated	(this),	the	name	of
the	property	that	is	to	be	animated	("radius"),	the	starting	value	(0),	and	the	ending
value	(getWidth()).	In	this	case,	the	ending	value	is	the	width	of	the
	PulseAnimationView	.

	ObjectAnimator	growAnimator	=	ObjectAnimator.ofFloat(this,

								"radius",	0,	getWidth());

4.	 Set	the	duration	of	the	animation	in	milliseconds.

	growAnimator.setDuration(ANIMATION_DURATION);

Introduction

426

5.	 Choose	an	interpolator	for	the	animation.	The	interpolator	affects	the	rate	of	change;
that	is,	the	interpolator	affects	how	the	animated	property	changes	from	its	starting
value	to	its	ending	value.

6.	 With	a		LinearInterpolator	,	the	rate	of	change	is	constant;	that	is,	the	value	changes
by	the	same	amount	for	every	animation	step.	For	example,	if	the	starting		radius		value
were	0	and	your	ending	value	were	10,	every	step	of	the	animation	might	increase	the
radius	by	2.	For	example,	0	>	2	>	4	>	8	>	10.

7.	 With	an		AccelerateDecelerateInterpolator	,	the	rate	of	change	starts	and	ends	slowly
but	accelerates	through	the	middle.	The	animation	starts	with	increasingly	larger	steps
and	then	ends	with	decreasingly	smaller	steps.	For	example	0	>	2	>	5	>	10	>	20	>	30	>
35	>	38	>	40.

8.	 You	can	create	custom	interpolators,	too.	See	the		BaseInterpolator		class	for	a	list	of
many	of	the	available	interpolators,	and	try	some	of	them	with	this	app.

growAnimator.setInterpolator(new	LinearInterpolator());

9.	 Create	a	second		ObjectAnimator		object	named		shrinkAnimator	.	Use	the	same
parameters	as	for		growAnimator		but	swap	the	start	and	end	values.

	ObjectAnimator	shrinkAnimator	=	ObjectAnimator.ofFloat(this,

								"radius",	getWidth(),	0);

10.	 Set	the	duration	to		ANIMATION_DURATION		and	use	a		LinearOutSlowInInterpolator	.	This	is
a	more	complex	interpolator	and	you	can	check	the	documentation	for	details.

	shrinkAnimator.setDuration(ANIMATION_DURATION);

	shrinkAnimator.setInterpolator(new	LinearOutSlowInInterpolator());

11.	 Add	a	starting	delay.	When	the	animation	is	started,	it	will	wait	for	the	specified	delay
before	it	runs.

	shrinkAnimator.setStartDelay(ANIMATION_DELAY);

12.	 Still	in		onSizeChanged()	,	create	a	third		ObjectAnimator		instance	called
	repeatAnimator	.

	ObjectAnimator	repeatAnimator	=	ObjectAnimator.ofFloat(this,

								"radius",	0,	getWidth());

	repeatAnimator.setStartDelay(ANIMATION_DELAY);

	repeatAnimator.setDuration(ANIMATION_DURATION);

13.	 Add	a	repeat	count	to		repeatAnimator	.	A	repeat	count	of		0		is	the	default.	With	a

Introduction

427

https://developer.android.com/reference/android/view/animation/LinearInterpolator.html
https://developer.android.com/reference/android/view/animation/AccelerateDecelerateInterpolator.html
https://developer.android.com/reference/android/view/animation/BaseInterpolator.html
https://developer.android.com/reference/android/support/v4/view/animation/LinearOutSlowInInterpolator.html

repeat	count	of		0	,	the	animation	plays	once	and	does	not	repeat.	With	a	repeat	count
of		1	,	the	animation	plays	twice.

repeatAnimator.setRepeatCount(1);

14.	 Set	the	repeat	mode	to		REVERSE	.	In	this	mode,	every	time	the	animation	plays,	it
reverses	the	beginning	and	end	values.	(The	other	possible	value,	which	is	the	default,
is		RESTART	.)

repeatAnimator.setRepeatMode(ValueAnimator.REVERSE);

15.	 Create	a		private	AnimatorSet		member	variable	called		mPulseAnimatorSet		and	initialize
the	variable	with	an		AnimatorSet	.

private	AnimatorSet	mPulseAnimatorSet	=	new	AnimatorSet();

An		AnimatorSet		allows	you	to	combine	several	animations	and	to	control	in	what	order
they	are	played.	You	can	have	several	animations	play	at	the	same	time	or	in	a
specified	sequence.		AnimatorSet		objects	can	contain	other		AnimatorSet		objects.	See
the	Property	Animation	guide	for	all	the	cool	things	you	can	do	with	animator	sets.

16.	 The	following		AnimatorSet		is	very	simple	and	specifies	that	the		growAnimator		should
play	before	the		shrinkAnimator	,	followed	by	the		repeatAnimator	.	Add	it	after	you	have
created	the	animators.

mPulseAnimatorSet.play(growAnimator).before(shrinkAnimator);

mPulseAnimatorSet.play(repeatAnimator).after(shrinkAnimator);

17.	 If	you	run	your	app	now,	you	still	only	see	the	white	screen.

1.6	Add	code	to	draw	the	circle

The		Animator		that	you	implemented	does	not	draw	anything.	The	actual	drawing	of	the
circle	must	be	done	in	the		onDraw()		method,	which	is	executed	after	the	view	has	been
invalidated,	which	happens	in	the		setRadius()		method.

1.	 Override	the		onDraw()		method	to	draw	a	circle	at	the		mX	,		mY		coordinates.
2.	 Give	the	circle	a	radius	of		mRadius		and	set	the	color	to		mPaint	.

Introduction

428

https://developer.android.com/reference/android/animation/AnimatorSet.html
https://developer.android.com/guide/topics/graphics/prop-animation.html#choreography

	@Override

	protected	void	onDraw(Canvas	canvas)	{

				super.onDraw(canvas);

				canvas.drawCircle(mX,	mY,	mRadius,	mPaint);

	}

1.7	Play	the	animation

1.	 In	the		onTouchEvent()		method,	add	code	to	play	the	animation	if	there	is	an
	ACTION_DOWN		event.	If	an	animation	is	running,	cancel	it.	This	resets	the
	mPulseAnimatorSet		and	its	animations	to	the	starting	values.

	if(mPulseAnimatorSet	!=	null	&&	mPulseAnimatorSet.isRunning())	{

				mPulseAnimatorSet.cancel();

	}

	mPulseAnimatorSet.start();

2.	 Run	your	app	and	tap	the	white	screen	to	see	the	animations	play.	Have	some	fun	and
experiment	with	the	animation!

This	example	app	creates	and	runs	animations	from	the	Java	code	because	it	uses	data	that
is	not	available	until	the	view	has	been	drawn.	You	can	also	define	animators	and	animator
sets	in	XML.	See	the	Property	Animation	guide	and	the	Animations	concept	for	instructions
and	code	examples.

Solution	code
Android	Studio	project:	PropertyAnimation.

Coding	challenge
Write	an	app	that	demonstrates	the	use	of	the	physics-based	animation	from	the	support
library.

You	need	to	add	the	library	dependency	to	your		build.gradle		file.	Use	the	latest
version	of	the	physics-based	library	as	listed	in	the	official	documentation.

dependencies	{

		...

		compile	"com.android.support:support-dynamic-animation:26.0.0"

}

Introduction

429

https://developer.android.com/guide/topics/graphics/prop-animation.html
https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-5-advanced-graphics-and-views/lesson-12-animations/12-1-c-animations/12-1-c-animations.html
https://github.com/google-developer-training/android-advanced/tree/master/PropertyAnimation
https://developer.android.com/guide/topics/graphics/physics-based-animation.html
https://developer.android.com/topic/libraries/support-library/preview/physics-based-animation.html#adding-support-library

Here	is	a	code	snippet	for	a	simple	vertical	spring	animation.	See	the	Spring	Animation
documentation	and		SpringAnimation		class	for	more	information.

final	SpringAnimation	anim	=	new	SpringAnimation(

		this,	DynamicAnimation.Y,	10)

	.setStartVelocity(10000);

anim.getSpring().setStiffness(STIFFNESS_LOW);

anim.start();

Here	is	a	code	snippet	for	a	simple	rotation	fling	animation.	See	the	Fling	Animation
documentation	and		FlingAnimation		class	for	more	information.

FlingAnimation	fling	=	new	FlingAnimation(this,	DynamicAnimation.ROTATION_X);

fling.setStartVelocity(150)

					.setMinValue(0)

					.setMaxValue(1000)

					.setFriction(0.1f)

					.start();

The	PhysicsAnimation	app	shows	a	possible	solution.

Summary
With	property	animation,	you	can	use	almost	any	property	of	an	object	to	create	an
animation.
One	way	to	create	a	property	animation	is	to:

Create	a	view	or	custom	view	with	the	property.

If	the	view	does	not	have	a	setter	for	the	property,	create	one	and	name	it		set	
	PropertyName		.	The	setter	is	called	by	the		Animator		object	to	change	the	property
value	during	animation.	You	must	call		invalidate()		in	the	setter.
Override		onDraw()		to	perform	any	drawing.
Decide	how	the	animation	is	to	be	triggered.	For	example,	the	animation	could	be
triggered	when	the	user	taps	the	screen.
In	the	method	that	responds	to	the	trigger	event,	for	example,	in	the		onTouchEvent()	
method,	create	the	objects.

To	create	an		Animator	,	set	the	object	and	property	to	be	animated.	For	the	property,
set	a	start	value,	an	end	value,	and	a	duration.

Use	interpolators	to	specify	how	the	animated	property	changes	over	time.	You	can	use
one	of	the	many	supplied	interpolators	or	create	your	own.
You	can	combine	several	animations	to	run	in	sequence	or	at	the	same	time	using

Introduction

430

https://developer.android.com/topic/libraries/support-library/preview/spring-animation.html
https://developer.android.com/reference/android/support/animation/SpringAnimation.html
https://developer.android.com/topic/libraries/support-library/preview/fling-animation.html
https://developer.android.com/reference/android/support/animation/FlingAnimation.html
https://github.com/google-developer-training/android-advanced/tree/master/PhysicsAnimation

	AnimatorSet		objects.
See	the	PropertyAnimation	guide	for	a	complete	description	of	all	the	cool	things	you
can	do	with	property	animations.

Related	concept
The	related	concept	documentation	is	in	Animations.

Learn	more
Android	developer	documentation:

View	Animation
Property	Animation
Drawable	Animation
Physics	based	animation
See	the	Graphics	Architecture	series	of	articles	for	an	in-depth	explanation	of	how	the
Android	framework	draws	to	the	screen.

Introduction

431

https://developer.android.com/guide/topics/graphics/prop-animation.html
https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-5-advanced-graphics-and-views/lesson-12-animations/12-1-c-animations/12-1-c-animations.html
https://developer.android.com/guide/topics/graphics/view-animation.html
https://developer.android.com/guide/topics/graphics/prop-animation.html
https://developer.android.com/guide/topics/graphics/drawable-animation.html
https://developer.android.com/guide/topics/graphics/physics-based-animation.html
https://source.android.com/devices/graphics/

13.1:	Playing	video	with	VideoView
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Play	video	with	VideoView
Task	2.	Play	video	from	the	internet
Solution	code
Coding	challenge
Summary
Related	concept
Learn	more

A	multimedia	app	that	plays	audio	or	video	usually	has	two	parts:

A	player	that,	given	a	media	source,	downloads	and	decodes	that	media,	and	renders	it
as	video	and/or	audio.
A	user	interface	(UI)	with	transport	controls	to	run	the	player	and	optionally	display	the

player's	state.	

The	architecture	of	a	media	app	can	get	a	lot	more	complicated,	especially	if	your	app's
entire	purpose	is	to	play	audio	or	video.	Android	provides	an	overall	architecture	for	audio
and	video	apps,	and	large	number	of	media-related	classes,	which	you	can	learn	about	in
Media	Apps	Overview.

The	simplest	possible	way	to	play	a	video	clip	in	your	app,	however,	is	to	use	the		VideoView	
class	to	play	the	video,	and	the		MediaController		class	as	the	UI	to	control	it.	In	this	practical
you	build	a	simple	app	that	plays	a	video	clip	that	is	either	embedded	in	the	app's	resources,
or	available	on	the	internet.

What	you	should	already	KNOW

Introduction

432

https://developer.android.com/guide/topics/media-apps/media-apps-overview.html
https://developer.android.com/reference/android/widget/VideoView.html
https://developer.android.com/reference/android/widget/MediaController.html

You	should	be	familiar	with:

Creating,	building,	and	running	apps	in	Android	Studio
The		Activity		lifecycle,	and	how	configuration	changes	such	as	changes	to	the	device
screen	orientation	affect	that	lifecycle
Making	data	persistent	across	configuration	changes	with	the	instance	state	bundle

What	you	will	LEARN

How	to	use	the		VideoView		class	to	play	video	in	your	app
How	to	use	the		MediaController		class	to	control	video	playing	in	a		VideoView	
How	activity	state	changes	affect	video	playback	state	in	the		VideoView	
About	event	listeners	and	callbacks	for	media	events
How	to	play	media	files	from	different	locations	(embedded	in	the	app,	or	streamed	from
the	internet)

What	you	will	DO

Build	an	app	called	SimpleVideoView	that	plays	a	video	clip	by	using	the		VideoView	
and		MediaController		classes.
Preserve	the	playback	position	for	the	video	playback	across	activity	state	changes.
React	to	the	end	of	the	video	playback	with	an	event	listener.
Handle	the	time	period	in	your	app	where	the	media	is	being	prepared	(buffering	or
decoding),	and	provide	a	helpful	message	to	the	user.
Play	media	files	as	embedded	files	in	the	app,	or	streamed	from	the	internet.

App	overview

Introduction

433

In	this	practical	you	build	the	SimpleVideoView	app	from	scratch.	SimpleVideoView	plays	a

video	file	in	its	own	view	in	your	app:	

The	SimpleVideoView	app	includes	a	familiar	set	of	media	controls.	The	controls	allow	you
to	play,	pause,	rewind,	fast-forward,	and	use	the	progress	slider	to	skip	forward	or	back	to
specific	places	in	the	video.

You	start	by	playing	a	video	file	embedded	with	the	app's	resources.	In	the	second	task,	you
modify	the	app	to	buffer	and	play	a	video	file	from	the	internet.

Task	1.	Play	video	with	VideoView

The	simplest	way	to	play	video	in	your	app	is	to	use	a		VideoView		object,	which	is	part	of	the
Android	platform.	The		VideoView		class	combines	a	media	player	(the		MediaPlayer		class)
with	a		SurfaceView		to	actually	display	the	video.	Although	it	does	not	provide	a	lot	of
features	or	customization,		VideoView		class	implements	a	lot	of	the	basic	behavior	you	need
to	play	a	video	in	your	app.

Your	app	can	play	media	files	from	a	variety	of	sources,	including	embedded	in	the	app's
resources,	stored	on	external	media	such	as	an	SD	card,	or	streamed	from	the	internet.	In
this	example,	to	keep	things	simple,	you	embed	the	video	file	in	the	app	itself.

Introduction

434

https://developer.android.com/reference/android/widget/VideoView.html
https://developer.android.com/reference/android/media/MediaPlayer.html
https://developer.android.com/reference/android/view/SurfaceView.html

For	the	video	playback	UI,	Android	provides	the		MediaController		view.	The
	MediaController		view	provides	a	set	of	common	media-control	buttons	that	can	control	a
media	player	(the		VideoView		object).

In	this	task	you	build	the	first	iteration	of	the	SimpleVideoView	app,	which	plays	a	video	clip.

1.1	Create	the	project	and	initial	layout

This	first	iteration	of	the	app	starts	playing	a	video	clip	when	it	launches,	and	plays	the	clip	to
the	end.

1.	 Create	a	new	Android	project.	Call	it	SimpleVideoView	and	use	the	Empty	activity
template.	You	can	leave	all	other	defaults	the	same.

2.	 Create	a	new	raw	resource	directory	to	hold	the	video	file	the	app	will	play:	click	the	res
directory	in	the	Project	view	and	select	File	>	New	>	Android	resource	directory.

3.	 Change	both	the	Directory	name	and	Resource	type	to	"raw".	Leave	all	other	options

as	is	and	click	OK.	

4.	 Download	the	Tacoma	Narrows	MP4	video	file.	If	the	video	begins	to	play	in	your
browser	rather	than	downloading,	you	can	use	File	>	Save	Page	As...	to	save	the	file.

5.	 Move	the		tacoma_narrows.mp4		file	into	the		raw		directory	in	your	project.
6.	 In		activity_main.xml	,	delete	the	existing		TextView	,	and	replace	it	with	a		VideoView	

element	with	these	attributes:

Introduction

435

https://developer.android.com/reference/android/widget/MediaController.html
https://developers.google.com/training/images/tacoma_narrows.mp4
https://developer.android.com/reference/android/widget/VideoView.html

	<VideoView

				android:id="@+id/videoview"

				android:layout_width="0dp"

				android:layout_height="0dp"

				android:layout_margin="8dp"

				app:layout_constraintBottom_toBottomOf="parent"

				app:layout_constraintDimensionRatio="4:3"

				app:layout_constraintEnd_toEndOf="parent"

				app:layout_constraintStart_toStartOf="parent"

				app:layout_constraintTop_toTopOf="parent"/>

When		layout_width		and		layout_height		are		0dp	,	the	size	and	position	of	the
	VideoView		are	calculated	dynamically	based	on	the	other	constraints.	The
	layout_constraintDimensionRatio		attribute	indicates	that	when	the	app	calculates	the
size	of	the		VideoView	,	the	ratio	of	the	width	to	the	height	should	be	4:3.	This	constraint
keeps	the	aspect	ratio	of	the	video	the	same	and	prevents	the	view	from	being
stretched	too	far	in	either	direction	(depending	on	how	the	device	is	rotated).

1.2	Implement	MainActivity

1.	 In		MainActivity.java	,	add	a	constant	for	the	name	of	the	video	sample	file,	and	a
member	variable	to	hold	the		VideoView		instance.

	private	static	final	String	VIDEO_SAMPLE	=	"tacoma_narrows";

	private	VideoView	mVideoView;

2.	 Also	in		MainActivity	,	create	a	private	method	called		getMedia()		that	takes	a		String	
and	returns	a		Uri	.	The	implementation	looks	like	this:

	private	Uri	getMedia(String	mediaName)	{

				return	Uri.parse("android.resource://"	+	getPackageName()	+	

							"/raw/"	+	mediaName);

	}

This	method	converts	the	name	of	the	sample	media	file	(a	string)	into	a	full	URI	object
representing	the	path	to	the	sample	in	your	app's	resources.	Note	that	although	the
actual	filename	in	the	app's	resource	directory	is		tacoma_narrows.mp4	,	the	string	name
and	resulting	resource	name	do	not	include	the	extension.

3.	 In		onCreate()	,	get	a	reference	to	the		VideoView		in	the	layout:

	mVideoView	=	findViewById(R.id.videoview);

Introduction

436

https://developer.android.com/reference/android/net/Uri.html

4.	 Create	a	new	private	method	called		initializePlayer()		that	takes	no	arguments	and
returns		void	.

	private	void	initializePlayer()	{

	}

5.	 Inside		initializePlayer()	,	use	the		getMedia()		and		setVideoUri()		methods	to	set	the
media	URI	that	the		VideoView		will	play.

	Uri	videoUri	=	getMedia(VIDEO_SAMPLE);

	mVideoView.setVideoURI(videoUri);

6.	 Call		start()		on	the		VideoView		to	start	playing.

	mVideoView.start();

7.	 Create	a	private	method	called		releasePlayer()	,	and	call	the		stopPlayback()		method
on	the		VideoView	.	This	stops	the	video	from	playing	and	releases	all	the	resources	held
by	the		VideoView	.

	private	void	releasePlayer()	{

				mVideoView.stopPlayback();

	}

1.3	Implement	Activity	lifecycle	methods

Media	playback	uses	many	more	system	resources	than	most	apps.	It	is	critical	that	your
app	completely	release	those	resources	when	it's	not	using	them,	even	if	the	app	is	paused
in	the	background.	Implement	the		Activity		lifecycle	method	for		onStop()		to	release	the
media	resources	when	the	app	is	stopped.	Implement		onStart()		to	initialize	the	resources
when	the	app	is	started	again.

1.	 Override	the		onStart()		method	and	call		initializePlayer()	.

	@Override

	protected	void	onStart()	{

				super.onStart();

				initializePlayer();

	}

2.	 Override	the		onStop()		method	and	call		releasePlayer()	.

Introduction

437

https://developer.android.com/reference/android/widget/VideoView.html#setVideoURI(android.net.Uri)
https://developer.android.com/reference/android/widget/VideoView.html#start()
https://developer.android.com/reference/android/widget/VideoView.html#stopPlayback()

	@Override

	protected	void	onStop()	{

				super.onStop();

				releasePlayer();

	}

3.	 Override		onPause()		and	add	a	test	for	versions	of	Android	older	than	N	(lower	than	7.0,
API	24).	If	the	app	is	running	on	an	older	version	of	Android,	pause	the		VideoView	
here.

	@Override

	protected	void	onPause()	{

				super.onPause();

				if	(Build.VERSION.SDK_INT	<	Build.VERSION_CODES.N)	{

								mVideoView.pause();

				}

	}

This	test	is	required	because	the	behavior	of		onPause()		and		onStop()		changed	in
Android	N	(7.0,	API	24).	In	older	versions	of	Android,		onPause()		was	the	end	of	the
visual	lifecycle	of	your	app,	and	you	could	start	releasing	resources	when	the	app	was
paused.

In	newer	versions	of	Android,	your	app	may	be	paused	but	still	visible	on	the	screen,	as
with	multi-window	or	picture-in-picture	(PIP)	mode.	In	those	cases	the	user	likely	wants
the	video	to	continue	playing	in	the	background.	If	the	video	is	being	played	in	multi-
window	or	PIP	mode,	then	it	is		onStop()		that	indicates	the	end	of	the	visible	life	cycle
of	the	app,	and	your	video	playback	should	indeed	stop	at	that	time.

If	you	only	stop	playing	your	video	in		onStop()	,	as	in	the	previous	step,	then	on	older
devices	there	may	be	a	few	seconds	where	even	though	the	app	is	no	longer	visible	on
screen,	the	video's	audio	track	continues	to	play	while		onStop()		catches	up.	This	test
for	older	versions	of	Android	pauses	the	actual	playback	in		onPause()		to	prevent	the
sound	from	playing	after	the	app	has	disappeared	from	the	screen.

4.	 Build	and	run	the	app.

When	the	app	starts,	the	video	file	is	opened	and	decoded,	begins	playing,	and	plays	to
the	end.	There	is	no	way	to	control	the	media	playback,	for	example	using	pause,	play,
fast-forward,	or	rewind.	You	add	these	capabilities	in	the	next	task.

Note:	If	you	test	the	SimpleVideoView	app	on	an	emulator,	use	an	AVD	that	supports
API	23	or	higher.	Older	versions	of	the	emulator	support	fewer	types	of	video	formats,

Introduction

438

https://developer.android.com/guide/topics/ui/multi-window.html
https://developer.android.com/guide/topics/ui/picture-in-picture.html

and	may	also	suffer	from	degraded	performance	during	playback.	If	you	run	the	app	on
a	physical	device	that	runs	a	version	of	Android	older	than	API	23,	you	should	not	have
either	of	these	problems.

1.4	Add	a	MediaController

An	app	that	plays	video	but	does	not	provide	a	way	for	the	user	to	control	that	video	is	less
than	useful.	The	Android	platform	provides	a	way	to	control	media	using	the
	MediaController		view,	which	is	in	the		android.widget		package.	A		MediaController		view
combines	the	most	common	media	control	UI	elements	(buttons	for	play,	pause,	fast-
forward,	and	rewind,	as	well	as	a	seek	or	progress	bar)	with	the	ability	to	control	an
underlying	media	player,	such	as	a		VideoView	.

To	use	a		MediaController		view,	you	don't	define	it	in	your	layout	as	you	would	other	views.
Instead	you	instantiate	it	programmatically	in	your	app's		onCreate()		method	and	then
attach	it	to	a	media	player.	The	controller	floats	above	your	app's	layout	and	enables	the
user	to	start,	stop,	fast-forward,	rewind,	and	seek	within	the	video.

In	the	figure	above:

1.	 A		VideoView	,	which	includes	a		MediaPlayer		to	decode	and	play	video,	and	a
	SurfaceView		to	display	the	video	on	the	screen

2.	 A		MediaController		view,	which	includes	UI	elements	for	video	transport	controls	(play,
pause,	fast-forward,	rewind,	progress	slider)	and	the	ability	to	control	the	video

Introduction

439

https://developer.android.com/reference/android/widget/MediaController.html

In	this	task	you	add	a		MediaController		to	the	SimpleVideoView	app.

1.	 Locate	the		onCreate()		method	in		MainActivity	.	Below	the	assignment	of	the
	mVideoView		variable,	create	a	new		MediaController		object	and	use		setMediaPlayer()	
to	connect	the	object	to	the		VideoView	.

	MediaController	controller	=	new	MediaController(this);

	controller.setMediaPlayer(mVideoView);

Note:	When	you	add	the		MediaController		class	make	sure	that	you	import
	android.widget.MediaController	,	not		android.media.session.MediaController	.

2.	 Use		setMediaController()		to	do	the	reverse	connection,	that	is,	to	tell	the		VideoView	
that	the		MediaController		will	be	used	to	control	it:

	mVideoView.setMediaController(controller);

3.	 Build	and	run	the	app.	As	before,	the	video	begins	to	play	when	the	app	starts.	Tap	the
	VideoView		to	make	the		MediaController		appear.	You	can	then	use	any	of	the	elements
in	that	controller	to	control	media	playback.	The		MediaController		disappears	on	its	own

after	three	seconds.	

Introduction

440

https://developer.android.com/reference/android/widget/MediaController.html#setMediaPlayer(android.widget.MediaController.MediaPlayerControl)
https://developer.android.com/reference/android/widget/VideoView.html#setMediaController(android.widget.MediaController)

1.5	Preserve	playback	position	throughout	the	activity
lifecycle

When	the		onStop()		method	is	called	and	your	app	goes	into	the	background,	or	restarts
because	of	a	configuration	change,	the		VideoView		class	releases	all	its	resources	and	does
not	preserve	any	video	playback	state	such	as	the	current	position.	This	means	that	each
time	the	app	starts	or	comes	into	the	foreground,	the	video	is	reopened	and	plays	from	the
beginning.

To	get	a	baseline	for	comparison,	run	the	app,	if	it's	not	already	running.	With	your	app	in	the
foreground,	try	the	following	tasks:

Rotate	the	device.
Tap	the	Home	button	and	then	use	the	task	switcher	to	bring	the	app	back	to	the
foreground.
If	your	device	or	emulator	is	running	Android	7.0	(API	level	24)	or	higher,	press	and	hold
the	task	switcher	to	enable	multi-window	mode.

Note	in	each	of	these	cases	how	the	video	restarts	from	the	beginning.

In	this	task	you	keep	track	of	the	current	playback	position,	in	milliseconds,	throughout	the
app's	lifecycle.	If	the	video	resources	are	released,	the	video	can	restart	where	it	left	off.

1.	 In		MainActivity	,	add	a	member	variable	to	hold	the	video's	current	position	(initially	0).
The	playback	position	is	recorded	in	milliseconds	from	0.

	private	int	mCurrentPosition	=	0;

2.	 Add	a	member	variable	to	hold	the	key	for	the	playback	position	in	the	instance	state
bundle:

	private	static	final	String	PLAYBACK_TIME	=	"play_time";

3.	 In		initializePlayer()	,	after		setVideoUri()		but	before		start()	,	check	to	see	whether
the	current	position	is	greater	than	0,	which	indicates	that	the	video	was	playing	at	some
point.	Use	the		seekTo()		method	to	move	the	playback	position	to	the	current	position.

	if	(mCurrentPosition	>	0)	{

				mVideoView.seekTo(mCurrentPosition);

	}	else	{

				//	Skipping	to	1	shows	the	first	frame	of	the	video.

				mVideoView.seekTo(1);

	}

Introduction

441

https://developer.android.com/reference/android/widget/VideoView.html#seekTo(int)

If	the	current	position	is	0,	the	video	has	not	yet	played.	Use		seekTo()		to	set	the
playback	position	to	1	millisecond.	This	will	show	the	first	frame	of	the	video	rather	than
a	black	screen.

4.	 Override	the		onSaveInstanceState()		method	to	save	the	value	of		mCurrentTime		to	the
instance	state	bundle.	Get	the	current	playback	position	with	the		getCurrentPosition()	
method.

	@Override

	protected	void	onSaveInstanceState(Bundle	outState)	{

				super.onSaveInstanceState(outState);

				outState.putInt(PLAYBACK_TIME,	mVideoView.getCurrentPosition());

	}

5.	 In		onCreate()	,	check	for	the	existence	of	the	instance	state	bundle,	and	update	the
value	of		mCurrentTime		with	the	value	from	that	bundle.	Add	these	lines	before	you
create	the		MediaController	.

	if	(savedInstanceState	!=	null)	{

				mCurrentPosition	=	savedInstanceState.getInt(PLAYBACK_TIME);

	}

6.	 Build	and	run	the	app.	Repeat	the	baseline	tasks	and	note	how	the	playback	position	is
saved	in	each	case.

1.6	Add	an	onCompletion()	callback

The		VideoView		class	(and	the		MediaPlayer		it	contains)	lets	you	define	listeners	for	several
events	related	to	media	playback.	For	example:

The	media	has	been	prepared	(buffered,	decoded,	uncompressed,	and	so	on)	and	is
ready	to	play.
An	error	has	occurred	during	media	playback.
The	media	source	has	reported	information	such	as	a	buffering	delay	during	playback,
for	example	when	media	is	streaming	over	the	internet.
The	media	has	finished	playing.

Listeners	for	the	preparation	and	completion	events	are	the	most	common	listeners	to
implement	in	a	media	app.	You	haven't	yet	needed	to	handle	media	preparation	in	the
SimpleVideoView	app,	because	the	video	clip	is	embedded	in	the	app	and	is	fairly	small,	so
it	plays	quickly.	This	may	not	be	the	case	for	larger	video	clips	or	those	you	play	directly	from
the	internet.	You	come	back	to	preparing	media	in	a	later	task.

Introduction

442

https://developer.android.com/reference/android/widget/VideoView.html#getCurrentPosition()

When	media	playback	is	finished,	the	completion	event	occurs,	and	the		onCompletion()	
callback	is	called.	In	this	task	you	implement	a	listener	for		onCompletion()		events	to	display
a	toast	when	the	playback	finishes.

1.	 At	the	end	of	the		initializePlayer()		method,	create	a	new
	MediaPlayer.OnCompletionListener	,	override	the		onCompletion()		method,	and	use
	setOnCompletionListenter()		to	add	that	listener	to	the		VideoView	.

	mVideoView.setOnCompletionListener(new	MediaPlayer.OnCompletionListener()	{

				@Override

				public	void	onCompletion(MediaPlayer	mediaPlayer)	{

								//	Implementation	here.

				}

	});

2.	 Inside	the		onCompletion()		method,	add	a		Toast		to	display	the	message	"Playback
completed."

3.	 After	the	toast,	add	a	call	to		seekTo()		to	reset	the	playback	and	the		MediaController	
to	the	beginning	of	the	clip.

	mVideoView.setOnCompletionListener(new	MediaPlayer.OnCompletionListener()	{

				@Override

				public	void	onCompletion(MediaPlayer	mediaPlayer)	{

								Toast.makeText(MainActivity.this,	"Playback	completed",	

											Toast.LENGTH_SHORT).show();

								mVideoView.seekTo(1);

				}

	});

By	default,	when	the	media	finishes	playing,	both	the		VideoView		and	the
	MediaController		show	the	end	state	of	the	media.	The	code	shown	above	resets	both
the	player	and	the	controller	to	the	start	of	the	video	so	that	the	video	can	be	played
again.

4.	 Build	and	run	the	app.	Tap	the	video	to	display	the		MediaController	,	and	move	the
slider	nearly	all	the	way	to	the	end.	When	the	video	finishes	playing,	the	toast	appears
and	the	controller	resets	to	the	beginning	of	the	clip.	

Introduction

443

https://developer.android.com/reference/android/media/MediaPlayer.OnCompletionListener.html
https://developer.android.com/reference/android/media/MediaPlayer.OnCompletionListener.html#onCompletion(android.media.MediaPlayer)
https://developer.android.com/reference/android/widget/VideoView.html#setOnCompletionListener(android.media.MediaPlayer.OnCompletionListener)
https://developer.android.com/reference/android/widget/Toast.html

Task	2.	Play	video	from	the	internet

In	a	real-world	app,	many	media	files	are	too	large	to	embed	directly	in	your	app	as	you	did
with	the	video	in	the	SimpleVideoView	app.	More	commonly,	if	your	app	plays	media	it	will
get	the	files	it	needs	from	external	storage	such	as	an	SD	card,	or	locate	and	buffer	the
media	file	from	a	server	on	the	internet.

If	you	play	media	from	the	internet,	the		VideoView		class	and	the	underlying		MediaPlayer	
implement	a	lot	of	the	background	work	for	you.	When	you	use		VideoView		you	don't	need	to
open	a	network	connection,	or	set	up	a	background	task	to	buffer	the	media	file.

Introduction

444

You	do,	however,	need	to	handle	the	time	period	between	when	you	tell	your	app	to	play	the
media	file	and	when	the	content	in	that	file	is	actually	available	to	play.	If	you	do	nothing,
your	app	may	appear	to	freeze	for	quite	a	long	time	while	the	file	is	buffering,	especially	on
slow	network	connections.	Even	a	message	to	the	user	that	something	is	going	on	provides
a	better	user	experience.

	VideoView		(and		MediaPlayer)	provide	a	preparation	event	listener	to	handle	this	case.	To
use	the		onPrepared()		callback,	set	the	URI	of	the	media	the		VideoView		will	play,	then
receive	a	callback	when	that	media	is	ready	to	play.

In	this	task	you	modify	the	SimpleVideoView	app	to	play	a	video	from	a	URL	on	the	internet.
You	use	the	preparation	event	listener	to	handle	updating	the	app's	UI	while	the	file	is	being
loaded.

2.1	Add	a	buffering	message

In	this	task	you	modify	the	app	layout	to	display	a	simple	buffering	message,	and	you	use
view	visibility	to	show	and	hide	the	message	at	the	appropriate	time.

1.	 In	the	main	layout	file,	add	a		TextView		element.	The	new		TextView		is	centered	in	the
layout,	same	as	the		VideoView	,	and	appears	on	top.

	<TextView

				android:id="@+id/buffering_textview"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:layout_margin="8dp"

				android:text="Buffering..."

				android:textSize="18sp"

				android:textStyle="bold"

				android:textColor="@android:color/white"

				app:layout_constraintBottom_toBottomOf="parent"

				app:layout_constraintEnd_toEndOf="parent"

				app:layout_constraintStart_toStartOf="parent"

				app:layout_constraintTop_toTopOf="parent"/>

2.	 In		MainActivity	,	change	the		VIDEO_SAMPLE		constant	to	indicate	the	URL	for	the	media
file.

	private	static	final	String	VIDEO_SAMPLE	=

						"https://developers.google.com/training/images/tacoma_narrows.mp4";

You	can	use	any	URL	for	any	video	that	is	available	as	a	file	on	the	internet.

Note:	If	you	use	your	own	URL	for	the	video	file,	make	sure	that	the	video	format	is
supported	by	Android,	by	the	specific	version	of	Android	your	emulator	or	device	is

Introduction

445

running.	See	Supported	Media	Formats	for	a	list	of	video	codecs	and	file	types	that
Android	supports.

3.	 Add	a	member	variable	to	hold	the		TextView		that	shows	the	buffering	message.

	private	TextView	mBufferingTextView;

4.	 In		onCreate()	,	get	a	reference	to	the		TextView		in	the	layout:

	mBufferingTextView	=	findViewById(R.id.buffering_textview);

5.	 In	the		getMedia()		method,	change	the	implementation	to	test	whether	the	incoming
string	is	a	URL	or	a	raw	resource.	Return	the	appropriate	URI.

	private	Uri	getMedia(String	mediaName)	{

				if	(URLUtil.isValidUrl(mediaName))	{

								//	media	name	is	an	external	URL

								return	Uri.parse(mediaName);

				}	else	{	//	media	name	is	a	raw	resource	embedded	in	the	app

								return	Uri.parse("android.resource://"	+	getPackageName()	+

																"/raw/"	+	mediaName);

				}

	}

2.2	Add	the	internet	permission

In	the	Android	manifest	file,	add	an	internet	permission	to	enable	the	app	to	access	the
media	file	on	the	internet.

1.	 In		AndroidManifest.xml	,	add	this	line	just	before	the		<application>		element,	at	the	top
level	of	the	manifest.

	<uses-permission	android:name="android.permission.INTERNET"	/>

2.3	Add	an	onPrepared()	callback

Preparing	video	or	other	media	can	involve	streaming	it,	buffering	it	in	memory,	and
decoding	it	to	make	it	ready	to	play.	With		VideoView		and		MediaPlayer	,	the	preparation	step
happens	asynchronously	in	a	separate	thread,	so	your	app	does	not	have	to	pause	and	wait.
Use	the		onPrepared()		callback	to	enable	your	app	to	be	notified	when	the	preparation	step
has	completed	and	the	media	is	ready	to	play.

1.	 In	the		initializePlayer()		method,	before	the	definition	for		setOnCompletionListener()	,
create	a	new		MediaPlayer.onPreparedListener	,	override	the		onPrepared()		method,	and
use		setOnPreparedListener()		to	add	that	listener	to	the		VideoView	.

Introduction

446

https://developer.android.com/guide/topics/media/media-formats.html
https://developer.android.com/reference/android/media/MediaPlayer.OnPreparedListener.html
https://developer.android.com/reference/android/media/MediaPlayer.OnPreparedListener.html#onPrepared(android.media.MediaPlayer)
https://developer.android.com/reference/android/widget/VideoView.html#setOnPreparedListener(android.media.MediaPlayer.OnPreparedListener)

	mVideoView.setOnPreparedListener(

				new	MediaPlayer.OnPreparedListener()	{

							@Override

							public	void	onPrepared(MediaPlayer	mediaPlayer)	{

										//	Implementation	here.

							}

	});

2.	 Inside	the		onPrepared()		method,	set	the	visibility	of	the		TextView		to	invisible.	This
removes	the	"Buffering..."	message.

	mBufferingTextView.setVisibility(VideoView.INVISIBLE);

3.	 In		initializePlayer()	,	locate	the	lines	of	code	that	test	for	the	current	position,	seek	to
that	position,	and	start	playback.	Move	those	lines	into	the		onPrepared()		method,
placing	them	after	the	calls	to		setVisibility()	.	The	final		onPrepared()		definition	looks
like	this:

	mVideoView.setOnPreparedListener(

				new	MediaPlayer.OnPreparedListener()	{

							@Override

							public	void	onPrepared(MediaPlayer	mediaPlayer)	{

											mBufferingTextView.setVisibility(VideoView.INVISIBLE);

											if	(mCurrentPosition	>	0)	{

															mVideoView.seekTo(mCurrentPosition);

											}	else	{

															mVideoView.seekTo(1);

											}

											mVideoView.start();

							}

	});

4.	 At	the	top	of		initializePlayer()	,	before	setting	the	media	URI	to	play,	restore	the
visibility	of	the	buffering		TextView	:

	mBufferingTextView.setVisibility(VideoView.VISIBLE);

Each	time		initializePlayer()		is	called,	the	buffering	message	should	be	turned	on.	It
is	turned	off	only	when		onPrepared()		is	called	and	the	media	is	ready	to	play.

5.	 Build	and	run	the	app.	Initially	the	"Buffering..."	message	appears	on	the	screen.
Depending	on	the	speed	of	your	network	connection,	after	some	moments	the	video	will
appear	and	start	playing.

Introduction

447

Solution	code

Android	Studio	project:	SimpleVideoView

Coding	challenge

Note:	All	coding	challenges	are	optional.
Challenge:	Replace	the		MediaController		in	the	SimpleVideoView	app	with	a	single	button.

When	the	user	taps	the	button,	the	text	should	toggle	between	"Play"	and	"Pause."
Change	SimpleVideoView	such	that	the	video	does	not	play	automatically	when	the	app
is	started.	Only	start	playing	the	media	when	the	user	clicks	the	"Play"	button.
If	the	button	is	in	the	"Play"	state	the	button	should	be	disabled	until	the	media	has	been
prepared	and	is	ready	to	play.
Make	sure	that	you	update	the	button's	Play/Pause	state	in	response	to	activity	state
changes.

Challenge:	Add	a	"Skip	10s"	button.	When	the	user	taps	the	button,	the	current	position	of
the	media	playback	should	skip	ahead	ten	seconds.

Summary

Media	apps	in	Android	have	a	standard	set	of	components,	including	a	UI	and	a	media
player.
Media	(audio	and	video)	files	can	be	played	from	a	variety	of	sources,	including
embedded	in	the	app's	resources,	stored	on	external	media	such	as	an	SD	card,	or
played	as	a	streaming	media	from	the	internet.
The	easiest	way	to	play	video	in	your	app	is	to	use	the		VideoView		class.	The
	VideoView		class	wraps	a		MediaPlayer		and	a		SurfaceView	.		VideoView		can	be	added
to	a	layout	like	any	other	view.
Use		VideoView.setVideoURI()		to	specify	the	URI	of	the	video	file	to	play,	whether	that
URI	is	in	the	app's	resources,	or	on	the	internet.	This	method	preloads	the	video	sample
data	in	an	asynchronous	thread.
Use		VideoView.start()		to	start	the	video	playback,	once	the	video	is	available	for
playing.
Use		VideoView.stopPlayback()		to	stop	the	video	playback	and	release	the	resources
the		VideoView		is	using.
Use		VideoView.getCurrentPosition()		to	retrieve	the	current	playback	position,	in
milliseconds.	Use		VideoView.seekTo()		to	seek	to	a	specific	playback	position,	in
milliseconds.
The		MediaController		widget	(android.widget.MediaController)	provides	a	set	of

Introduction

448

https://github.com/google-developer-training/android-advanced/tree/master/SimpleVideoView
https://developer.android.com/reference/android/widget/VideoView.html
https://developer.android.com/reference/android/media/MediaPlayer.html
https://developer.android.com/reference/android/view/SurfaceView.html
https://developer.android.com/reference/android/widget/VideoView.html#setVideoURI(android.net.Uri)
https://developer.android.com/reference/android/widget/VideoView.html#start()
https://developer.android.com/reference/android/widget/VideoView.html#stopPlayback()
https://developer.android.com/reference/android/widget/VideoView.html#getCurrentPosition()
https://developer.android.com/reference/android/widget/VideoView.html#seekTo(int)
https://developer.android.com/reference/android/widget/MediaController.html

common	controls	(play,	pause,	fast-forward,	rewind,	and	a	progress	slider)	for	media
playback.		MediaController		is	a		ViewGroup		that	can	be	added	programmatically	to	any
layout	to	control	a		VideoView	.
Use		MediaController.setMediaPlayer()		to	attach	a	media	player	such	as	a		VideoView	
to	the	controller.
Use	VideoView.setMediaController()		to	attach	a		MediaController		to	the		VideoView	.
Use	the		onStart()		and		onStop()		lifecycle	methods	to	start	and	stop	video	playback	in
your	app.	These	methods	represent	the	visible	lifecycle	of	your	app.
In	versions	of	Android	lower	than	Nougat,		onPause()		represents	the	end	of	the	app's
visible	lifecycle,	but	audio	may	continue	to	play	for	several	seconds	until		onStop()		is
called.	Add	a	test	for	the	Android	version	to	pause	video	playback	in		onPause()		on
older	versions	of	Android.
The		VideoView		class	does	not	preserve	the	state	of	video	playback	across	any	lifecycle
transition,	including	changes	to	background/foreground,	device	orientation,	and	multi-
window	mode.	To	retain	this	state	information,	save	and	restore	the	current	video
position	in	the	activity	instance	state	bundle.
Media	playback	uses	a	lot	of	system	resources.	Make	sure	that	you	release	these
resources	as	soon	as	possible,	usually	in		onStop()	.	Resources	used	by		VideoView	
are	released	when	you	call		stopPlayback()	.
The		MediaPlayer		class	(and	thus		VideoView)	provides	a	set	of	media	event	callbacks
for	various	events,	including		onCompletion()		and		onPrepared()	.
The		onCompletion()		callback	is	invoked	when	the	media	playback	is	complete.	Use	this
callback	to	announce	the	end	of	the	media	or	reset	the	UI	to	a	default	state.
The		onPrepared()		callback	is	invoked	when	the	media	is	ready	to	play.	Depending	on
the	media	and	its	location	(embedded	in	the	app,	available	on	local	storage,	played	from
the	internet),	it	may	take	some	time	for	the	media	to	be	available.	Use	the
	onPrepared()		callback	to	keep	the	user	informed	about	the	state	of	the	media	by
providing	a	"Buffering"	message	or	some	other	status	message.

Related	concept

The	related	concept	documentation	is	Simple	media	playback.

Learn	more

Android	developer	documentation:

Media	Apps	Overview
Supported	Media	Formats

Android	API	reference:

Introduction

449

https://developer.android.com/reference/android/widget/MediaController.html#setMediaPlayer(android.widget.MediaController.MediaPlayerControl)
https://developer.android.com/reference/android/widget/VideoView.html#setMediaController(android.widget.MediaController)
https://developer.android.com/reference/android/media/MediaPlayer.OnCompletionListener.html#onCompletion(android.media.MediaPlayer)
https://developer.android.com/reference/android/media/MediaPlayer.OnPreparedListener.html#onPrepared(android.media.MediaPlayer)
https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-5-advanced-graphics-and-views/lesson-13-media/13-1-c-simple-media-playback/13-1-c-simple-media-playback.html
https://developer.android.com/guide/topics/media-apps/media-apps-overview.html
https://developer.android.com/guide/topics/media/media-formats.html

	VideoView	

	MediaPlayer	

	MediaPlayer.OnCompletionListener	

	MediaPlayer.OnPreparedListener	

	MediaController	

Other:

An	Android	Studio	VideoView	and	MediaController	Tutorial
Android	Media	Basics:	Images,	Audio,	and	Video
What	is	the	difference	between	MediaPlayer	and	VideoView	in	Android
How	to	Play	Video	In	Android	Studio	(video)

Introduction

450

https://developer.android.com/reference/android/widget/VideoView.html
https://developer.android.com/reference/android/media/MediaPlayer.html
https://developer.android.com/reference/android/media/MediaPlayer.OnCompletionListener.html
https://developer.android.com/reference/android/media/MediaPlayer.OnPreparedListener.html
https://developer.android.com/reference/android/widget/MediaController.html
http://www.techotopia.com/index.php/An_Android_Studio_VideoView_and_MediaController_Tutorial
http://www.informit.com/articles/article.aspx?p=2143148&seqNum=3
https://stackoverflow.com/questions/4096273/what-is-the-difference-between-mediaplayer-and-videoview-in-android
https://www.youtube.com/watch?v=SrPHLj_q_OQ

14.1A:	Working	with	Architecture
Components:	Room,	LiveData,	ViewModel
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Creating	the	RoomWordsSample	app
Task	2.	Creating	the	Word	entity
Task	3.	Creating	the	DAO
Task	4.	Using	LiveData
Task	5.	Adding	a	Room	database
Task	6.	Creating	the	Repository
Task	7.	Creating	the	ViewModel
Task	8.	Adding	XML	layouts	for	the	UI
Task	9.	Creating	an	Adapter	and	adding	the	RecyclerView
Task	10.	Populating	the	database
Task	11.	Connecting	the	UI	with	the	data
Task	12.	Adding	an	Activity	for	entering	words
Solution	code
Summary
Related	concept
Learn	more

The	Android	operating	system	provides	a	strong	foundation	for	building	apps	that	run	well	on
a	wide	range	of	devices	and	form	factors.	However,	issues	like	complex	lifecycles	and	the
lack	of	a	recommended	app	architecture	make	it	challenging	to	write	robust	apps.
Architecture	Components	provide	libraries	for	common	tasks	such	as	lifecycle	management
and	data	persistence	to	make	it	easier	to	implement	the	recommended	architecture.

Introduction

451

https://developer.android.com/topic/libraries/architecture/index.html
https://developer.android.com/topic/libraries/architecture/guide.html

Architecture	Components	help	you	structure	your	app	in	a	way	that	is	robust,	testable,	and
maintainable	with	less	boilerplate	code.

What	are	the	recommended	Architecture	Components?

When	it	comes	to	architecture,	it	helps	to	see	the	big	picture	first.	To	introduce	the
terminology,	here's	a	short	overview	of	the	Architecture	Components	and	how	they	work
together.	Each	component	is	explained	more	as	you	use	it	in	this	practical.

The	diagram	below	shows	a	basic	form	of	the	recommended	architecture	for	apps	that	use
Architecture	Components.	The	architecture	consists	of	a	UI	controller,	a		ViewModel		that
serves		LiveData	,	a	Repository,	and	a	Room	database.	The	Room	database	is	backed	by	a
SQLite	database	and	accessible	through	a	data	access	object	(DAO).	Each	component	is
described	briefly	below,	in	detail	in	the	Architecture	Components	concept	chapter,	and	you
will	implement	them	in	this	practical.

Because	all	the	components	interact,	you	will	encounter	references	to	these	components
throughout	this	practical,	so	here	is	a	short	explanation	of	each.

Entity:	In	the	context	of	Architecture	Components,	the	entity	is	an	annotated	class	that
describes	a	database	table.

SQLite	database:	On	the	device,	data	is	stored	in	a	SQLite	database.	The	Room	persistence
library	creates	and	maintains	this	database	for	you.

DAO:	Short	for	data	access	object	.	A	mapping	of	SQL	queries	to	functions.	You	used	to
have	to	define	these	queries	in	a	helper	class.	When	you	use	a	DAO,	your	code	calls	the
functions,	and	the	components	take	care	of	the	rest.

Introduction

452

https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-6-working-with-architecture-components/lesson-14-architecture-components/14-1-c-architecture-components/14-1-c-architecture-components.html
https://developer.android.com/training/data-storage/room/index.html

Room	database:	Database	layer	on	top	of	a	SQLite	database	that	takes	care	of	mundane
tasks	that	you	used	to	handle	with	a	helper	class.	The	Room	database	uses	the	DAO	to
issue	queries	to	the	SQLite	database	based	on	functions	called.

Repository:	A	class	that	you	create	for	managing	multiple	data	sources.	In	addition	to	a
Room	database,	the	Repository	could	manage	remote	data	sources	such	as	a	web	server.

	ViewModel		:	Provides	data	to	the	UI	and	acts	as	a	communication	center	between	the
Repository	and	the	UI.	Hides	the	backend	from	the	UI.		ViewModel		instances	survive	device
configuration	changes.

	LiveData		:	A	data	holder	class	that	follows	the	observer	pattern,	which	means	that	it	can	be
observed.	Always	holds/caches	latest	version	of	data.	Notifies	its	observers	when	the	data
has	changed.	Generally,	UI	components	observe	relevant	data.		LiveData		is	lifecycle	aware,
so	it	automatically	manages	stopping	and	resuming	observation	based	on	the	state	of	its
observing	activity	or	fragment.

What	you	should	already	KNOW
You	should	be	able	to	create	and	run	apps	in	Android	Studio	3.0	or	higher,	in	particular,	be
familiar	with:

	RecyclerView		and	adapters
SQLite	databases	and	the	SQLite	query	language
Threading	in	general,	and		AsyncTask		in	particular
It	helps	to	be	familiar	with	software	architectural	patterns	that	separate	data	from	the	UI.
It	helps	to	be	familiar	with	the	observer	pattern.	In	summary,	the	observer	pattern
defines	a	one-to-many	dependency	between	objects,	so	that	whenever	an	object
changes	its	state,	all	its	dependents	are	notified	and	updated	automatically.	The	main
object	is	called	the	"subject"	and	its	dependents	are	called	the	"observers."	Usually,	the
subject	notifies	the	observers	by	calling	one	of	their	methods.	The	subjects	knows	what
methods	to	call,	because	the	observers	are	"registered"	with	the	subject	and	specify	the
methods	to	call.

Important:	This	practical	implements	the	architecture	defined	in	the	Guide	to	App
Architecture	and	explained	in	the	Architecture	Components	concepts	chapter.	It	is	highly
recommended	that	you	read	the	concepts	chapter.

What	you	will	LEARN
You	will	learn	how	to:

Introduction

453

https://en.wikipedia.org/wiki/Observer_pattern
https://developer.android.com/studio/index.html
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi5ypqko_vXAhVL6yYKHUBtDZIQFggpMAA&url=https%3A%2F%2Fdeveloper.android.com%2Freference%2Fandroid%2Fsupport%2Fv7%2Fwidget%2FRecyclerView.html&usg=AOvVaw0XoQVMT9wSYT_hFQBsdLf8
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
https://www.google.com/url?q=https://developer.android.com/reference/android/os/AsyncTask.html&sa=U&ved=0ahUKEwiSw4jBo_vXAhVMwGMKHfdpCDQQFggEMAA&client=internal-uds-cse&cx=000521750095050289010:zpcpi1ea4s8&usg=AOvVaw3AHfsnMp5UOWWrHlXtWdi0
https://en.wikipedia.org/wiki/Observer_pattern
https://developer.android.com/topic/libraries/architecture/guide.html
https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-6-working-with-architecture-components/lesson-14-architecture-components/14-1-c-architecture-components/14-1-c-architecture-components.html

Design	and	construct	an	app	using	some	of	the	Android	Architecture	Components.
You'll	use	Room,		ViewModel	,	and		LiveData	.

What	you	will	DO
Create	an	app	with	an		Activity		that	displays	words	in	a		RecyclerView	.
Create	an		Entity		that	represents	word	objects.
Define	the	mapping	of	SQL	queries	to	Java	methods	in	a	DAO	(data	access	object).
Use		LiveData		to	make	changes	to	the	data	visible	to	the	UI	via	observers.
Add	a	Room	database	to	the	app	for	persisting	data	locally,	and	initialize	the	database.
Abstract	the	data	backend	as	a		Repository		class	with	an	API	that	is	agnostic	to	how
the	data	is	stored	or	acquired.
Use	a		ViewModel		to	separate	all	data	operations	from	the	UI.
Add	a	second		Activity		that	allows	the	user	to	add	new	words.

App	overview
In	this	practical	you	build	an	app	that	uses	the	Android	Architecture	Components	collection
of	libraries.	The	app,	called	RoomWordsSample,	stores	a	list	of	words	in	a	Room	database
and	displays	the	list	in	a		RecyclerView	.	The	RoomWordsSample	app	is	basic,	but
sufficiently	complete	that	you	can	use	it	as	a	template	to	build	on.

Note:	Does	this	app	sound	familiar?	In	the	Android	Developer	Fundamentals	course	you
built	several	versions	of	the	WorldList	app	using	a	SQLiteDatabase,	an	SQLiteOpenHelper,
and	then	added	a	Contract	and	a	ContentProvider.	It	was	quite	involved.	Doing	the	same
thing	using	Architecture	Components	is	less	complex,	less	code,	and	much	better
architecture.
The	RoomWordsSample	app	does	the	following:

Works	with	a	database	to	get	and	save	words,	and	pre-populates	the	database	with
some	words.
Displays	all	the	words	in	a		RecyclerView		in		MainActivity	.
Opens	a	second		Activity		when	the	user	taps	the		+		FAB	button.	When	the	user
enters	a	word,	the	app	adds	the	word	to	the	database	and	then	the	list	updates
automatically.

The	screenshots	below	show	the	following:

The	RoomWordsSample	app	as	it	starts,	with	the	initial	list	of	words
The	activity	to	add	a	word

Introduction

454

https://developer.android.com/topic/libraries/architecture/index.html
https://developer.android.com/topic/libraries/architecture/room.html
https://developer.android.com/topic/libraries/architecture/viewmodel.html
https://developer.android.com/reference/android/arch/lifecycle/LiveData.html
https://developer.android.com/topic/libraries/architecture/index.html
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/
https://github.com/google-developer-training/android-fundamentals

RoomWordsSample	architecture	overview

The	following	diagram	mirrors	the	overview	diagram	from	the	introduction	and	shows	all	the
pieces	of	the	RoomWordsSample	app.	Each	of	the	enclosing	boxes	(except	for	the	SQLite
database)	represents	a	class	that	you	create.

Tip:	Print	or	open	this	diagram	in	a	separate	tab	so	you	can	refer	to	it	as	you	build	the	code.

Introduction

455

Task	1.	Creating	the	RoomWordsSample	app
Note:	In	this	advanced	practical,	you	are	expected	to	create	member	variables,	import
classes,	and	extract	values	as	needed.	Code	that	you	are	expected	to	be	familiar	with	is
provided	but	not	explained.

1.1	Create	an	app	with	one	Activity

Open	Android	Studio	and	create	an	app.	On	the	setup	screens,	do	the	following:

Name	the	app	RoomWordsSample.
If	you	see	check	boxes	for	Include	Kotlin	support	and	Include	C++	support,	uncheck
both	boxes.
Select	only	the	Phone	&	Tablet	form	factor,	and	set	the	minimum	SDK	to	API	14	or
higher.
Select	the	Basic	Activity.	

Introduction

456

1.2	Update	Gradle	files

In	Android	Studio,	manually	add	the	Architecture	Component	libraries	to	your	Gradle	files.

1.	 Add	the	following	code	to	your		build.gradle	(Module:	app)		file,	to	the	bottom	of	the	the
dependencies	block	(but	still	inside	it).

	//	Room	components

	implementation	"android.arch.persistence.room:runtime:$rootProject.roomVersion"

	annotationProcessor	"android.arch.persistence.room:compiler:$rootProject.roomVers

ion"

	androidTestImplementation	"android.arch.persistence.room:testing:$rootProject.roo

mVersion"

	//	Lifecycle	components

	implementation	"android.arch.lifecycle:extensions:$rootProject.archLifecycleVersi

on"

	annotationProcessor	"android.arch.lifecycle:compiler:$rootProject.archLifecycleVe

rsion"

2.	 In	your		build.gradle	(Project:	RoomWordsSample)		file,	add	the	version	numbers	at	the
end	of	the	file.

Introduction

457

	ext	{

				roomVersion	=	'1.0.0'

				archLifecycleVersion	=	'1.1.0'

	}

Important:	Get	the	latest	version	numbers	from	the	Adding	Components	to	your	Project
page.	Find	the	entry	for	the	room	and	lifecycle	libraries	and	the	version	number	is	at	the
end	of	the	name	after	the	colon.	In	the	following	example,	the	version	numbers	is	1.0.0:
"	android.arch.persistence.room:runtime:		1.0.0	"

Task	2.	Creating	the	Word	entity
The	diagram	below	is	the	complete	architecture	diagram	with	the	component	that	you	are
going	to	implement	in	this	task	highlighted.	Every	task	will	have	such	a	diagram	to	help	you
understand	where	the	current	component	fits	into	the	overall	structure	of	the	app,	and	to	see
how	the	components	are	connected.

The	data	for	this	app	is	words,	and	each	word	is	represented	by	an	entity	in	the	database.	In
this	task	you	create	the		Word		class	and	annotate	it	so	Room	can	create	a	database	table
from	it.	The	diagram	below	shows	a		word_table		database	table.	The	table	has	one		word	

Introduction

458

https://developer.android.com/topic/libraries/architecture/adding-components.html

column,	which	also	acts	as	the	primary	key,	and	two	rows,	one	each	for	"Hello"	and	"World."

2.1	Create	the	Word	class

1.	 Create	a	class	called		Word	.
2.	 Add	a	constructor	that	takes	a		word		string	as	an	argument.	Add	the		@NonNull	

annotation	so	that	the	parameter	can	never	be		null	.
3.	 Add	a	"getter"	method	called		getWord()	that	returns	the	word.	Room	requires	"getter"

methods	on	the	entity	classes	so	that	it	can	instantiate	your	objects.

	public	class	Word	{

				private	String	mWord;

				public	Word(@NonNull	String	word)	{this.mWord	=	word;}

				public	String	getWord(){return	this.mWord;}

	}

2.2	Annotate	the	Word	class

To	make	the		Word		class	meaningful	to	a	Room	database,	you	must	annotate	it.	Annotations
identify	how	each	part	of	the		Word		class	relates	to	an	entry	in	the	database.	Room	uses	this
information	to	generate	code.

You	use	the	following	annotations	in	the	steps	below:

	@Entity(tableName	=		"word_table")		Each		@Entity		class	represents	an	entity	in	a
table.	Annotate	your	class	declaration	to	indicate	that	the	class	is	an	entity.	Specify	the
name	of	the	table	if	you	want	it	to	be	different	from	the	name	of	the	class.
	@PrimaryKey		Every	entity	needs	a	primary	key.	To	keep	things	simple,	each	word	in	the
RoomWordsSample	app	acts	as	its	own	primary	key.	To	learn	how	to	auto-generate
unique	keys,	see	the	tip	below.
	@NonNull		Denotes	that	a	parameter,	field,	or	method	return	value	can	never	be		null	.
The	primary	key	should	always	use	this	annotation.	Use	this	annotation	for	any
mandatory	fields	in	your	rows.
	@ColumnInfo(name	=		"word")		Specify	the	name	of	a	column	in	the	table,	if	you	want

Introduction

459

https://developer.android.com/reference/android/support/annotation/package-summary.html

the	column	name	to	be	different	from	the	name	of	the	member	variable.
Every	field	that's	stored	in	the	database	must	either	be	public	or	have	a	"getter"	method.
This	app	provides	a		getWord()		"getter"	method	rather	than	exposing	member	variables
directly.

For	a	complete	list	of	annotations,	see	the	Room	package	summary	reference.

Update	your		Word		class	with	annotations,	as	shown	in	the	code	below.

1.	 Add	the		@Entity		notation	to	the	class	declaration	and	set	the		tableName		to
	"word_table"	.

2.	 Annotate	the		mWord		member	variable	as	the		@PrimaryKey	.	Require		mWord		to	be
	@NonNull	,	and	name	the	column		"word"	.

Note:	If	you	type	in	the	annotations,	Android	Studio	auto-imports	everything	you	need.
Here	is	the	complete	code:

@Entity(tableName	=	"word_table")

public	class	Word	{

			@PrimaryKey

			@NonNull

			@ColumnInfo(name	=	"word")

			private	String	mWord;

			public	Word(@NonNull	String	word)	{this.mWord	=	word;}

			public	String	getWord(){return	this.mWord;}

}

If	you	get	errors	for	the	annotations,	you	can	import	them	manually,	as	follows:

import	android.arch.persistence.room.ColumnInfo;

import	android.arch.persistence.room.Entity;

import	android.arch.persistence.room.PrimaryKey;

import	android.support.annotation.NonNull;

Tip	on	auto-generating	keys:	To	auto-generate	a	unique	key	for	each	entity,	you	would	add
and	annotate	a	primary	integer	key	with		autoGenerate=true	.	See	Defining	data	using	Room
entities.

Task	3.	Creating	the	DAO

Introduction

460

https://developer.android.com/reference/android/arch/persistence/room/package-summary.html
https://developer.android.com/reference/android/arch/persistence/room/PrimaryKey.html
https://developer.android.com/training/data-storage/room/defining-data.html

The	data	access	object,	or		Dao	,	is	an	annotated	class	where	you	specify	SQL	queries	and
associate	them	with	method	calls.	The	compiler	checks	the	SQL	for	errors,	then	generates
queries	from	the	annotations.	For	common	queries,	the	libraries	provide	convenience
annotations	such	as		@Insert	.

Note	that:

The	DAO	must	be	an		interface		or		abstract		class.
Room	uses	the	DAO	to	create	a	clean	API	for	your	code.
By	default,	all	queries	(@Query)	must	be	executed	on	a	thread	other	than	the	main
thread.	(You	work	on	that	later.)	For	operations	such	as	inserting	or	deleting,	if	you	use
the	provided	convenience	annotations,	Room	takes	care	of	thread	management	for	you.

3.1	Implement	the	DAO	class

The	DAO	for	this	practical	is	basic	and	only	provides	queries	for	getting	all	the	words,
inserting	words,	and	deleting	all	the	words.

1.	 Create	a	new		interface		and	call	it		WordDao	.
2.	 Annotate	the	class	declaration	with		@Dao		to	identify	the	class	as	a	DAO	class	for

Room.
3.	 Declare	a	method	to	insert	one	word:

	void	insert(Word	word);

Introduction

461

https://developer.android.com/reference/android/arch/persistence/room/Dao.html

4.	 Annotate	the		insert()		method	with		@Insert	.	You	don't	have	to	provide	any	SQL!
(There	are	also		@		Delete		and		@		Update		annotations	for	deleting	and	updating	a	row,
but	you	do	not	use	these	operations	in	the	initial	version	of	this	app.)

5.	 Declare	a	method	to	delete	all	the	words:

	void	deleteAll();

6.	 There	is	no	convenience	annotation	for	deleting	multiple	entities,	so	annotate	the
	deleteAll()		method	with	the	generic		@Query	.	Provide	the	SQL	query	as	a	string
parameter	to		@Query	.	Annotate	the		deleteAll()		method	as	follows:

	@Query("DELETE	FROM	word_table")

7.	 Create	a	method	called		getAllWords()		that	returns	a		List		of		Words	:

	List<Word>	getAllWords();

8.	 Annotate	the		getAllWords()		method	with	a	SQL	query	that	gets	all	the	words	from	the
	word_table	,	sorted	alphabetically	for	convenience:

	@Query("SELECT	*	from	word_table	ORDER	BY	word	ASC")

Here	is	the	completed	code	for	the		WordDao		class:

@Dao

public	interface	WordDao	{

@Insert

void	insert(Word	word);

@Query("DELETE	FROM	word_table")

void	deleteAll();

@Query("SELECT	*	from	word_table	ORDER	BY	word	ASC")

List<Word>	getAllWords();

}

Tip:	For	this	app,	ordering	the	words	is	not	strictly	necessary.	However,	by	default,
return	order	is	not	guaranteed,	and	ordering	makes	testing	straightforward.

To	learn	more	about	DAOs,	see	Accessing	data	using	Room	DAOs.

Task	4.	Using	LiveData

Introduction

462

https://developer.android.com/reference/android/arch/persistence/room/Delete.html
https://developer.android.com/reference/android/arch/persistence/room/Update.html
https://developer.android.com/training/data-storage/room/accessing-data.html

When	you	display	data	or	use	data	in	other	ways,	you	usually	want	to	take	some	action
when	the	data	changes.	This	means	you	have	to	observe	the	data	so	that	when	it	changes,
you	can	react.

	LiveData	,	which	is	a	lifecycle	library	class	for	data	observation,	can	help	your	app	respond
to	data	changes.	If	you	use	a	return	value	of	type		LiveData		in	your	method	description,
Room	generates	all	necessary	code	to	update	the		LiveData		when	the	database	is	updated.

4.1	Return	LiveData	in	WordDao

In	the		WordDao		interface,	change	the		getAllWords()		method	signature	so	that	the
returned		List<Word>		is	wrapped	with		LiveData<>	.

	@Query("SELECT	*	from	word_table	ORDER	BY	word	ASC")

	LiveData<List<Word>>	getAllWords();

See	the		LiveData		documentation	to	learn	more	about	other	ways	to	use		LiveData	,	or
watch	this	Architecture	Components:	LiveData	and	Lifecycle	video.

Task	5.	Adding	a	Room	database

Introduction

463

https://developer.android.com/topic/libraries/architecture/lifecycle.html
https://developer.android.com/reference/android/arch/lifecycle/LiveData.html
https://developer.android.com/topic/libraries/architecture/livedata.html
https://www.youtube.com/watch?v=jCw5ib0r9wg

Room	is	a	database	layer	on	top	of	a	SQLite	database.	Room	takes	care	of	mundane	tasks
that	you	used	to	handle	with	a	database	helper	class	such	as		SQLiteOpenHelper	.

Room	uses	the	DAO	to	issue	queries	to	its	database.
By	default,	to	avoid	poor	UI	performance,	Room	doesn't	allow	you	to	issue	database
queries	on	the	main	thread.		LiveData		applies	this	rule	by	automatically	running	the
query	asynchronously	on	a	background	thread,	when	needed.
Room	provides	compile-time	checks	of	SQLite	statements.
Your		Room		class	must	be	abstract	and	extend		RoomDatabase	.
Usually,	you	only	need	one	instance	of	the	Room	database	for	the	whole	app.

5.1	Implement	a	Room	database

1.	 Create	a		public	abstract		class	that	extends		RoomDatabase		and	call	it
	WordRoomDatabase	.

		public	abstract	class	WordRoomDatabase	extends	RoomDatabase	{}

2.	 Annotate	the	class	to	be	a	Room	database.	Declare	the	entities	that	belong	in	the
database—in	this	case	there	is	only	one	entity,		Word	.	(Listing	the		entities		class	or
classes	creates	corresponding	tables	in	the	database.)	Set	the	version	number.

	@Database(entities	=	{Word.class},	version	=	1)

Introduction

464

https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html
https://developer.android.com/reference/android/arch/lifecycle/LiveData.html
https://developer.android.com/reference/android/arch/persistence/room/RoomDatabase.html

3.	 Define	the	DAOs	that	work	with	the	database.	Provide	an	abstract	"getter"	method	for
each		@Dao	.

		public	abstract	WordDao	wordDao();

4.	 Create	the		WordRoomDatabase		as	a	singleton	to	prevent	having	multiple	instances	of	the
database	opened	at	the	same	time,	which	would	be	a	bad	thing.	Here	is	the	code	to
create	the	singleton:

	private	static	WordRoomDatabase	INSTANCE;

	public	static	WordRoomDatabase	getDatabase(final	Context	context)	{

				if	(INSTANCE	==	null)	{

								synchronized	(WordRoomDatabase.class)	{

												if	(INSTANCE	==	null)	{

																//	Create	database	here

												}

								}

				}

				return	INSTANCE;

	}

5.	 Add	code	to	create	a	database	where	indicated	by	the		Create	database	here		comment
in	the	code	above.

The	following	code	uses	Room's	database	builder	to	create	a		RoomDatabas		e		object
named		"word_database"		in	the	application	context	from	the		WordRoomDatabase		class.

//	Create	database	here

INSTANCE	=	Room.databaseBuilder(context.getApplicationContext(),

				WordRoomDatabase.class,	"word_database")

				.build();

6.	 Add	a	migration	strategy	for	the	database.

In	this	practical	you	don't	update	the	entities	and	the	version	numbers.	However,	if	you
modify	the	database	schema,	you	need	to	update	the	version	number	and	define	how	to
handle	migrations.	For	a	sample	app	such	as	the	one	you're	creating,	destroying	and
re-creating	the	database	is	a	fine	migration	strategy.	For	a	real	app,	you	must
implement	a	non-destructive	migration	strategy.	See	Understanding	migrations	with
Room.

Add	the	following	code	to	the	builder,	before	calling		build()	

Introduction

465

https://en.wikipedia.org/wiki/Singleton_pattern
https://developer.android.com/reference/android/arch/persistence/room/RoomDatabase.html
https://medium.com/google-developers/understanding-migrations-with-room-f01e04b07929

//	Wipes	and	rebuilds	instead	of	migrating	

//	if	no	Migration	object.

//	Migration	is	not	part	of	this	practical.

.fallbackToDestructiveMigration()

Here	is	the	complete	code	for	the	whole		WordRoomDatabase		class:

@Database(entities	=	{Word.class},	version	=	1)

public	abstract	class	WordRoomDatabase	extends	RoomDatabase	{

public	abstract	WordDao	wordDao();

private	static	WordRoomDatabase	INSTANCE;

static	WordRoomDatabase	getDatabase(final	Context	context)	{

				if	(INSTANCE	==	null)	{

								synchronized	(WordRoomDatabase.class)	{

												if	(INSTANCE	==	null)	{

																INSTANCE	=	Room.databaseBuilder(context.getApplicationContext(),

																								WordRoomDatabase.class,	"word_database")

																										//	Wipes	and	rebuilds	instead	of	migrating	

																										//	if	no	Migration	object.

																									//	Migration	is	not	part	of	this	practical.

																								.fallbackToDestructiveMigration()

																								.build();																

												}

								}

				}

				return	INSTANCE;

}

}

Important:	In	Android	Studio,	if	you	get	errors	when	you	paste	code	or	during	the	build
process,	make	sure	you	are	using	the	full	package	name	for	imports.	See	Adding
Components	to	your	Project.	Then	select	Build	>	Clean	Project.	Then	select	Build	>
Rebuild	Project,	and	build	again.

Task	6.	Creating	the	Repository

Introduction

466

https://developer.android.com/topic/libraries/architecture/adding-components.html

A	Repository	is	a	class	that	abstracts	access	to	multiple	data	sources.	The	Repository	is	not
part	of	the	Architecture	Components	libraries,	but	is	a	suggested	best	practice	for	code
separation	and	architecture.	A		Repository		class	handles	data	operations.	It	provides	a
clean	API	to	the	rest	of	the	app	for	app	data.

A	Repository	manages	query	threads	and	allows	you	to	use	multiple	backends.	In	the	most
common	example,	the	Repository	implements	the	logic	for	deciding	whether	to	fetch	data
from	a	network	or	use	results	cached	in	the	local	database.

6.1	Implement	the	Repository

1.	 Create	a	public	class	called		WordRepository	.
2.	 Add	member	variables	for	the	DAO	and	the	list	of	words.

Introduction

467

	private	WordDao	mWordDao;

	private	LiveData<List<Word>>	mAllWords;

3.	 Add	a	constructor	that	gets	a	handle	to	the	database	and	initializes	the	member
variables.

	WordRepository(Application	application)	{

					WordRoomDatabase	db	=	WordRoomDatabase.getDatabase(application);

					mWordDao	=	db.wordDao();

					mAllWords	=	mWordDao.getAllWords();

	}

4.	 Add	a	wrapper	method	called		getAllWords()		that	returns	the	cached	words	as
	LiveData	.	Room	executes	all	queries	on	a	separate	thread.	Observed		LiveData	
notifies	the	observer	when	the	data	changes.

	LiveData<List<Word>>	getAllWords()	{

				return	mAllWords;

	}

5.	 Add	a	wrapper	for	the		insert()		method.	Use	an		AsyncTask		to	call		insert()		on	a
non-UI	thread,	or	your	app	will	crash.	Room	ensures	that	you	don't	do	any	long-running
operations	on	the	main	thread,	which	would	block	the	UI.

	public	void	insert	(Word	word)	{

					new	insertAsyncTask(mWordDao).execute(word);

	}

6.	 Create	the		insertAsyncTask		as	an	inner	class.	You	should	be	familiar	with		AsyncTask	,
so	here	is	the		insertAsyncTask		code	for	you	to	copy:

	private	static	class	insertAsyncTask	extends	AsyncTask<Word,	Void,	Void>	{

					private	WordDao	mAsyncTaskDao;

					insertAsyncTask(WordDao	dao)	{

									mAsyncTaskDao	=	dao;

					}

					@Override

					protected	Void	doInBackground(final	Word...	params)	{

									mAsyncTaskDao.insert(params[0]);

									return	null;

					}

	}

Introduction

468

Here	is	the	complete	code	for	the		WordRepository		class:

public	class	WordRepository	{

private	WordDao	mWordDao;

private	LiveData<List<Word>>	mAllWords;

WordRepository(Application	application)	{

				WordRoomDatabase	db	=	WordRoomDatabase.getDatabase(application);

				mWordDao	=	db.wordDao();

				mAllWords	=	mWordDao.getAllWords();

}

LiveData<List<Word>>	getAllWords()	{

				return	mAllWords;

}

public	void	insert	(Word	word)	{

				new	insertAsyncTask(mWordDao).execute(word);

}

private	static	class	insertAsyncTask	extends	AsyncTask<Word,	Void,	Void>	{

				private	WordDao	mAsyncTaskDao;

				insertAsyncTask(WordDao	dao)	{

								mAsyncTaskDao	=	dao;

				}

				@Override

				protected	Void	doInBackground(final	Word...	params)	{

								mAsyncTaskDao.insert(params[0]);

								return	null;

				}

}

}

Note:	For	this	simple	example,	the	Repository	doesn't	do	much.	For	a	more	complex
implementation,	see	the	BasicSample	code	on	GitHub.

Task	7.	Creating	the	ViewModel

Introduction

469

https://github.com/googlesamples/android-architecture-components/tree/master/BasicSample

The		ViewModel		is	a	class	whose	role	is	to	provide	data	to	the	UI	and	survive	configuration
changes.	A		ViewModel		acts	as	a	communication	center	between	the	Repository	and	the	UI.
The		ViewModel		is	part	of	the	lifecycle	library.	For	an	introductory	guide	to	this	topic,	see

	ViewModel	.	

A		ViewModel		holds	your	app's	UI	data	in	a	way	that	survives	configuration	changes.
Separating	your	app's	UI	data	from	your		Activity		and		Fragment		classes	lets	you	better
follow	the	single	responsibility	principle:	Your	activities	and	fragments	are	responsible	for
drawing	data	to	the	screen,	while	your		ViewModel		is	responsible	for	holding	and	processing
all	the	data	needed	for	the	UI.

Introduction

470

https://developer.android.com/topic/libraries/architecture/lifecycle.html
https://developer.android.com/topic/libraries/architecture/viewmodel.html

In	the		ViewModel	,	use		LiveData		for	changeable	data	that	the	UI	will	use	or	display.

7.1	Implement	the	WordViewModel

1.	 Create	a	class	called		WordViewModel		that	extends		AndroidViewModel	.

Warning:	Never	pass	context	into		ViewModel		instances.	Do	not	store		Activity	,
	Fragment	,	or		View		instances	or	their		Context		in	the		ViewModel	.

An		Activity		can	be	destroyed	and	created	many	times	during	the	lifecycle	of	a		ViewModel	,
such	as	when	the	device	is	rotated.	If	you	store	a	reference	to	the		Activity		in	the
	ViewModel	,	you	end	up	with	references	that	point	to	the	destroyed		Activity	.	This	is	a
memory	leak.	If	you	need	the	application	context,	use		AndroidViewModel	,	as	shown	in	this
practical.	</div>

public	class	WordViewModel	extends	AndroidViewModel	{}

1.	 Add	a	private	member	variable	to	hold	a	reference	to	the	Repository.

				private	WordRepository	mRepository;

2.	 Add	a	private		LiveData		member	variable	to	cache	the	list	of	words.

			private	LiveData<List<Word>>	mAllWords;

3.	 Add	a	constructor	that	gets	a	reference	to	the		WordRepository		and	gets	the	list	of	all
words	from	the		WordRepository	.

				public	WordViewModel	(Application	application)	{

								super(application);

								mRepository	=	new	WordRepository(application);

								mAllWords	=	mRepository.getAllWords();

				}

4.	 Add	a	"getter"	method	that	gets	all	the	words.	This	completely	hides	the	implementation
from	the	UI.

				LiveData<List<Word>>	getAllWords()	{	return	mAllWords;	}

5.	 Create	a	wrapper		insert()		method	that	calls	the	Repository's		insert()		method.	In
this	way,	the	implementation	of		insert()		is	completely	hidden	from	the	UI.

	public	void	insert(Word	word)	{	mRepository.insert(word);	}

Introduction

471

https://developer.android.com/reference/android/arch/lifecycle/AndroidViewModel.html
https://developer.android.com/reference/android/arch/lifecycle/AndroidViewModel.html

Here	is	the	complete	code	for		WordViewModel	:

public	class	WordViewModel	extends	AndroidViewModel	{

private	WordRepository	mRepository;

private	LiveData<List<Word>>	mAllWords;

public	WordViewModel	(Application	application)	{

				super(application);

				mRepository	=	new	WordRepository(application);

				mAllWords	=	mRepository.getAllWords();

}

LiveData<List<Word>>	getAllWords()	{	return	mAllWords;	}

public	void	insert(Word	word)	{	mRepository.insert(word);	}

}

To	learn	more,	watch	the	Architecture	Components:		ViewModel		video.

Task	8.	Adding	XML	layouts	for	the	UI
Next,	add	the	XML	layout	for	the	list	and	items	to	be	displayed	in	the		RecyclerView	.

This	practical	assumes	that	you	are	familiar	with	creating	layouts	in	XML,	so	the	code	is	just
provided.

8.1	Add	styles

1.	 Change	the	colors	in		colors.xml		to	the	following:	(to	use	a	set	of	material	design
colors):

	<resources>

				<color	name="colorPrimary">#2196F3</color>

				<color	name="colorPrimaryLight">#64b5f6</color>

				<color	name="colorPrimaryDark">#1976D2</color>

				<color	name="colorAccent">#FFFF9800</color>

				<color	name="colorTextPrimary">@android:color/white</color>

				<color	name="colorScreenBackground">#fff3e0</color>

				<color	name="colorTextHint">#E0E0E0</color>

	</resources>

2.	 Add	a	style	for	text	views	in	the		values/styles.xml		file:

Introduction

472

https://www.youtube.com/watch?v=c9-057jC1ZA

	<style	name="text_view_style">

				<item	name="android:layout_width">match_parent</item>

				<item	name="android:layout_height">wrap_content</item>

				<item	name="android:textAppearance">

							@android:style/TextAppearance.Large</item>

				<item	name="android:background">@color/colorPrimaryLight</item>

				<item	name="android:layout_marginTop">8dp</item>

				<item	name="android:layout_gravity">center</item>

				<item	name="android:padding">16dp</item>

				<item	name="android:textColor">@color/colorTextPrimary</item>

	</style>

8.2	Add	item	layout

Add	a		layout/recyclerview_item.xml		layout:

<?xml	version="1.0"	encoding="utf-8"?>

<LinearLayout	xmlns:android=

				"http://schemas.android.com/apk/res/android"

	android:orientation="vertical"	android:layout_width="match_parent"

	xmlns:tools="http://schemas.android.com/tools"

	android:layout_height="wrap_content">

	<TextView

					android:id="@+id/textView"

					android:layout_width="match_parent"

					android:layout_height="wrap_content"

					style="@style/text_view_style"

					tools:text="placeholder	text"	/>

</LinearLayout>

8.3	Add	the	RecyclerView

1.	 In	the		layout/content_main.xml		file,	add	a	background	color	to	the		ConstraintLayout	:

	android:background="@color/colorScreenBackground"

2.	 In		content_main.xml		file,	replace	the		TextView		element	with	a		RecyclerView		element:

	<android.support.v7.widget.RecyclerView

				android:id="@+id/recyclerview"

				android:layout_width="match_parent"

				android:layout_height="wrap_content"

				android:layout_margin="16dp"

				tools:listitem="@layout/recyclerview_item"

	/>

Introduction

473

8.4	Fix	the	icon	in	the	FAB

The	icon	in	your	floating	action	button	(FAB)	should	correspond	to	the	available	action.	In	the
	layout/activity_main.xml		file,	give	the		FloatingActionButton		a		+		symbol	icon:

1.	 Select	File	>	New	>	Vector	Asset.
2.	 Select	Material	Icon.
3.	 Click	the	Android	robot	icon	in	the	Icon:	field,	then	select	the		+		("add")	asset.
4.	 In	the		layout/activity_main.xml		file,	in	the		FloatingActionButton	,	change	the

	srcCompat		attribute	to:.

	android:src="@drawable/ic_add_black_24dp"

Task	9.	Creating	an	Adapter	and	adding	the
RecyclerView
You	are	going	to	display	the	data	in	a		RecyclerView	,	which	is	a	little	nicer	than	just	throwing
the	data	in	a		TextView	.	This	practical	assumes	that	you	know	how		RecyclerView	,
	RecyclerView.LayoutManager	,		RecyclerView.ViewHolder	,	and		RecyclerView.Adapter		work.

9.1	Create	the	WordListAdapter	class

Add	a	class		WordListAdapter		class	that	extends		RecyclerView.Adapter	.	The	adapter
caches	data	and	populates	the		RecyclerView		with	it.	The	inner	class		WordViewHolder	
holds	and	manages	a	view	for	one	list	item.

Here	is	the	code:

Introduction

474

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.LayoutManager.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.ViewHolder.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.Adapter.html

public	class	WordListAdapter	extends	RecyclerView.Adapter<WordListAdapter.WordViewHold

er>	{

			private	final	LayoutInflater	mInflater;

			private	List<Word>	mWords;	//	Cached	copy	of	words

			WordListAdapter(Context	context)	{	mInflater	=	LayoutInflater.from(context);	}

			@Override

			public	WordViewHolder	onCreateViewHolder(ViewGroup	parent,	int	viewType)	{

							View	itemView	=	mInflater.inflate(R.layout.recyclerview_item,	parent,	false);

							return	new	WordViewHolder(itemView);

			}

			@Override

			public	void	onBindViewHolder(WordViewHolder	holder,	int	position)	{

							if	(mWords	!=	null)	{

											Word	current	=	mWords.get(position);

											holder.wordItemView.setText(current.getWord());

							}	else	{

											//	Covers	the	case	of	data	not	being	ready	yet.

											holder.wordItemView.setText("No	Word");

							}

			}

			void	setWords(List<Word>	words){

							mWords	=	words;

							notifyDataSetChanged();

			}

			//	getItemCount()	is	called	many	times,	and	when	it	is	first	called,

			//	mWords	has	not	been	updated	(means	initially,	it's	null,	and	we	can't	return	nul

l).

			@Override

			public	int	getItemCount()	{

							if	(mWords	!=	null)

											return	mWords.size();

							else	return	0;

			}

			class	WordViewHolder	extends	RecyclerView.ViewHolder	{

							private	final	TextView	wordItemView;

							private	WordViewHolder(View	itemView)	{

											super(itemView);

											wordItemView	=	itemView.findViewById(R.id.textView);

							}

			}

}

Note:	The		mWords		variable	in	the	adapter	caches	the	data.	In	the	next	task,	you	add	the

Introduction

475

code	that	updates	the	data	automatically.
Note:	The		getItemCount()		method	needs	to	account	gracefully	for	the	possibility	that	the
data	is	not	yet	ready	and		mWords		is	still		null	.	In	a	more	sophisticated	app,	you	could
display	placeholder	data	or	something	else	that	would	be	meaningful	to	the	user.

9.2	Add	RecyclerView	to	MainActivity

1.	 Add	the		RecyclerView		in	the		onCreate()		method	of		MainActivity	:

	RecyclerView	recyclerView	=	findViewById(R.id.recyclerview);

	final	WordListAdapter	adapter	=	new	WordListAdapter(this);

	recyclerView.setAdapter(adapter);

	recyclerView.setLayoutManager(new	LinearLayoutManager(this));

2.	 Run	your	app	to	make	sure	the	app	compiles	and	runs.	There	are	no	items,	because
you	have	not	hooked	up	the	data	yet.	The	app	should	display	the	empty	recycler	view.	

Task	10.	Populating	the	database

Introduction

476

There	is	no	data	in	the	database	yet.	You	will	add	data	in	two	ways:	Add	some	data	when
the	database	is	opened,	and	add	an		Activity		for	adding	words.	Every	time	the	database	is
opened,	all	content	is	deleted	and	repopulated.	This	is	a	reasonable	solution	for	a	sample
app,	where	you	usually	want	to	restart	on	a	clean	slate.

10.1	Create	the	callback	for	populating	the	database

To	delete	all	content	and	repopulate	the	database	whenever	the	app	is	started,	you	create	a
	RoomDatabase.Callback		and	override	the		onOpen()		method.	Because	you	cannot	do	Room
database	operations	on	the	UI	thread,		onOpen()		creates	and	executes	an		AsyncTask		to
add	content	to	the	database.

If	you	need	a	refresher	on		AsyncTask	,	see	AsyncTaks	and	AsyncTaskLoader	in	the	Android
Fundamentals	course.

1.	 Add	the		onOpen()		callback	in	the		WordRoomDatabase		class:

	private	static	RoomDatabase.Callback	sRoomDatabaseCallback	=	

					new	RoomDatabase.Callback(){

					@Override

					public	void	onOpen	(@NonNull	SupportSQLiteDatabase	db){

									super.onOpen(db);

								new	PopulateDbAsync(INSTANCE).execute();

				}

	};

2.	 Create	an	inner	class		PopulateDbAsync		that	extends		AsycTask	.	Implement	the
	doInBackground()		method	to	delete	all	words,	then	create	new	ones.	Here	is	the	code
for	the		AsyncTask		that	deletes	the	contents	of	the	database,	then	populates	it	with	an
initial	list	of	words.	Feel	free	to	use	your	own	words!

Introduction

477

https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/en/Unit%203/71c_asynctask_and_asynctaskloader_md.html

	/**

	*	Populate	the	database	in	the	background.

	*/

	private	static	class	PopulateDbAsync	extends	AsyncTask<Void,	Void,	Void>	{

				private	final	WordDao	mDao;

				String[]	words	=	{"dolphin",	"crocodile",	"cobra"};

				PopulateDbAsync(WordRoomDatabase	db)	{

								mDao	=	db.wordDao();

				}

				@Override

				protected	Void	doInBackground(final	Void...	params)	{

								//	Start	the	app	with	a	clean	database	every	time.

								//	Not	needed	if	you	only	populate	the	database

								//	when	it	is	first	created

								mDao.deleteAll();

								for	(int	i	=	0;	i	<=	words.length	-	1;	i++)	{

												Word	word	=	new	Word(words[i]);

												mDao.insert(word);

								}

								return	null;

				}

	}

3.	 Add	the	callback	to	the	database	build	sequence	in		WordRoomDatabase	,	right	before	you
call		.build()	:

	.addCallback(sRoomDatabaseCallback)

Task	11.	Connecting	the	UI	with	the	data
Now	that	you	have	created	the	method	to	populate	the	database	with	the	initial	set	of	words,
the	next	step	is	to	add	the	code	to	display	those	words	in	the		RecyclerView	.

To	display	the	current	contents	of	the	database,	you	add	an	observer	that	observes	the
	LiveData		in	the		ViewModel	.	Whenever	the	data	changes	(including	when	it	is	initialized),
the		onChanged()		callback	is	invoked.	In	this	case,	the		onChanged()		callback	calls	the
adapter's		setWord()		method	to	update	the	adapter's	cached	data	and	refresh	the	displayed
list.

11.1	Display	the	words

1.	 In		MainActivity	,	create	a	member	variable	for	the		ViewModel	,	because	all	the	activity's

Introduction

478

https://developer.android.com/topic/libraries/architecture/viewmodel.html

interactions	are	with	the		WordViewModel		only.

	private	WordViewModel	mWordViewModel;

2.	 In	the		onCreate()		method,	get	a		ViewModel		from	the		ViewModelProviders		class.

	mWordViewModel	=	ViewModelProviders.of(this).get(WordViewModel.class);

Use		ViewModelProviders		to	associate	your		ViewModel		with	your	UI	controller.	When
your	app	first	starts,	the		ViewModelProviders		creates	the		ViewModel	.	When	the	activity
is	destroyed,	for	example	through	a	configuration	change,	the		ViewModel		persists.
When	the	activity	is	re-created,	the		ViewModelProviders		return	the	existing		ViewModel	.
See		ViewModel	.

3.	 Also	in		onCreate()	,	add	an	observer	for	the		LiveData		returned	by		getAllWords()	.
When	the	observed	data	changes	while	the	activity	is	in	the	foreground,	the
	onChanged()		method	is	invoked	and	updates	the	data	cached	in	the	adapter.	Note	that
in	this	case,	when	the	app	opens,	the	initial	data	is	added,	so		onChanged()		method	is
called.

mWordViewModel.getAllWords().observe(this,	new	Observer<List<Word>>()	{

@Override

public	void	onChanged(@Nullable	final	List<Word>	words)	{

				//	Update	the	cached	copy	of	the	words	in	the	adapter.

				adapter.setWords(words);

}

});

4.	 Run	the	app.	The	initial	set	of	words	appears	in	the		RecyclerView	.	

Introduction

479

https://developer.android.com/reference/android/arch/lifecycle/ViewModelProviders.html
https://developer.android.com/topic/libraries/architecture/viewmodel.html

Task	12.	Creating	an	Activity	for	adding	words

Introduction

480

Now	you	will	add	an	Activity	that	lets	the	user	use	the	FAB	to	enter	new	words.	This	is	what

the	interface	for	the	new	activity	will	look	like:	

12.1	Create	the	NewWordActivity

1.	 Add	these	string	resources	in	the		values/strings.xml		file:

	<string	name="hint_word">Word...</string>

	<string	name="button_save">Save</string>

	<string	name="empty_not_saved">Word	not	saved	because	it	is	empty.</string>

2.	 Add	a	style	for	buttons	in		value/styles.xml	:

	<style	name="button_style"	parent="android:style/Widget.Material.Button">

				<item	name="android:layout_width">match_parent</item>

				<item	name="android:layout_height">wrap_content</item>

				<item	name="android:background">@color/colorPrimaryDark</item>

				<item	name="android:textAppearance">@android:style/TextAppearance.Large</item>

				<item	name="android:layout_marginTop">16dp</item>

				<item	name="android:textColor">@color/colorTextPrimary</item>

	</style>

3.	 Use	the	Empty	Activity	template	to	create	a	new	activity,		NewWordActivity.		Verify	that

Introduction

481

the	activity	has	been	added	to	the	Android	Manifest.

	<activity	android:name=".NewWordActivity"></activity>

4.	 Update	the		activity_new_word.xml		file	in	the	layout	folder:

	<?xml	version="1.0"	encoding="utf-8"?>

	<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:background="@color/colorScreenBackground"

				android:orientation="vertical"

				android:padding="24dp">

				<EditText

								android:id="@+id/edit_word"

								style="@style/text_view_style"

								android:hint="@string/hint_word"

								android:inputType="textAutoComplete"	/>

				<Button

								android:id="@+id/button_save"

								style="@style/button_style"

								android:text="@string/button_save"	/>

	</LinearLayout>

5.	 Implement	the		NewWordActivity		class.	The	goal	is	that	when	the	user	presses	the	Save
button,	the	new	word	is	put	in	an		Intent		to	be	sent	back	to	the	parent		Activity	.

Here	is	the	code	for	the		NewWordActivity		activity:

Introduction

482

public	class	NewWordActivity	extends	AppCompatActivity	{

			public	static	final	String	EXTRA_REPLY	=	

													"com.example.android.roomwordssample.REPLY";

			private		EditText	mEditWordView;

			@Override

			public	void	onCreate(Bundle	savedInstanceState)	{

							super.onCreate(savedInstanceState);

							setContentView(R.layout.activity_new_word);

							mEditWordView	=	findViewById(R.id.edit_word);

							final	Button	button	=	findViewById(R.id.button_save);

							button.setOnClickListener(new	View.OnClickListener()	{

											public	void	onClick(View	view)	{

															Intent	replyIntent	=	new	Intent();

															if	(TextUtils.isEmpty(mEditWordView.getText()))	{

																			setResult(RESULT_CANCELED,	replyIntent);

															}	else	{

																			String	word	=	mEditWordView.getText().toString();

																			replyIntent.putExtra(EXTRA_REPLY,	word);

																			setResult(RESULT_OK,	replyIntent);

															}

															finish();

											}

							});

			}

}

12.2	Add	code	to	insert	a	word	into	the	database

1.	 In		MainActivity	,	add	the		onActivityResult()		callback	for	the		NewWordActivity	.	If	the
activity	returns	with		RESULT_OK	,	insert	the	returned	word	into	the	database	by	calling	the
	insert()		method	of	the		WordViewModel	.

	public	void	onActivityResult(int	requestCode,	int	resultCode,	Intent	data)	{

				super.onActivityResult(requestCode,	resultCode,	data);

				if	(requestCode	==	NEW_WORD_ACTIVITY_REQUEST_CODE	&&	resultCode	==	RESULT_OK)	

{

								Word	word	=	new	Word(data.getStringExtra(NewWordActivity.EXTRA_REPLY));

								mWordViewModel.insert(word);

				}	else	{

								Toast.makeText(

																getApplicationContext(),

																R.string.empty_not_saved,

																Toast.LENGTH_LONG).show();

				}

	}

Introduction

483

2.	 Define	the	missing	request	code:

	public	static	final	int	NEW_WORD_ACTIVITY_REQUEST_CODE	=	1;

3.	 In		MainActivity,	start		NewWordActivity		when	the	user	taps	the	FAB.	Replace	the	code
in	the	FAB's		onClick()		click	handler	with	the	following	code:

	Intent	intent	=	new	Intent(MainActivity.this,	NewWordActivity.class);

	startActivityForResult(intent,	NEW_WORD_ACTIVITY_REQUEST_CODE);

4.	 RUN	YOUR	APP!	When	you	add	a	word	to	the	database	in		NewWordActivity	,	the	UI
automatically	updates.

5.	 Add	a	word	that	already	exists	in	the	list.	What	happens?	Does	your	app	crash?	Your
app	uses	the	word	itself	as	the	primary	key,	and	each	primary	key	must	be	unique.	You
can	specify	a	conflict	strategy	to	tell	your	app	what	to	do	when	the	user	tries	to	add	an
existing	word.

6.	 In	the		WordDao		interface,	change	the	annotation	for	the		insert()		method	to:

	@Insert(onConflict	=	OnConflictStrategy.IGNORE)

To	learn	about	other	conflict	strategies,	see	the		OnConflictStrategy		reference.

7.	 Run	your	app	again	and	try	adding	a	word	that	already	exists.	What	happens	now?

Solution	code
Android	Studio	project:	RoomWordsSample.

Summary
Now	that	you	have	a	working	app,	let's	recap	what	you've	built.	Here	is	the	app	structure
again,	from	the	beginning:

You	have	an	app	that	displays	words	in	a	list	(MainActivity	,		RecyclerView	,
	WordListAdapter).
You	can	add	words	to	the	list	(NewWordActivity).
A	word	is	an	instance	of	the		Word		entity	class.
The	words	are	cached	in	the		RecyclerViewAdapter		as	a		List		of	words	(mWords).	The
list	is	automatically	updated	and	redisplayed	when	the	data	changes.
The	automatic	update	happens	because	in	the		MainActivity	,	there	is	an		Observer	
that	observes	the	words	and	is	notified	when	the	words	change.	When	there	is	a

Introduction

484

https://developer.android.com/reference/android/arch/persistence/room/OnConflictStrategy.html
https://github.com/google-developer-training/android-advanced/tree/master/RoomWordsSample

change,	the	observer's		onChange()		method	is	executed	and	updates		mWords		in	the
	WordListAdapter	.
The	data	can	be	observed	because	it	is		LiveData	.	And	what	is	observed	is	the
	LiveData<List<Word>>		that	is	returned	by	the		WordViewModel		object.
The		WordViewModel		hides	everything	about	the	backend	from	the	user	interface.	It
provides	methods	for	accessing	the	UI	data,	and	it	returns		LiveData		so	that
	MainActivity		can	set	up	the	observer	relationship.	Views,	activities,	and	fragments
only	interact	with	the	data	through	the		ViewModel	.	As	such,	it	doesn't	matter	where	the
data	comes	from.
In	this	case,	the	data	comes	from	a	Repository.	The		ViewModel		does	not	need	to	know
what	that	Repository	interacts	with.	It	just	needs	to	know	how	to	interact	with	the
Repository,	which	is	through	the	methods	exposed	by	the	Repository.
The	Repository	manages	one	or	more	data	sources.	In	the	RoomWordsSample	app,
that	backend	is	a	Room	database.	Room	is	a	wrapper	around	and	implements	a	SQLite
database.	Room	does	a	lot	of	work	for	you	that	you	used	to	have	to	do	yourself.	For
example,	Room	does	everything	that	you	used	to	use	a		SQLiteOpenHelper		class	to	do.
The	DAO	maps	method	calls	to	database	queries,	so	that	when	the	Repository	calls	a
method	such	as		getAllWords()	,	Room	can	execute		SELECT	*	from	word_table	ORDER	BY
word	ASC	.
The	result	returned	from	the	query	is	observed		LiveData	.	Therefore,	every	time	the
data	in	Room	changes,	the		Observer		interface's		onChanged()		method	is	executed	and
the	UI	is	updated.

Related	concept
The	related	concept	documentation	is	Architecture	Components.

Learn	more
Android	developer	documentation:

Guide	to	App	Architecture
Adding	Components	to	your	Project
DAO
Room	DAOs
Room	package	summary	reference
Handling	Lifecycles	with	Lifecycle-Aware	Components
	LiveData	

	MutableLiveData	

Introduction

485

https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-6-working-with-architecture-components/lesson-14-architecture-components/14-1-c-architecture-components/14-1-c-architecture-components.html
https://developer.android.com/topic/libraries/architecture/guide.html
https://developer.android.com/topic/libraries/architecture/adding-components.html
https://developer.android.com/reference/android/arch/persistence/room/Dao.html
https://developer.android.com/training/data-storage/room/accessing-data.html
https://developer.android.com/reference/android/arch/persistence/room/package-summary.html
https://developer.android.com/topic/libraries/architecture/lifecycle.html
https://developer.android.com/reference/android/arch/lifecycle/LiveData.html
https://developer.android.com/reference/android/arch/lifecycle/MutableLiveData.html

	ViewModel	

	ViewModelProviders	

Defining	data	using	Room	entities

Blogs	and	articles:

7	Steps	To	Room	(migrating	an	existing	app)
Understanding	migrations	with	Room
Lifecycle	Aware	Data	Loading	with	Architecture	Components

Codelabs:

Android	Persistence	codelab	(LiveData	,	Room,	DAO)
Android	lifecycle-aware	components	codelab	(ViewModel	,		LiveData	,		LifecycleOwner	,
	LifecycleRegistryOwner)
Android	Room	with	a	View	(same	code	as	this	practical)

Videos:

Architecture	Components	overview
Architecture	Components:	LiveData	and	Lifecycle
Architecture	Components:	ViewModel

Code	samples:

Architecture	Components	code	samples
BasicSample	(a	not-so-basic	but	comprehensive	sample)

Introduction

486

https://developer.android.com/reference/android/arch/lifecycle/ViewModel.html
https://developer.android.com/reference/android/arch/lifecycle/ViewModelProviders.html
https://developer.android.com/training/data-storage/room/defining-data.html
https://medium.com/google-developers/7-steps-to-room-27a5fe5f99b2
https://medium.com/google-developers/understanding-migrations-with-room-f01e04b07929
https://medium.com/google-developers/lifecycle-aware-data-loading-with-android-architecture-components-f95484159de4
https://codelabs.developers.google.com/codelabs/android-persistence/#0
https://codelabs.developers.google.com/codelabs/android-lifecycles/#0
https://codelabs.developers.google.com/codelabs/android-room-with-a-view/index.html?
https://www.youtube.com/watch?v=vOJCrbr144o
https://www.youtube.com/watch?v=jCw5ib0r9wg
https://www.youtube.com/watch?v=c9-057jC1ZA
https://github.com/googlesamples/android-architecture-components
https://github.com/googlesamples/android-architecture-components/tree/master/BasicSample

14.1B:	Deleting	and	updating	data	with
Room
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Initialize	data	only	if	the	database	is	empty
Task	2.	Delete	all	words
Task	3.	Add	an	Options	menu	item	to	delete	all	data
Task	4.	Delete	a	single	word
Task	5.	Enable	users	to	swipe	words	away
Solution	code
Coding	challenge
Challenge	solution	code
Summary
Related	concept
Learn	more

This	practical	gives	you	more	practice	at	using	the	API	provided	by	the	Room	library	to
implement	database	functionality.	You	will	add	the	ability	to	delete	specific	items	from	the
database.	The	practical	also	includes	a	coding	challenge,	in	which	you	update	the	app	so
the	user	can	edit	existing	data.

What	you	should	already	KNOW
You	should	be	able	to	create	and	run	apps	in	Android	Studio	3.0	or	higher.	In	particular,	be
familiar	with	the	following:

Using		RecyclerView		and	adapters.
Using	entity	classes,	data	access	objects	(DAOs),	and	the		RoomDatabase		to	store	and

Introduction

487

https://developer.android.com/studio/index.html

retrieve	data	in	Android's	built-in	SQLite	database.	You	learned	these	topics	in	the
previous	practical,	15.1A:	Working	with	Architecture	Components:	Room,	LiveData,
ViewModel.

What	you	will	LEARN
You	will	learn	how	to:

Populate	the	database	with	data	only	if	the	database	is	empty	(so	users	don't	lose
changes	they	made	to	the	data).
Delete	data	from	a	Room	database.
Update	existing	data	(if	you	build	the	challenge	app).

What	you	will	DO
Update	the	RoomWordsSample	app	to	keep	data	when	the	app	closes.
Allow	users	to	delete	all	words	by	selecting	an	Options	menu	item.
Allow	users	to	delete	a	specific	word	by	swiping	an	item	in	the	list.
Optionally,	in	a	coding	challenge,	extend	the	app	to	allow	the	user	to	update	existing
words.

App	overview
You	will	extend	the	RoomWordsSample	app	that	you	created	in	the	previous	practical.	So
far,	that	app	displays	a	list	of	words,	and	users	can	add	words.	When	the	app	closes	and	re-
opens,	the	app	re-initializes	the	database,	and	words	that	the	user	has	added	are	lost.

In	this	practical,	you	extend	the	app	so	that	it	only	initializes	the	data	in	the	database	if	there
is	no	existing	data.

Introduction

488

https://google-developer-training.gitbooks.io/android-developer-advanced-course-practicals/unit-6-working-with-architecture-components/lesson-14-room,-livedata,-viewmodel/14-1-a-room-livedata-viewmodel/14-1-a-room-livedata-viewmodel.html

Then	you	add	a	menu	item	that	allows	the	user	to	delete	all	the	data.

You	also	enable	the	user	to	swipe	a	word	to	delete	it	from	the	database.

Introduction

489

Task	1.	Initialize	data	only	if	the	database	is
empty
The	RoomWordsSample	app	that	you	created	in	the	previous	practical	deletes	and	re-
creates	the	data	whenever	the	user	opens	the	app.	This	behavior	isn't	ideal,	because	users
will	want	their	added	words	to	remain	in	the	database	when	the	app	is	closed.

In	this	task	you	update	the	app	so	that	when	it	opens,	the	initial	data	set	is	only	added	if	the
database	has	no	data.

To	detect	whether	the	database	contains	data	already,	you	can	run	a	query	to	get	one	data
item.	If	the	query	returns	nothing,	then	the	database	is	empty.

In	a	production	app,	you	might	want	to	allow	users	to	delete	all	data	without	re-initializing	the
data	when	the	app	restarts.	But	for	testing	purposes,	it's	useful	to	be	able	to	delete	all	data,
then	re-initialize	the	data	when	the	app	starts.

1.1	Add	a	method	to	the	DAO	to	get	a	single	word

Currently,	the		WordDao		interface	has	a	method	for	getting	all	the	words,	but	not	for	getting
any	single	word.	The	method	to	get	a	single	word	does	not	need	to	return		LiveData	,
because	your	app	will	call	the	method	explicitly	when	needed.

1.	 In	the		WordDao		interface,	add	a	method	to	get	any	word:

		@Query("SELECT	*	from	word_table	LIMIT	1")

					Word[]	getAnyWord();

	Room		issues	the	database	query	when	the		getAnyWord()		method	is	called	and	returns
an	array	containing	one	word.	You	don't	need	to	write	any	additional	code	to	implement
it.

1.2	Update	the	initialization	method	to	check	whether	data
exists

Use	the		getAnyWord()		method	in	the	method	that	initializes	the	database.	If	there	is	any
data,	leave	the	data	as	it	is.	If	there	is	no	data,	add	the	initial	data	set.

1.	 	PopulateDBAsync		is	an	inner	class	in		WordRoomDatbase	.	In		PopulateDBAsync	,	update	the
	doInBackground()		method	to	check	whether	the	database	has	any	words	before
initializing	the	data:

Introduction

490

	@Override

	protected	Void	doInBackground(final	Void...	params)	{

								//	If	we	have	no	words,	then	create	the	initial	list	of	words

								if	(mDao.getAnyWord().length	<	1)	{

												for	(int	i	=	0;	i	<=	words.length	-	1;	i++)	{

																Word	word	=	new	Word(words[i]);

																mDao.insert(word);

												}

								}

				return	null;

	}

2.	 Run	your	app	and	add	several	new	words.	Close	the	app	and	restart	it.	You	should	see
the	new	words	you	added,	as	the	words	should	now	persist	when	the	app	is	closed	and
opened	again.

Task	2.	Delete	all	words
In	the	previous	practical,	you	used	the		deleteAll()		method	to	clear	out	all	the	data	when
the	database	opened.	The		deleteAll()		method	was	only	invoked	from	the
	PopulateDbAsync		class	when	the	app	started.	Make	the		deleteAll()		method	available
through	the		ViewModel		so	that	your	app	can	call	the	method	whenever	it's	needed.

Here	are	the	general	steps	for	implementing	a	method	to	use	the		Room		library	to	interact
with	the	database:

Add	the	method	to	the	DAO,	and	annotate	it	with	the	relevant	database	operation.	For
the		deleteAll()		method,	you	already	did	this	step	in	the	previous	practical.
Add	the	method	to	the		WordRepository		class.	Write	the	code	to	run	the	method	in	the
background.
To	call	the	method	in	the		WordRepository		class,	add	the	method	to	the		WordViewModel	.
The	rest	of	the	app	can	then	access	the	method	through	the		WordViewModel	.

2.1	Add	deleteAll()	to	the	WordDao	interface	and	annotate	it

1.	 In		WordDao	,	check	that	the		deleteAll()		method	is	defined	and	annotated	with	the	SQL
that	runs	when	the	method	executes:

	@Query("DELETE	FROM	word_table")

	void	deleteAll();

2.2	Add	deleteAll()	to	the	WordRepository	class

Introduction

491

Add	the		deleteAll()		method	to	the		WordRepository		and	implement	an		AsyncTask		to
delete	all	words	in	the	background.

1.	 In		WordRepository	,	define		deleteAllWordsAsyncTask		as	an	inner	class.	Implement
	doInBackground()		to	delete	all	the	words	by	calling		deleteAll()		on	the	DAO:

	private	static	class	deleteAllWordsAsyncTask	extends	AsyncTask<Void,	Void,	Void>	

{

				private	WordDao	mAsyncTaskDao;

				deleteAllWordsAsyncTask(WordDao	dao)	{

								mAsyncTaskDao	=	dao;

				}

				@Override

				protected	Void	doInBackground(Void...	voids)	{

								mAsyncTaskDao.deleteAll();

								return	null;

				}

	}

2.	 In	the		WordRepository		class,	add	the		deleteAll()		method	to	invoke	the		AsyncTask	
that	you	just	defined.

	public	void	deleteAll()		{

				new	deleteAllWordsAsyncTask(mWordDao).execute();

	}

2.3	Add	deleteAll()	to	the	WordViewModel	class

You	need	to	make	the		deleteAll()		method	available	to	the		MainActivity		by	adding	it	to
the		WordViewModel	.

1.	 In	the		WordViewModel		class,	add	the		deleteAll()		method:

	public	void	deleteAll()	{mRepository.deleteAll();}

Task	3.	Add	an	Options	menu	item	to	delete	all
data
Next,	you	will	add	a	menu	item	to	enable	users	to	invoke		deleteAll()	.

Note:	The	production	version	of	your	app	must	provide	safeguards	so	that	users	do	not
accidentally	wipe	out	their	entire	database.	However,	while	you	develop	your	app,	it's	helpful

Introduction

492

to	be	able	to	clear	out	test	data	quickly.	This	is	especially	true	now	that	your	app	does	not
clear	out	the	data	when	the	app	opens.

3.1	Add	the	Clear	all	data	menu	option

1.	 In		menu_main.xml	,	change	the	menu	option		title		and		id	,	as	follows:

	<item

				android:id="@+id/clear_data"

				android:orderInCategory="100"

				android:title="@string/clear_all_data"

				app:showAsAction="never"	/>

2.	 In		MainActivity	,	implement	the		onOptionsItemSelected()		method	to	invoke	the
	deleteAll()		method	on	the		WordViewModel		object.

	@Override

	public	boolean	onOptionsItemSelected(MenuItem	item)	{

				int	id	=	item.getItemId();

				if	(id	==	R.id.clear_data)	{

								//	Add	a	toast	just	for	confirmation

								Toast.makeText(this,	"Clearing	the	data...",

																Toast.LENGTH_SHORT).show();

								//	Delete	the	existing	data

								mWordViewModel.deleteAll();

								return	true;

				}

				return	super.onOptionsItemSelected(item);

	}

3.	 Run	your	app.	In	the	Options	menu,	select	Clear	all	data.	All	words	should	disappear.
4.	 Restart	the	app.	(Restart	it	from	your	device	or	the	emulator;	don't	run	it	again	from

Android	Studio)	You	should	see	the	initial	set	of	words.

After	you	clear	the	data,	re-deploying	the	app	from	Android	Studio	will	show	the	initial	data
set	again;	opening	the	app	will	show	the	empty	data	set.

Task	4.	Delete	a	single	word
Your	app	lets	users	add	words	and	delete	all	words.	In	Tasks	4	and	5,	you	extend	the	app	so
that	users	can	delete	a	word	by	swiping	the	item	in	the		RecyclerView	.

Introduction

493

Again,	here	are	the	general	steps	to	implement	a	method	to	use	the		Room		library	to	interact
with	the	database:

Add	the	method	to	the	DAO,	and	annotate	it	with	the	relevant	database	operation.
Add	the	method	to	the		WordRepository		class.	Write	the	code	to	run	the	method	in	the
background.
To	call	the	method	in	the		WordRepository		class,	add	the	method	to	the		WordViewModel	.
The	rest	of	the	app	can	then	access	the	method	through	the		WordViewModel	.

4.1	Add	deleteWord()	to	the	DAO	and	annotate	it

1.	 In		WordDao	,	add	the		deleteWord()		method:

	@Delete

	void	deleteWord(Word	word);

Because	this	operation	deletes	a	single	row,	the		@Delete		annotation	is	all	that	is
needed	to	delete	the	word	from	the	database.

4.2	Add	deleteWord()	to	the	WordRepository	class

1.	 In		WordRepository	,	define	another		AsyncTask		called		deleteWordAsyncTask		as	an	inner
class.	Implement		doInBackground()		to	delete	a	word	bycalling		deleteWord()		on	the
DAO:

	private	static	class	deleteWordAsyncTask	extends	AsyncTask<Word,	Void,	Void>	{

				private	WordDao	mAsyncTaskDao;

				deleteWordAsyncTask(WordDao	dao)	{

								mAsyncTaskDao	=	dao;

				}

				@Override

				protected	Void	doInBackground(final	Word...	params)	{

								mAsyncTaskDao.deleteWord(params[0]);

								return	null;

				}

	}

2.	 In		WordRepository	,	add	the		deleteWord()		method	to	invoke	the		AsyncTask		you	just
defined.

	public	void	deleteWord(Word	word)		{

				new	deleteWordAsyncTask(mWordDao).execute(word);

	}

Introduction

494

4.3	Add	deleteWord()	to	the	WordViewModel	class

To	make	the		deleteWord()		method	available	to	other	classes	in	the	app,	in	particular,
	MainActivity,		add	it	to		WordViewModel	.

1.	 In		WordViewModel	,	add	the		deleteWord()		method:

	public	void	deleteWord(Word	word)	{mRepository.deleteWord(word);}

You	have	now	implemented	the	logic	to	delete	a	word,	but	as	yet	there	is	no	way	to
invoke	the	delete-word	operation	from	the	app's	UI.	You	fix	that	next.

Task	5.	Enable	users	to	swipe	words	away
In	this	task,	you	add	functionality	to	allow	users	to	swipe	an	item	in	the		RecyclerView		to
delete	it.

Use	the		ItemTouchHelper		class	provided	by	the	Android	Support	Library	(version	7	and
higher)	to	implement	swipe	functionality	in	your		RecyclerView	.	The		ItemTouchHelper		class
has	the	following	methods:

	onMove()		is	called	when	the	user	moves	the	item.	You	do	not	implement	any	move
functionality	in	this	app.
	onSwipe()		is	called	when	the	user	swipes	the	item.	You	implement	this	method	to

Introduction

495

https://developer.android.com/reference/android/support/v7/widget/helper/ItemTouchHelper.html

delete	the	word	that	was	swiped.	

5.1	Enable	the	adapter	to	detect	the	swiped	word

1.	 In		WordListAdapter	,	add	a	method	to	get	the	word	at	a	given	position.

	public	Word	getWordAtPosition	(int	position)	{

				return	mWords.get(position);

	}

2.	 In		MainActivity	,	in		onCreate()	,	create	the		ItemTouchHelper	.	Attach	the
	ItemTouchHelper		to	the		RecyclerView	.

Introduction

496

	//	Add	the	functionality	to	swipe	items	in	the	

	//	recycler	view	to	delete	that	item

	ItemTouchHelper	helper	=	new	ItemTouchHelper(

					new	ItemTouchHelper.SimpleCallback(0,

									ItemTouchHelper.LEFT	|	ItemTouchHelper.RIGHT)	{

												@Override

												public	boolean	onMove(RecyclerView	recyclerView,

																																		RecyclerView.ViewHolder	viewHolder,

																																		RecyclerView.ViewHolder	target)	{

																return	false;

												}

												@Override

												public	void	onSwiped(RecyclerView.ViewHolder	viewHolder,	

																																	int	direction)	{

																int	position	=	viewHolder.getAdapterPosition();

																Word	myWord	=	adapter.getWordAtPosition(position);

																Toast.makeText(MainActivity.this,	"Deleting	"	+	

																								myWord.getWord(),	Toast.LENGTH_LONG).show();

																//	Delete	the	word

																mWordViewModel.deleteWord(myWord);

													}

								});

	helper.attachToRecyclerView(recyclerView);

.

Things	to	notice	in	the	code:

	onSwiped()		gets	the	position	of	the		ViewHolder		that	was	swiped:

int	position	=	viewHolder.getAdapterPosition();

Given	the	position,	you	can	get	the	word	displayed	by	the		ViewHolder		by	calling	the
	getWordAtPosition()		method	that	you	defined	in	the	adapter:

Word	myWord	=	adapter.getWordAtPosition(position);

Delete	the	word	by	calling		deleteWord()		on	the		WordViewModel	:

mWordViewModel.deleteWord(myWord);

Now	run	your	app	and	delete	some	words

1.	 Run	your	app.	You	should	be	able	to	delete	words	by	swiping	them	left	or	right.

Introduction

497

Solution	code
Android	Studio	project:	RoomWordsWithDelete

Coding	challenge
Challenge:	Update	your	app	to	allow	users	to	edit	a	word	by	tapping	the	word	and	then
saving	their	changes.

Hints

Make	changes	in	NewWordActivity

You	can	add	functionality	to		NewWordActivity	,	so	that	it	can	be	used	either	to	add	a	new
word	or	edit	an	existing	word.

Use	an	auto-generated	key	in	Word

The		Word		entity	class	uses	the		word		field	as	the	database	key.	However,	when	you	update
a	row	in	the	database,	the	item	being	updated	cannot	be	the	primary	key,	because	the
primary	key	is	unique	to	each	row	and	never	changes.	So	you	need	to	add	an	auto-
generated		id		to	use	as	the	primary	key

@PrimaryKey(autoGenerate	=	true)

private	int	id;

@NonNull

@ColumnInfo(name	=	"word")

private	String	mWord;

Add	a	constructor	for		Word		that	takes	an		id	

Add	a	constructor	to	the		Word		entity	class	that	takes		id		and		word		as	parameters.	Make
sure	this	additional	constructor	is	annotated	using		@Ignore	,	because		Room		expects	only
one	constructor	by	default	in	an	entity	class.

@Ignore

public	Word(int	id,	@NonNull	String	word)	{

			this.id	=	id;

			this.mWord	=	word;

}

Introduction

498

https://github.com/google-developer-training/android-advanced/tree/master/RoomWordsWithDelete

To	update	an	existing		Word	,	create	the		Word		using	this	constructor.		Room		will	use	the
primary	key	(in	this	case	the		id)	to	find	the	existing	entry	in	the	database	so	it	can	be
updated.

In		WordDao	,	add	the		update()		method	like	this:

@Update

void	update(Word...	word);

Challenge	solution	code
Android	Studio	project:	Coming	soon

Summary

Writing	database	code

Room	takes	care	of	opening	and	closing	the	database	connections	each	time	a
database	operations	executes.
Annotate	methods	in	the	data	access	object	(DAO)	as		@insert	,		@delete	,		@update	,
	@query	.
For	simple	insertions,	updates	and	deletions,	it	is	enough	to	add	the	relevant	annotation
to	the	method	in	the	DAO.

For	example:

@Delete

void	deleteWord(Word	word);

@Update

void	update(Word...	word);

For	queries	or	more	complex	database	interactions,	such	as	deleting	all	words,	use	the
	@query		annotation	and	provide	the	SQL	for	the	operation.

For	example:

@Query("SELECT	*	from	word_table	ORDER	BY	word	ASC")

LiveData<List<Word>>	getAllWords();

@Query("DELETE	FROM	word_table")

void	deleteAll();

Introduction

499

ItemTouchHelper

To	enable	users	to	swipe	or	move	items	in	a		RecyclerView	,	you	can	use	the
	ItemTouchHelper		class.
Implement		onMove()		and		onSwipe().	
To	identify	which	item	the	user	moved	or	swiped,	you	can	add	a	method	to	the	adapter
for	the		RecylerView	.	The	method	takes	a	position	and	returns	the	relevant	item.	Call
the	method	inside		onMove()		or		onSwipe()	.

Related	concept
The	related	concept	documentation	is	Architecture	Components.

Learn	more
Entities,	data	access	objects	(DAOs),	and		ViewModel	:

Defining	data	using	Room	entities
Accessing	data	using	Room	DAOs
	ViewModel		guide
	Dao		reference
	ViewModel		reference
To	see	all	the	possible	annotations	for	an	entity,	go	to		android.arch.persistence.room		in
the	Android	reference	and	expand	the	Annotations	menu	item	in	the	left	nav.	

	ItemTouchHelper	:

	ItemTouchHelper		reference

Introduction

500

https://google-developer-training.gitbooks.io/android-developer-advanced-course-concepts/unit-6-working-with-architecture-components/lesson-14-architecture-components/14-1-c-architecture-components/14-1-c-architecture-components.html
https://developer.android.com/training/data-storage/room/defining-data.html
https://developer.android.com/training/data-storage/room/accessing-data.html
https://developer.android.com/topic/libraries/architecture/viewmodel.html
https://developer.android.com/reference/android/arch/persistence/room/Dao.html
https://developer.android.com/reference/android/arch/lifecycle/ViewModel.html
https://developer.android.com/reference/android/arch/persistence/room/package-summary.html
https://developer.android.com/reference/android/support/v7/widget/helper/ItemTouchHelper.html

Introduction

501

Appendix:	Setup
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1.	Set	up	your	environment
Learn	more

The	practicals	in	this	book	assume	that	you	are	using	the	latest	version	of	Android	Studio,
and	some	of	the	practicals	require	at	least	Android	Studio	3.0.	For	example,	the
Performance	chapters	teach	you	how	to	use	the	Android	Profiler	tools.

This	page	summarizes	how	to	set	up	the	latest	version	of	Android	Studio.

If	you	need	more	help,	see	Install	Android	Studio	and	Run	Hello	World	in	the	Android
Developer	Fundamentals	course	and	the	resources	at	the	end	of	this	page.

What	you	should	already	KNOW
You	should	be	able	to:

Create	and	run	an	Android	app	using	Android	Studio.

What	you	will	LEARN
How	to	set	up	your	environment	for	the	Advanced	Android	Development	practicals.

What	you	will	DO
Install	Android	Studio	3	or	later.
Update	Android	Studio,	if	necessary.
Update	the	SDK	for	building	and	running	the	apps	you	create	in	the	Advanced	Android
Development	course.
If	necessary,	set	up	your	mobile	device	to	run	and	debug	Android	apps	from	your
computer.

Appendix:	Setup

502

https://developer.android.com/studio/preview/features/android-profiler.html
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/11_p_hello_world.html

App	overview
You	can	use	the	finished	WordListSQLInteractive	app	from	the	Android	Developer
Fundamentals	course	to	test	your	setup,	or	you	can	use	any	other	app	that's	not	simplistic.

Task	1.	Set	up	your	environment

1.1	Get	Android	Studio	3	or	later

What	follows	are	the	summary	instructions	for	installing	Android	Studio	3,	for	each	platform
that	supports	Android	Studio.

Note	that	you	can	keep	two	independent	versions	of	Android	Studio	on	your	development
machine,	if	you	want	to.

Windows:

1.	 Download	Android	Studio	for	Windows.
2.	 Unpack	the	zip	file.
3.	 Rename	the	resulting	folder	to	something	unique	like	"Android	Studio	3."
4.	 Move	the	folder	to	a	permanent	location,	such	as	next	to	your	existing	Android	Studio

install	in		C:\Program	Files\Android\	.
5.	 Inside		C:\Program	Files\Android\Android	Studio	3\bin\	,	launch		studio64.exe		(or	if

you're	on	a	32-bit	machine,	launch		studio.exe).
6.	 To	make	the	version	available	in	your	Start	menu,	right-click		studio64.exe		and	click

Pin	to	Start	Menu.

Mac:

1.	 Download	Android	Studio	for	Mac.
2.	 Unpack	the	zip	file.

Note:	If	you	download	version	2.3	or	lower,	the	app	name	does	not	include	the	version
number.	Rename	the	new	version	before	moving	it	into	your	apps	directory.	Otherwise,
you	might	override	your	existing	version	of	Android	Studio.

3.	 Drag	the	app	file	into	your	Applications	folder.

4.	 Launch	the	app.

Linux:

1.	 Download	Android	Studio	for	Linux.
2.	 Unpack	the	zip	file.

Appendix:	Setup

503

https://github.com/google-developer-training/android-fundamentals/tree/master/WordListSql%20finished
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html

3.	 Rename	the	resulting	folder	to	something	unique	like	"android-studio-3".
4.	 Move	the	folder	to	wherever	you	have	your	stable	version,	such	as	within		/usr/local/	

for	your	user	profile,	or	within		/opt/		for	shared	users.
5.	 Open	a	terminal,	navigate	into		android-studio-3/bin/	,	and	execute		studio.sh	.
6.	 To	make	the	new	version	available	in	your	list	of	apps,	select	Tools	>	Create	Desktop

Entry	from	the	Android	Studio	menu	bar.

1.2	Update	Android	Studio

1.	 Open	Android	Studio.
2.	 If	you	are	not	prompted	to	update,	select	Android	Studio	>	Check	for	updates....
3.	 Continue	to	check	for	updates,	until	you	see	a	dialog	saying	that	you	have	the	latest

version.	

1.3	Build	an	app	to	verify	your	Android	Studio	installation

You	probably	need	to	install	additional	SDK	downloads	before	your	app	builds.

1.	 Open	Android	Studio,	then	open	an	existing	app	of	some	complexity,	such	as
WordListSQLInteractive.

When	you	build	an	app	that	you	built	with	a	previous	version	of	Android	Studio,	you	may
get	errors	about	components	and	libraries	that	are	missing.

2.	 Click	the	links	as	prompted	by	the	error	messages,	and	install	the	needed	components.

3.	 Update	Gradle,	if	you're	prompted	to	do	so.

4.	 Follow	the	prompts	until	your	app	finishes	building.

1.4	Run	the	app	on	a	mobile	device

1.	 On	your	mobile	device,	enable	developer	options,	if	they	are	not	already	enabled.	To
find	these	settings	on	the	device,	open	Settings	>	Developer	options.

On	Android	4.2	and	higher,	the	Developer	options	screen	is	hidden	by	default.	To
make	the	screen	visible,	go	to	Settings	>	About	phone	and	tap	Build	number	seven
times.	Return	to	the	previous	screen	to	find	Developer	options	at	the	bottom.

Appendix:	Setup

504

https://github.com/google-developer-training/android-fundamentals/tree/master/WordListSql%20finished
https://developer.android.com/studio/debug/dev-options.html

2.	 In	Developer	options,	enable	USB	Debugging.	This	is	necessary	for	your
development	machine	to	see	and	access	your	mobile	device.

3.	 Connect	the	mobile	device	to	your	development	computer	with	a	USB	data	cable.
4.	 In	Android	Studio,	click	Run.
5.	 You	may	be	prompted	to	install	HAXM	and	emulator	images.	If	you	have	been	using

several	emulator	images,	this	installation	can	take	a	while.	Your	largest	update	may	be
over	1	GB	and	will	take	some	time	to	download	even	on	a	fast	connection.	You	can
postpone	the	system	image	downloads	and	run	them	later	from	the	AVD	manager.

6.	 After	installation,	choose	your	device	and	run	the	app.

1.5	Run	the	app	on	an	emulator

1.	 If	the	app	is	running	on	your	device,	stop	it.
2.	 Run	the	app	again,	choosing	an	emulator.	Your	emulator	may	update	before	it	runs	your

app.

If	you	don't	have	an	emulator,	click	Create	Virtual	Device	in	the	Select	Deployment
Target	dialog.	Choose	a	phone	and	an	existing	system	image,	if	you	have	one,	because
additional	system	images	are	large	to	download.

3.	 Make	sure	that	the	app	runs	correctly.

1.6	Create	and	run	Hello	World

To	make	sure	that	you're	ready	to	work,	create	and	run	a	Hello	World	app:

1.	 Create	a	new	project	using	the	Basic	Activity.
2.	 Accept	all	the	defaults.
3.	 Run	the	app	on	any	device	or	emulator.

Learn	more
Android	Studio	Release	Notes
Android	Plugin	for	Gradle	Release	Notes
Install	Android	Studio	and	Run	Hello	World	practical	from	Android	Developer
Fundamentals
Run	Apps	on	a	Hardware	Device
Android	Studio	Preview	documentation,	for	information	on	how	to	get	and	install	preview
versions	of	Android	Studio

Appendix:	Setup

505

https://developer.android.com/studio/releases/index.html
https://developer.android.com/studio/releases/gradle-plugin.html
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/en/Unit%201/11_p_hello_world.html
https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-practicals/details
https://developer.android.com/studio/run/device.html
https://developer.android.com/studio/preview/index.html

Appendix:	Setup

506

Appendix:	Homework
Contents:

1.1	Creating	a	Fragment	with	a	UI
1.2:	Communicating	with	a	Fragment
2.1:	Building	app	widgets
3.1:	Working	with	sensor	data
3.2:	Working	with	sensor-based	orientation
4.0	Optimizing	for	performance
4.1	Analyzing	rendering	and	layout
4.2	Using	the	Memory	Profiler
4.3	Optimizing	network,	battery,	and	image	use
5.1	Using	resources	for	languages
5.2	Using	the	locale
6.1:	Exploring	accessibility	in	Android
6.2:	Creating	accessible	apps
7.1:	Using	the	device	location
8.1:	Using	the	Places	API
9.1	Adding	a	Google	Map	to	your	app
10.1	Creating	a	custom	view
11.1	Applying	clipping	to	a	Canvas	object
11.2	Creating	a	SurfaceView	object
12.1	Creating	animations
13.1	Simple	media	playback
14.1:	Working	with	Architecture	Components:	Room,	LiveData,	ViewModel
14.2:	Working	with	Architecture	Components:	Deleting	and	updating	data

This	appendix	lists	possible	homework	assignments	that	students	can	complete	at	the	end
of	each	practical.	It	is	the	instructor's	responsibility	to	do	the	following:

Assign	homework,	if	homework	is	required.
Communicate	to	students	how	to	submit	homework	assignments.
Grade	homework	assignments.

Instructors	can	use	these	suggested	assignments	as	little	or	as	much	as	they	want.
Instructors	should	feel	free	to	assign	any	other	homework	they	feel	is	appropriate.

1.1:	Creating	a	Fragment	with	a	UI

Appendix:	Homework

507

Build	and	run	an	app

Build	an	app	that	uses	the	same	fragment	(SimpleFragment)	with	more	than	one	activity.

1.	 In	Android	Studio,	open	the	FragmentExample2	app.
2.	 Add	another	Empty	Activity	called		SecondActivity	.	For		SecondActivity	,	use	the	same

layout	as		MainActivity	.
3.	 In	the		SecondActivity		layout,	replace	the		article1		string	resource	with		article2	.

Replace	the		title1		string	resource	with		title2	.	Both	string	resources	are	provided	in
the	starter	app	and	included	in	FragmentExample2.

Add	the	following	functionality	to	the	app,	using		SimpleFragment		with		SecondActivity	:

1.	 Add	a	Next	button	under	the	Open	button	to	navigate	from	the	first	activity	to	the
second	activity.

2.	 Add	a	Previous	button	in	the	second	activity	to	navigate	back	to	the	first	activity.

Answer	these	questions

Question	1

Which	subclass	of		Fragment		displays	a	vertical	list	of	items	that	are	managed	by	an
adapter?

	RowsFragment()	

	PreferenceFragment()	

	DialogFragment()	

	ListFragment()	

Question	2

Which	of	the	following	is	the	best	sequence	for	adding	a	fragment	to	an	activity	that	is
already	running?

Declare	the	fragment	inside	the	activity's	layout	file	using	a		<fragment>		view.
Declare	a	location	for	the	fragment	inside	the	activity's	layout	file	using	the
	<FrameLayout>		view	group.
Declare	the	location	for	the	fragment	inside	the	activity's	layout	file	using	the
	<FrameLayout>		view	group,	get	an	instance	of	the	fragment	and		FragmentManager	,	and
use	the		add()		transaction.
Declare	the	location	for	the	fragment	inside	the	activity's	layout	file	using	the
	<FrameLayout>		view	group.	Then	get	an	instance	of	the	fragment	and		FragmentManager	,
begin	a	transaction,	use	the		add()		transaction,	and	commit	the	transaction.

Appendix:	Homework

508

https://github.com/google-developer-training/android-advanced/tree/master/FragmentExample2

Question	3

Which	statement	gets	a	reference	to	a	fragment	using	the	fragment's	layout	resource?

	fragment	=	new	SimpleFragment();	

	SimpleFragment	fragment	=	(SimpleFragment)

fragmentManager.findViewById(R.id.fragment_container);	

	SimpleFragment	fragment	=	(SimpleFragment)

fragmentManager.findFragmentById(R.id.fragment_container);	

	FragmentTransaction	fragmentTransaction	=	fragmentManager.beginTransaction();	

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

The	app	displays	a	second	activity	when	the	user	taps	the	Next	button.
The	app's	second	activity	includes	an	Open	button.	The	Open	button	opens	the	same
fragment	(SimpleFragment)	that	appears	when	the	user	taps	Open	in	the	first	activity.
The	fragment	looks	the	same,	with	the	X	button.

1.2:	Communicating	with	a	Fragment

Build	and	run	an	app

In	the	FragmentCommunicate	app,	when	the	user	makes	a	choice	in	the	fragment,	the	app
shows	the	user's	choice	in	a	Toast	message.	The	Toast	shows	"Choice	is	0"	for	"Yes"	or
"Choice	is	1"	for	"No."

Change	the	FragmentCommunicate	app	so	that	the	Toast	shows	the	"Yes"	or	"No"	message
rather	than	"0"	or	"1."

Answer	these	questions

Question	1

Which	fragment-lifecycle	callback	draws	the	fragment's	UI	for	the	first	time?

	onAttach()	

	onActivityCreated()	

Appendix:	Homework

509

https://github.com/google-developer-training/android-advanced/tree/master/FragmentCommunicate

	onCreate()	

	onCreateView()	

Question	2

How	do	you	send	data	from	an	activity	to	a	fragment?

Set	a		Bundle		and	use	the		Fragment	.	setArguments(Bundle)		method	to	supply	the
construction	arguments	for	the	fragment.
Use	the	Fragment	method	getArguments()	to	get	the	arguments.
Define	an	interface	in	the		Fragment		class,	and	implement	the	interface	in	the	activity.
Call		addToBackStack()		during	a	transaction	that	removes	the	fragment.

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	feature:

After	the	user	taps	Open	and	makes	a	choice,	the	Toast	message	displays	"Choice	is
Yes"	or	"Choice	is	No".

2.1:	Building	app	widgets

Build	and	run	an	app

Create	an	app	that	has	an		EditText		view	and	a	button.	When	the	user	taps	the	button,
save	the	string	that's	displayed	in	the		EditText		view	to	the	shared	preferences.	Ensure	that
the	app	loads	this	string	from	the	preferences	in		onCreate()	.

Add	a	1x3	app	widget	that	displays	the	current	value	of	the	string.	Add	a	click	handler	to	the
entire	app	widget	such	that	the	app	opens	when	the	user	taps	the	app	widget.

Answer	these	questions

Question	1

Which	of	these	app-widget	components	are	required	?	(Choose	all	that	apply)

Provider-info	file
Widget-provider	class

Appendix:	Homework

510

Configuration	activity
Layout	file

Question	2

Which	of	these	layout	and	view	classes	can	be	used	in	an	app	widget?

	Button	

	ConstraintLayout	

	LinearLayout	

	ImageButton	

	CardView	

	CalendarView	

Question	3

In	which	method	in	your	widget-provider	class	do	you	initialize	the	layout	(remote	views)	for
the	app	widget?

	onCreate()	

	onReceive()	

	onEnabled()	

	onUpdate()	

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

The	main	activity	of	the	app	has	an		EditText		view	and	a	button.	If	you	change	the
string	in	the		EditText		and	tap	the	button,	the	string	is	saved.	Quitting	and	restarting	the
app	should	load	the	current	string	from	the	shared	preferences.
The	app	widget	displays	the	current	text	in	the	app's		EditText	.
Tapping	the	app	widget	opens	the	app.

3.1:	Working	with	sensor	data

Build	and	run	an	app

Appendix:	Homework

511

Create	an	app	to	print	the	current	value	of	a	device's	humidity	sensor
(TYPE_RELATIVE_HUMIDITY).	If	the	sensor	is	not	available	in	the	device,	print	"no	sensor"
instead	of	the	value.

Answer	these	questions

Question	1

Which	of	the	following	features	are	provided	by	the		SensorManager		class?	(Choose	all	that
apply)

Methods	to	register	and	unregister	sensor	listeners.
Methods	to	determine	device	orientation.
Constants	representing	sensor	types.
Constants	representing	sensor	accuracy.
Methods	to	indicate	whether	a	sensor	is	a	wake-up	sensor.

Question	2

In	which		Activity		lifecycle	method	should	you	register	your	sensor	listeners?

	onResume()	

	onCreate()	

	onStart()	

	onRestart()	

Question	3

What	are	best	practices	for	using	sensors	in	your	app?	(Choose	all	that	apply)

Register	listeners	for	only	for	the	sensors	you're	interested	in.
Test	to	make	sure	that	a	sensor	is	available	on	the	device	before	you	use	the	sensor.
Check	permissions	for	the	sensor	before	you	use	it.
Register	a	sensor	listener	for	the	slowest	possible	data	rate.
Don't	block		onSensorChanged()		to	filter	or	transform	incoming	data.

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

Appendix:	Homework

512

https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_RELATIVE_HUMIDITY

In		onCreate()	,	the	app	should	retrieve		Sensor.TYPE_RELATIVE_HUMIDITY		from	the	sensor
manager.
In		onStart()	,	the	app	should	register	a	listener	for	the	humidity	sensor.	In		onStop()	,
the	app	should	unregister	all	listeners.
The	app	should	implement		onSensorChanged()		and	test	that	the	event's	sensor	type	is
	TYPE_HUMIDITY	.
When	you	run	the	app	in	the	emulator	and	change	the	value	of	the	humidity	sensor,	the
app's	display	should	reflect	the	current	value.

3.2:	Working	with	sensor-based	orientation

Build	and	run	an	app

Create	an	app	based	on	the	TiltSpot	app	that	simulates	a	bubble	level	along	the	long	edge
of	the	device.	(A	bubble	or	spirit	level	is	a	tool	that	uses	colored	liquid	and	an	air	bubble	to
show	whether	a	surface	is	level.)	Use	a	single	spot	as	the	"bubble."	When	the	device	is	level
(flat	on	the	table),	the	bubble	should	appear	in	the	center	of	the	screen.	Move	the	spot	left	or
right	on	the	screen	when	one	long	edge	of	the	device	is	tilted.

Answer	these	questions

Question	1

Which	sensors	report	values	with	respect	to	Earth's	coordinate	system,	instead	of	reporting
values	with	respect	to	the	device-coordinate	system?

Geomagnetic	field	sensor
Accelerometer
Gyroscope
Orientation	sensor

Question	2

Which	sensors	can	you	use	to	get	the	orientation	of	the	device?

Gyroscope
Accelerometer	and	gravity	sensor
Orientation	sensor
Geomagnetic	field	sensor	and	accelerometer

Appendix:	Homework

513

https://github.com/google-developer-training/android-advanced/tree/master/TiltSpot
https://en.wikipedia.org/wiki/Spirit_level

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

When	you	place	the	device	flat	on	a	table,	a	spot	should	appear	in	the	middle	of	the
screen.
When	you	lift	the	top	or	bottom	of	the	device,	the	spot	should	move	to	the	upper	or
lower	edge	of	the	screen.	The	position	of	the	spot	should	be	further	away	from	the
center	as	you	tilt	the	device	at	a	greater	angle.

4.0:	Optimizing	for	performance

Build	and	run	an	app

Build	an	app	that	shows	a	scrollable	list	of	items	for	sale,	with	thumbnail	images.	When	the
user	taps	an	image,	the	app	displays	a	details-view	popup	with	a	larger	version	of	the	image.
You	will	use	this	app	to	complete	other	performance	homework	assignments.

Images	must	be	in	WebP	format	and	appropriately	sized.
Supply	separate	images	for	thumbnails	and	detail	images.
To	show	the	product	image	when	the	user	taps	a	thumbnail	image,	you	can	use	a
dialog.

Answer	these	questions

Question	1

Select	all	of	the	following	that	are	good	basic	performance	tests	you	can	perform.

Install	your	app	on	the	lowest-end	device	that	your	target	audience	might	have.
Observe	your	friends	using	the	app	and	make	note	of	their	comments.
Run	a	small	usability	test.
Publish	your	app	and	look	at	the	ratings	and	feedback	you	receive.

Question	2

Select	all	that	are	good	ways	to	approach	performance	problems.

Guess	at	what	might	be	the	problem,	make	a	change,	and	see	whether	it	helps.

Appendix:	Homework

514

https://developer.android.com/guide/topics/ui/dialogs.html

Use	a	systematic,	iterative	approach,	so	that	you	can	measure	improvements	resulting
from	your	changes	to	the	app.
Use	tools	to	inspect	your	app	and	acquire	performance	data	measurements.
Run	your	code	and	have	someone	else	run	your	code	to	evaluate	it.

Question	3

Select	all	of	the	following	that	are	performance	tools	available	on	your	mobile	device.

Profile	GPU	Rendering
USB	debugging
Show	GPU	view	updates
Memory	Profiler
Debug	GPU	Overdraw
Show	CPU	usage

Question	4

What	is	the	Performance	Improvement	Lifecycle	technique	for	improving	app	performance?

A	systematic	approach	to	testing	and	improving	app	performance.
A	process	with	four	phases:	gather	information	,	gain	insight	,	take	action	,	and	verify	.
A	set	of	tools	you	can	use	to	measure	and	improve	app	performance.
An	iterative	approach	that	allows	you	to	evaluate	how	changes	to	your	code	affect	app
performance.

Submit	your	app	for	grading

App	should	show	a	list	or	grid	of	items	with	thumbnail	images.	When	you	tap	an	item,	a
larger	image	of	the	item	is	displayed.

Guidance	for	graders

Check	that	the	app	has	the	following	features:

App	shows	a	list	of	items.
Tapping	an	item	shows	a	larger	image	of	the	item.
Images	load	without	delay.
Scrolling	is	smooth.

4.1:	Analyzing	rendering	and	layout

Appendix:	Homework

515

Build	and	run	an	app

In	the	app	you	created	for	the	4.0	homework	assignment	(4.0:	Optimizing	for	performance),
make	the	following	changes:

1.	 Use	the	same	larger	images	for	the	thumbnails	as	for	the	details	view	.	Run	Profile	GPU
Rendering	with	the	app,	take	a	screenshot	of	the	bars.

2.	 Change	the	app	to	use	small	thumbnail	images	or	text	to	list	the	items.	Run	Profile	GPU
Rendering	with	the	app	again	and	take	a	screenshot	of	the	bars.

3.	 Do	the	two	screenshots	look	different?	Comment	on	the	difference	or	lack	of	difference.
4.	 Turn	on	Debug	GPU	Overdraw.	Take	a	screenshot	of	your	app.	If	there	is	a	lot	of	red

color,	use	Layout	Inspector	to	fix	your	app,	then	take	another	screenshot.

Answer	these	questions

Question	1

How	much	time	does	your	app	have	available	to	calculate	and	display	one	frame	of	content?

16	milliseconds
Less	than	16	milliseconds,	because	the	Android	framework	is	doing	work	at	the	same
time	as	your	app	does	work.
It	depends	on	the	device.

Question	2

What	are	some	techniques	you	can	use	to	make	rendering	faster?

Reduce	overdraw.
Move	work	away	from	the	UI	thread.
Use		AsyncTask	.
Use	smaller	images.
Compress	your	data.
Flatten	your	view	hierarchy.
Use	as	few	views	as	possible.
Use	loaders	to	load	data	in	the	background.
Use	efficient	views	such	as		RecyclerView		and		ConstraintLayout	.

Question	3

Which	answer	best	describes	the	measure-and-layout	stage	of	the	rendering	pipeline?

Appendix:	Homework

516

The	GPU	measures	device	dimensions	and	appropriately	sizes	views.
The	system	traverses	the	view	hierarchy	and	calculates	the	size	and	position	of	each
view	inside	the	view's	parent,	relative	to	other	views.
The	system	optimizes	layout	times	for	your	views.

Submit	your	findings	for	grading

No	app	to	submit	for	this	homework	assignment.

Submit	the	two	screenshots	you	took	with	Profile	GPU	Rendering	turned	on,	and	the	final
screenshot	you	took	with	Debug	GPU	Overdraw	turned	on.	Also	submit	your	reflections	on
why	the	two	screenshots	that	show	Profile	GPU	Rendering	output	might	be	(almost)	the
same,	or	why	they	are	different.

Guidance	for	graders

Check	that:

Student	submitted	two	screenshots	of	the	app	with	Profile	GPU	Rendering	turned	on
Screenshots	are	different.
Student	submitted	comments	explaining	the	difference.
If	there	is	no	difference,	student	should	reflect	on	why	not.
If	there	is	a	difference,	students	should	reflect	on	what	may	have	caused	it.
Student	submitted	one	screenshot	of	the	app	with	Debug	GPU	Overdraw	turned	on,	and
this	screenshot	shows	only	a	little	bit	of	red	coloring.

4.2:	Using	the	Memory	Profiler

Build	and	run	an	app

1.	 Use	the	app	you	created	for	the	4.0	homework	assignment	(4.0:	Optimizing	for
performance).

2.	 Run	Memory	Profiler	on	the	app.
3.	 Take	a	screenshot	of	the	Memory	graph	to	submit	with	your	observations.
4.	 On	the	screenshot,	identify	portions	of	the	graph	that	are	relevant	to	your	app	and

reflect	on	them.
5.	 Change	your	app	in	a	way	that	noticeably	changes	the	graph.	Take	a	screenshot	and

submit	it	with	an	explanation	of	the	changes.

Answer	these	questions

Appendix:	Homework

517

Question	1

What	tools	are	available	in	Android	Studio	for	measuring	memory	performance?

Systrace
Heap	dumps
Debug	GPU	Overdraw
Memory	Profiler

Question	2

Looking	at	this	Memory	Monitor	graph,	which	of	the	following	statements	is	factually	true?

The	app	is	allocating	an	increasing	amount	of	memory,	and	you	should	investigate	for
possible	memory	leaks.
The	app	will	run	out	of	memory	and	crash.
The	app	will	slow	down	over	time	because	less	memory	is	available.
More	garbage	collection	events	will	happen,	resulting	in	a	slower	app.

Question	3

Select	all	answers	that	describe	features	and	benefits	of	a	heap	dump?

A	heap	dump	is	a	snapshot	of	the	allocated	memory	at	a	specific	time.
You	can	look	at	a	static	snapshot	of	allocated	memory.
You	can	dump	the	Java	heap	to	see	which	objects	are	using	up	memory	at	any	given
time.
Heap	dumps	show	how	memory	is	allocated	over	time.
Doing	several	heap	dumps	over	an	extended	period	can	help	you	identify	memory
leaks.

Question	4

What	are	the	benefits	of	recording	memory	allocations?	Select	up	to	four.

Appendix:	Homework

518

You	can	track	allocations	and	deallocations	over	time.
You	can	track	how	much	space	files	take	up	on	each	partition.
You	can	inspect	the	call	stack	and	find	out	where	in	your	code	an	allocation	was	made.
You	can	track	down	which	objects	might	be	responsible	for	memory	leaks.
You	can	record	memory	allocations	during	normal	and	extreme	user	interactions.	This
recording	lets	you	identify	where	your	code	is	allocating	too	many	objects	in	a	short
time,	or	allocating	objects	that	leak	memory.

Submit	your	findings	for	grading

No	app	to	submit	for	this	homework	assignment.

Submit	the	annotated	screenshot	that	you	took	of	the	Memory	graph,	along	with	your
observations.

Guidance	for	graders

Check	that:

Student	submitted	annotated	screenshot	of	the	app	with	Memory	Profiler	turned	on
Student	submitted	comments	relating	the	graph	to	their	app.
Student	submitted	a	second,	different	screenshot,	along	with	explanations	on	what	they
did	to	cause	this	change,	as	well	as	reflections	on	the	change.

4.3:	Optimizing	network,	battery,	and	image	use

Answer	these	questions

Question	1

On	mobile	devices,	what	uses	up	battery	power?

Mobile	radio
Wi-Fi
Keeping	the	Display	open
Running	your	device	in	airplane	mode
Any	hardware	on	the	device	that	is	actively	in	use

Question	2

Appendix:	Homework

519

Your	app	can	affect	the	amount	of	power	that	some	device	components	use.	Which	of	the
following	device	components	does	this	include?	Select	up	to	three.

Power	and	volume	buttons
Display	(managing	wake	lock)
Mobile	radio	(batching	requests,	size	of	requests)
GPU	(complex	visual	content,	media	content)

Question	3

Which	of	the	following	are	best	practices	you	should	always	incorporate	in	your	app?

Defer	all	network	requests	until	the	user's	device	is	on	Wi-Fi	and	plugged	in.
Use	the	most	efficient	image	format	for	the	type	of	images	your	app	uses.
Compress	all	your	data.
Respond	to	user	actions	immediately.
Always	prefetch	as	much	data	as	possible.
If	you	must	poll	the	server,	use	an	exponential	back-off	pattern.
To	make	your	app	work	offline,	cache	data	locally.

Question	4

What	are	best	practices	for	working	with	images?

Use	the	smallest	image	possible.	Resize	images	used	for	thumbnails.
Don't	use	images.	They	take	up	too	much	space.
Always	use	a	quality	setting	that	does	not	diminish	the	user	experience	but	results	in	a
smaller	image.
If	you	store	images	on	a	remote	server,	make	multiple	sizes	available	for	each	image.
That	way,	your	app	can	request	the	appropriate	size	for	the	device	it's	running	on.
WebP,	PNG,	and	JPG	image	formats	can	be	used	interchangeably.
If	possible,	use	the	WebP	image	format,	because	it	usually	results	in	smaller,	higher-
quality	images.

Submit	your	findings	for	grading

No	app	to	submit	for	this	homework	assignment.

5.1:	Using	resources	for	languages

Build	and	run	an	app

Appendix:	Homework

520

In	the	LocaleText1	app,	make	the	following	changes:

1.	 Add	Spanish	for	Mexico	and	Arabic	for	any	region.
2.	 Add	translations	for	both	languages.
3.	 Test	the	app	with	both	language	choices.

Answer	these	questions

Question	1

Which	of	the	following	attributes	should	you	add	to	the		android:layout_marginLeft		attribute
to	support	an	RTL	language?

	android:layout_marginEnd	

	android:layout_marginStart	

	app:layout_constraintLeft_toRightOf	

	app:layout_constraintStart_toEndOf	

Question	2

Which	of	the	following	attributes	should	you	add	to	the		app:layout_constraintLeft_toRightOf	
attribute	to	support	an	RTL	language?

	app:layout_constraintRight_toLeftOf	

	app:layout_constraintStart_toEndOf	

	app:layout_constraintRight_toRightOf	

	app:layout_constraintEnd_toEndOf	

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

If	the	user	chooses	Español	(Mexico),	the	app	displays	Spanish.
If	the	user	chooses	Arabic	and	any	country,	the	app	displays	Arabic	in	an	RTL	layout.

5.2:	Using	the	locale

Build	and	run	an	app

Appendix:	Homework

521

https://github.com/google-developer-training/android-advanced/tree/master/LocaleText1

The	LocaleText3	app	calculates	and	shows	a	total	after	the	user	enters	a	quantity	and	taps
the	Done	button.	Modify	the	LocaleText3	app	as	follows:

Modify	the		onEditorAction()		method	of	the		OnEditorActionListener		anonymous	inner
class.	Add	code	that	calculates	the	total	from	the	quantity	and	price,	then	shows	the
total.
The	code	you	add	should	make	the	calculation	price	times	quantity	.
If	the	user	chooses	Français	(France),	the	code	should	show	the	total	in	euros.	If	the
user	chooses	Hebrew	(Israel),	the	code	should	show	the	total	in	new	shekels.
Otherwise,	the	code	should	show	the	total	in	U.S.	dollars.
This	code	is	similar	to	the	code	you	added	in	the	practical	to	show	the	price	in	euros	or
new	shekels.

Answer	these	questions

Question	1

Which	of	the	following	statements	returns	a	general-purpose	number	format	for	the	user-
selected	language	and	locale?

	NumberFormat	numberFormat	=	NumberFormat.getInstance();	

	String	myFormattedQuantity	=	numberFormat.format(myInputQuantity);	

	String	deviceLocale	=	Locale.getDefault().getCountry();	

Question	2

Which	of	the	following	statements	converts	a	locale-formatted	input	quantity	string	to	a
number?

	NumberFormat	numberFormat	=	NumberFormat.getInstance();	

	String	myFormattedQuantity	=	numberFormat.format(myInputQuantity);	

	myInputQuantity	=	numberFormat.parse(v.getText().toString()).intValue();	

Question	3

Which	of	the	following	statements	retrieves	the	country	code	for	the	user-chosen	locale?

	String	deviceLocale	=	Locale.getDefault().getCountry();	

	String	deviceLocale	=	Locale.getDisplayCountry();	

	String	deviceLocale	=	Locale.getDisplayName();	

Submit	your	app	for	grading

Appendix:	Homework

522

https://github.com/google-developer-training/android-advanced/tree/master/LocaleText3

Guidance	for	graders

Check	that	the	app	has	the	following	features:

If	the	user	chooses	Français	(France),	the	app	displays	the	total	in	euros.
If	the	user	chooses	Hebrew	(Israel),	the	app	displays	the	total	in	new	shekels.
If	the	user	chooses	any	other	locale,	the	app	displays	the	total	in	U.S.	dollars.

6.1:	Exploring	accessibility	in	Android

Answer	these	questions

Question	1

Why	should	you	consider	making	your	app	accessible?

Accessibility	enables	your	app	to	be	used	by	people	with	disabilities.
Accessibility	allows	your	users—those	users	with	disabilities	and	those	users	without—
to	customize	their	experiences	of	your	app.
Accessible	apps	run	faster.
Testing	your	app	with	accessibility	in	mind	can	reveal	user-experience	issues	or
limitations	you	might	not	have	recognized.

Question	2

Which	of	the	following	are	accessibility	features	available	in	Android?

TalkBack
Switch	Access
Text-to-speech
Closed	captions
Magnification
Ability	to	change	display	or	font	size

Question	3

What	is	TalkBack?

An	app	that	converts	audio	into	readable	captions	on	the	screen.
An	app	that	enables	screen	content	to	be	presented	on	a	refreshable	braille	display.
An	app	that	reads	screen	content	aloud.
An	app	that	magnifies	the	computer	screen.

Appendix:	Homework

523

Question	4

How	should	you	test	your	app	for	accessibility?

Turn	on	TalkBack	and	manually	try	to	use	your	app.
Add	unit	tests	and	Espresso	tests.
Use	tools	such	as	Accessibility	Scanner	and	Android	Studio's	lint	tool	to	reveal	potential
accessibility	problems.
Use	the	Android	Testing	Support	Library	to	enable	automated	accessibility	testing.

Submit	your	findings	for	grading

No	app	to	submit	for	this	homework	assignment.

6.2:	Creating	accessible	apps

Build	and	run	an	app

In	the	SimpleAccessibility	app,	add	three	new	images:

1.	 Add	a	description	for	the	first	image	that	describes	the	image.	Ensure	that	the	image	is
focusable.

2.	 Add	a	decorative	image	with	no	description.	Ensure	that	the	image	is	not	focusable.
3.	 For	the	third	image,	add	a	text	label	that	describes	the	image.

Answer	these	questions

Question	1

Which	of	the	following	attributes	should	you	add	to		ImageView		and		ImageButton		elements
to	enable	screen	readers	to	describe	the	image?

	android:text	

	android:contentDescription	

	android:hint	

	android:labelFor	

Question	2

When	should	you	add	a	content	description	to	an		ImageView		or		ImageButton	?

When	the	image's	role	on	the	screen	is	solely	decorative	and	does	not	provide	any

Appendix:	Homework

524

https://github.com/google-developer-training/android-advanced/tree/master/SimpleAccessibility

function	or	meaning.
When	an	image's	dimensions	are	very	small	and	the	image	is	difficult	to	see.
When	the	image	is	meaningful	to	the	user	in	their	use	of	the	app.
When	the	image	is	also	a	button.

Question	3

When	do	you	NOT	need	to	add	a	content	description	to	a	view	element?

When	the	view	is	a		TextView		or		EditText	.
When	the	view	is	an		ImageView		that	serves	only	a	decorative	purpose.
When	the	view	is	a	checkbox	or	radio	button.
When	the	view	has	an	associated	text	view	that	includes	with	the		android:labelFor	
attribute.
All	of	the	above.

Submit	your	findings	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

The	app	should	have	three	new	images,	of	any	kind.	The	third	image	should	have	a	text
view	that	serves	as	a	label.
The	layout	for	the	first	new	image	should	include	the	following:
An		android:contentDescription		attribute	with	a	description	of	the	image.
An		android:focusable="true"		attribute.
The	layout	for	the	second	new	image	should	include	the	following:
An		android:contentDescription		attribute	with	a	null	string	("").
An		android:focusable="false"		attribute.
The	layout	for	the	third	new	image	should	include	the	following:
An		android:focusable="true"		attribute.
A		TextView		element	with	the		android:labelFor		attribute.	The		android:labelFor	
attribute	should	indicate	the	ID	of	the	image.

7.1:	Using	the	device	location

Build	and	run	an	app

In	the	WalkMyAndroid	app,	add	a	second		TextView		to	the	app	that	shows	the	following:

Appendix:	Homework

525

https://github.com/google-developer-training/android-advanced/tree/master/WalkMyAndroid-Solution

1.	 Accuracy	in	meters.
2.	 Speed	in	meters	per	second.

Hint:	See	the		getSpeed		()		and		getAccuracy		()		documentation.

Answer	these	questions

Question	1

Which	API	do	you	use	to	request	the	last	known	location	on	the	device?

	getLastKnownLocation()		method	in	the		FusedLocationProviderApi		class
	getLastKnownLocation()		method	in	the		LocationServices		class
	getLastLocation()		method	in	the		FusedLocationProviderClient		class
	getLastLocation()		method	in	the		LocationServices		class

Question	2

Which	class	do	you	use	for	handling	geocoding	and	reverse	geocoding?

	GeoDecoder	

	Geocoder	

	ReverseGeocoder	

	GeocoderDecoder	

Question	3

Which	method	do	you	use	for	periodic	location	updates	?

	requestPerodicUpdates()		method	in	the		FusedLocationClient		class
	requestLocationUpdates()		method	in	the		FusedLocationProviderClient		class
	requestUpdates()		method	in	the		FusedLocationProviderClient		class
	requestLocationUpdates()		method	in	the		FusedLocationProvider		class

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

The	app	displays	a	second		TextView	,	in	addition	to	the		TextView		that	shows	the
address.
The	second		TextView		shows	speed	and	accuracy.

Appendix:	Homework

526

https://developer.android.com/reference/android/location/Location.html#getSpeed()
https://developer.android.com/reference/android/location/Location.html#getAccuracy()

8.1	Using	the	Places	API

Build	and	run	an	app

Modify	the	WalkMyAndroidPlaces	app	to	display	a	new	Android	image	for	shopping	malls:

1.	 Create	a	new	Android	image	for	shopping	malls.	(Hint:	Use	the	Androdify	tool.)
2.	 If	the	place	type	is		TYPE_SHOPPING_MALL	,	replace	the	Android	image	with	your	image.
3.	 To	test	your	app,	pick	a	shopping	mall	from	the		PlacePicker		dialog.	Make	sure	that

your	new	Android	image	is	animated,	and	that		TextView		object	is	updated	with	the
shopping	mall's	name	and	address.

Answer	these	questions

Question	1

Which	class	displays	a	dialog	that	allows	a	user	to	pick	a	place	using	an	interactive	map	?

	PlaceDetectionApi	

	GeoDataApi	

	PlacePicker	

	PlaceAutocomplete	

Question	2

What	are	the	two	ways	to	add	the	autocomplete	widget	to	your	app?

Embed	a	PlaceAutocompleteFragment	fragment.
Autocomplete	is	added	along	with	the		PlacePicker		widget.
Use	an	intent	to	launch	the	autocomplete	activity.
Add	a		PlaceAutocompleteActivity		object	to	your	app.

Question	3

If	your	app	uses	the		PlacePicker		UI	or	the		PlaceDetectionApi		interface,	what	permission
does	your	app	require?

	ACCESS_COARSE_LOCATION	

	ACCESS_FINE_LOCATION		and		ACCESS_COARSE_LOCATION	
	ACCESS_LOCATION_EXTRA_COMMANDS	

	ACCESS_FINE_LOCATION	

Appendix:	Homework

527

https://github.com/google-developer-training/android-advanced/tree/master/WalkMyAndroidPlaces-Solution
https://androidify.com
https://developers.google.com/android/reference/com/google/android/gms/location/places/Place.html

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

1.	 When	you	tap	the	Pick	a	Place	button,	the	place	picker	UI	opens.
2.	 When	you	pick	a	shopping	mall	on	the	map,	the	new	Android	image	is	displayed.
3.	 The	image	is	animated.
4.	 The		TextView		updates	to	show	the	name	and	address	of	the	shopping	mall.

9.1	Adding	a	Google	Map	to	your	app

Build	and	run	an	app

1.	 Create	a	new	app	that	uses	the	Google	Maps	Activity	template,	which	loads	Google
Maps	when	the	app	launches.

2.	 When	the	Google	Map	is	loaded,	move	the	camera	to	your	school	location,	your	home
location,	or	some	other	location	that	has	meaning	for	you.

3.	 Add	two	markers	to	the	map,	one	at	your	school	location	and	one	at	your	home	or	some
other	meaningful	location.

4.	 Customize	the	marker	icons	by	changing	the	default	color	or	replacing	the	default
marker	icon	with	a	custom	image.

Hint:	See	the		onMapReady	(GoogleMap	googleMap)		documentation.

Answer	these	questions

Question	1

Which	method	is	called	when	the	map	is	loaded	and	ready	to	be	used	in	the	app	?

	onMapReady	(GoogleMap		googleMap)	

	onMapLoaded	(GoogleMap		googleMap)	

	onMapCreate	(GoogleMap		googleMap)	

	onMapInitialize	(GoogleMap		googleMap)	

Question	2

Which	Android	components	can	you	use	to	include	Google	Maps	in	your	app	?

Appendix:	Homework

528

https://developers.google.com/android/reference/com/google/android/gms/maps/OnMapReadyCallback.html#onMapReady(com.google.android.gms.maps.GoogleMap)
https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap.html
https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap.html
https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap.html
https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap.html

	MapView		and		MapFragment	
	MapFragment		and		MapActivity	
	MapView		and		MapActivity	
Only		MapFragment	

Question	3

What	types	of	maps	does	the	Google	Maps	Android	API	offer?

Normal,	hybrid,	terrain,	satellite,	and	roadmap
Normal,	hybrid,	terrain,	satellite,	and	"none"
Hybrid,	terrain,	satellite,	roadmap,	and	"none"
Normal,	terrain,	satellite,	imagemap,	and	"none"

Question	4

What	interface	do	you	implement	to	add	on-click	functionality	to	a	point	of	interest	(POI)?

	GoogleMap.OnPoiListener	

	GoogleMap.OnPoiClickListener	

	GoogleMap.OnPoiClick	

	GoogleMap.OnPoiClicked	

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

When	the	app	is	launched,	the	Google	Map	is	displayed	correctly,	indicating	that	an	API
key	was	generated	properly.
After	the	Google	Map	loads,	the	camera	moves	to	the	student's	home	or	school
location.	In	the	code,	this	step	should	happen	in	the		onMapReady	(GoogleMap	googleMap)	
callback	method.
Markers	are	displayed	at	the	student's	school	location	and	another	location,	such	as	the
student's	home.
The	two	markers	are	customized.	For	example,	the	markers	use	a	color	other	than	the
default	red	color,	or	they	use	a	custom	icon.

10.1:	Creating	a	custom	view

Appendix:	Homework

529

https://developers.google.com/android/reference/com/google/android/gms/maps/OnMapReadyCallback.html#onMapReady(com.google.android.gms.maps.GoogleMap)

Build	and	run	an	app

In	the	CustomEditText	app,	add	a	custom	view	that	enables	phone-number	entry:

1.	 In	the	layout,	add	a	second	version	of	the		EditTextWithClear		custom	view	underneath
the	first	version	(the	Last	name	field).

2.	 Use	XML	attributes	to	define	the	second	version	of	the	custom	view	as	a	phone	number
field	that	accepts	only	numeric	phone	numbers	as	input.

Answer	these	questions

Question	1

Which	constructor	do	you	need	to	inflate	the	layout	for	a	custom	view?	Choose	one:

	public	MyCustomView(Context	context)	

	public	MyCustomView(Context	context,	AttributeSet	attrs)	

	public	static	SimpleView	newInstance()	{	return	new	SimpleView();	}	

	protected	void	onDraw(Canvas	canvas)	{	super.onDraw(canvas)	}	

Question	2

To	define	how	your	custom	view	fits	into	an	overall	layout,	which	method	do	you	override?

	onMeasure()	

	onSizeChanged()	

	invalidate()	

	onDraw()	

Question	3

To	calculate	the	positions,	dimensions,	and	any	other	values	when	the	custom	view	is	first
assigned	a	size,	which	method	do	you	override?

	onMeasure()	

	onSizeChanged()	

	invalidate()	

	onDraw()	

Question	4

To	indicate	that	you'd	like	your	view	to	be	redrawn	with		onDraw()	,	which	method	do	you	call
from	the	UI	thread,	after	an	attribute	value	has	changed?

Appendix:	Homework

530

https://github.com/google-developer-training/android-advanced/tree/master/CustomEditText

	onMeasure()	

	onSizeChanged()	

	invalidate()	

	getVisibility()	

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

The	app	displays	a	Phone	number	field	with	a	clear	(X)	button	on	the	right	side	of	the
field,	just	like	the	Last	name	field.
The	second	version	of	the		EditTextWithClear		custom	field	(Phone	number)	should
use	the		android:inputType		attribute	so	users	can	enter	values	with	a	numeric	keypad.

11.1:	Applying	clipping	to	a	Canvas	object

Build	and	run	an	app

Create	a	MemoryGame	app	that	hides	and	reveals	"cards"	as	the	user	taps	on	the	screen.
Use	clipping	to	implement	the	hide/reveal	effect.

You	can	use	simple	colored	squares	or	shapes	for	the	"cards."
If	the	user	reveals	two	matching	cards,	show	a	congratulatory	toast.	If	the	user	reveals
two	cards	that	don't	match,	show	an	encouraging	message	telling	them	to	tap	to
continue.
Click	handling:	On	the	first	tap,	show	the	first	card.	On	the	second	tap,	show	the	second
card	and	display	a	message.	On	the	next	tap,	restart.

Answer	these	questions

Question	1

To	display	something	to	the	screen,	which	one	of	the	following	draw	and	animation	classes
is	always	required?

	View	

	Drawable	

	Canvas	

	Bitmap	

Appendix:	Homework

531

Question	2

What	are	some	properties	of	drawables?

Drawables	are	drawn	into	a	view	and	the	system	handles	drawing.
Drawables	are	best	for	simple	graphics	that	do	not	change	dynamically.
Drawables	offer	the	best	performance	for	game	animations.
You	can	use	drawables	for	frame-by-frame	animations.

Question	3

Which	of	the	following	statements	are	true?

You	use	a	Canvas	object	when	elements	in	your	app	are	redrawn	regularly.
To	draw	on	a		Canvas	,	you	must	override	the		onDraw()		method	of	a	custom	view.
Every	view	has	a		Canvas		that	you	can	access.
A		Paint		object	holds	style	and	color	information	about	how	to	draw	geometries,	text,
and	bitmaps.

Question	4

What	is	clipping?

A	technique	for	defining	regions	on	a		Canvas		that	will	not	be	drawn	to	the	screen.
A	technique	for	making	the		Canvas		smaller	so	the		Canvas		uses	less	memory.
A	way	of	telling	the	system	which	portions	of	a		Canvas		do	not	need	to	be	redrawn.
A	technique	to	consider	when	you're	trying	to	speed	up	drawing.
A	way	to	create	interesting	graphical	effects.

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

When	the	user	taps,	the	app	reveals	a	"card."
When	the	user	taps	again,	the	app	reveals	a	second	"card"	and	shows	a	toast
congratulating	or	encouraging	the	user.
On	the	third	tap,	the	game	restarts.
The	code	uses	a		Canvas		object	and	clipping	methods	to	achieve	the	hide/reveal	effects
of	playing	the	game.

Appendix:	Homework

532

https://developer.android.com/reference/android/graphics/Paint.html

11.2:	Creating	a	SurfaceView	object

Build	and	run	an	app

Implement	the	same	MemoryGame	app	that	you	created	in	the	11.1	homework,	but	use	a
	SurfaceView		object.

The	MemoryGame	app	hides	and	reveals	"cards"	as	the	user	taps	on	the	screen.	Use
clipping	to	implement	the	hide/reveal	effect.

You	can	use	simple	colored	squares	or	shapes	for	the	"cards."
If	the	user	reveals	two	matching	cards,	show	a	congratulatory	toast.	If	the	user	reveals
two	cards	that	don't	match,	show	an	encouraging	message	telling	them	to	tap	to
continue.
Click	handling:	On	the	first	tap,	show	the	first	card.	On	the	second	tap,	show	the	second
card	and	display	a	message.	On	the	next	tap,	restart.

Answer	these	questions

Question	1

What	is	a		SurfaceView	?

A	view	in	your	app's	view	hierarchy	that	has	its	own	separate	surface.
A	view	that	directly	accesses	a	lower-level	drawing	surface.
A	view	that	is	not	part	of	the	view	hierarchy.
A	view	that	can	be	drawn	to	from	a	separate	thread.

Question	2

What	is	the	most	distinguishing	benefit	of	using	a		SurfaceView	?

A		SurfaceView		can	make	an	app	more	responsive	to	user	input.
You	can	move	drawing	operations	away	from	the	UI	thread.
Your	animations	may	run	more	smoothly.

Question	3

When	should	you	consider	using	a		SurfaceView	?	Select	up	to	three.

When	your	app	does	a	lot	of	drawing,	or	does	complex	drawing.
When	your	app	combines	complex	graphics	with	user	interaction.

Appendix:	Homework

533

When	your	app	uses	a	lot	of	images	as	backgrounds.
When	your	app	stutters,	and	moving	drawing	off	the	UI	thread	could	improve
performance.

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

When	the	user	taps,	the	app	reveals	a	"card."
When	the	user	taps	again,	the	app	reveals	a	second	"card"	and	shows	a	toast
congratulating	or	encouraging	the	user.
On	the	third	tap,	the	game	restarts.
The	code	uses	a		SurfaceView		object,	and	a	separate	thread	for	drawing.

12.1:	Creating	animations

Build	and	run	an	app

Create	an	app	that	uses	non-trivial	property	animation.	For	example,	animate	multiple
properties,	animate	multiple	objects,	or	create	complex	animations	by	using	animator	sets.
Below	are	some	ideas.

Create	an	animation	where	text	spins	and	recedes	while	getting	smaller.	Or	text
appears	from	nowhere	and	spins	to	fill	the	screen.	Combine	these	two	animations.
Create	an	animation	that	simulates	a	ball	that	grows	until	it	bursts	into	multiple	smaller
balls.
Create	a	simple	card	game,	where	touching	a	card	flips	the	card	around.

Answer	these	questions

Question	1

What	types	of	animations	are	available	with	Android?

View	animation
Property	animation
Canvas	animation
Drawable	animation
Physics-based	animation

Appendix:	Homework

534

Question	2

Which	of	the	following	statements	about	property	animation	are	true?

Property	animation	lets	you	define	an	animation	to	change	any	object	property	over
time.
Property	animation	lets	you	create	objects	with	custom	properties	that	you	can	animate.
A	property	animation	tracks	time	and	adapts	its	velocity	to	the	time.
Property	animation	lets	you	animate	multiple	properties	with	animator	sets.
The	duration	of	a	property	animation	is	fixed.

Question	3

What	are	the	advantages	of	using	physics-based	animation	libraries?	Select	up	to	three
answers.

Physics-based	animations	are	more	realistic	than	other	types	of	animations,	because
physics-based	animations	appear	more	natural.
It	is	easier	to	use	the	physics-based	support	library	than	to	implement	adaptive
animations	yourself.
Physics-based	animations	keep	momentum	when	their	target	changes	and	end	with	a
smoother	motion	than	other	types	of	animations.
Physics-based	animations	are	easier	to	combine	with	audio.

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

App	uses	property	animation	to	implement	a	non-trivial	animation,	animates	multiple
objects,	and/or	uses	animator	sets.

13.1:	Simple	media	playback

Build	and	run	an	app

Use	the	SimpleVideoView	app	as	a	starting	point	for	an	app	that	plays	multiple	videos.

The	main	activity	for	the	app	contains	a	list	of	videos.	Use	a		RecyclerView		for	the	list.
Clicking	a	single	item	in	the	list	starts	the	video	playback	activity	containing	the
	VideoView		and		MediaController	.

Appendix:	Homework

535

At	the	end	of	the	video	playback,	automatically	start	playing	the	next	video	in	the	list.
At	the	end	of	the	last	video	in	the	list,	finish	the	activity	and	return	to	the	list	of	videos.

Answer	these	questions

Question	1

	VideoView		is	a	wrapper	for	which	two	classes?

	Video		and		View	
	MediaPlayer		and		MediaController	
	MediaPlayer		and		SurfaceView	
	MediaPlayer		and		Uri	

Question	2

Which	of	the	following	sources	can		VideoView		play?

The	URL	of	a	video	sample	located	on	a	web	server
A	sample	contained	on	external	device	media
A	YouTube	video	URL
A	sample	embedded	in	the	app's	resources

Question	3

Which	of	these	callbacks	are	available	for	media	events	in	the		VideoView		class?

	onError()	

	onInfo()	

	onPrepared()	

	onBufferingUpdate()	

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

The	app's	main	activity	contains	a	list	of	video	samples	to	play,	in	a		RecyclerView	.	The
videos	may	come	from	any	source.
Clicking	any	video	starts	a	new	activity	with	a		VideoView		and	a	media	controller.
Skip	to	the	end	of	the	video	playback.	The	next	video	in	the	list	should	play.

Appendix:	Homework

536

At	the	end	of	the	playback	of	the	last	video,	close	the	activity	and	return	to	the	list	of
videos.
The	code	should	use	the		onComplete()		callback	to	determine	whether	to	play	the	next
video	in	the	list	or	finish	playing	altogether.

14.1:	Working	with	Architecture	Components:
Room,	LiveData,	ViewModel

Build	and	run	an	app

Create	an	app	that	uses	a	Room	database,		ViewModel	,	and		LiveData		to	display	the	data
when	the	data	changes.	You	can	make	this	as	simple	or	as	sophisticated	as	you	wish,	as
long	as	the	app	uses	all	the	required	components,	and	the	data	updates	on	the	screen	when
the	data	changes	in	the	database.

Here	are	some	hints	and	ideas:

Create	a	simple	app	that	stores	one	text	document	whose	contents	are	displayed	in	a
	TextView	.	When	the	user	edits	the	document,	changes	appear	in	the		TextView	.
Create	a	question-answer	app.	Start	out	with	only	questions	and	let	users	add	new
questions	and	answers.
As	a	challenge,	add	a	button	to	each	answer	in	the	question-answer	app	that	displays
additional	information	that's	stored	in	a	different	repository.	The	information	could	come
from	a	file	on	the	device,	or	a	page	on	the	internet.

Answer	these	questions

Question	1

What	are	the	advantages	of	using	a	Room	database?

Creates	and	manages	an	Android	SQLite	database	for	you.
Eliminates	a	lot	of	boilerplate	code.
Helps	you	manage	multiple	backends.
Using	a	DAO,	provides	a	mechanism	for	mapping	Java	methods	to	database	queries.

Question	2

Which	of	the	following	are	reasons	for	using	a		ViewModel	?

Cleanly	separates	the	UI	from	the	backend.

Appendix:	Homework

537

Often	used	with		LiveData		for	changeable	data	that	the	UI	will	use	or	display.
Prevents	your	data	from	being	lost	when	the	app	crashes.
Acts	as	a	communication	center	between	the	Repository	and	the	UI.
	ViewModel		instances	survive	device	configuration	changes.

Question	3

What	is	the	DAO?

Short	for	"data	access	object."
A	library	for	managing	database	queries.
An	annotated	interface	that	maps	Java	methods	to	SQLite	queries.
A	class	whose	methods	run	always	in	the	background,	not	on	the	main	thread.
A	class	that	the	compiler	checks	for	SQL	errors,	then	uses	to	generate	queries	from	the
annotations.

Question	4

What	are	features	of		LiveData	?

Updates	automatically	when	used	with	Room	if	all	the	intermediate	levels	also	return
	LiveData		(DAO,		ViewModel	,	Repository).
Uses	the	observer	pattern	and	notifies	its	observers	when	its	data	has	changed.
Automatically	updates	the	UI	when	it	changes.
Is	lifecycle	aware.

Submit	your	app	for	grading

Guidance	for	graders

Check	that	the	app	has	the	following	features:

Uses	the	Room	database	to	store	data.
Uses		ViewModel		and		LiveData		to	manage	and	display	changing	data.
Has	a	way	to	edit	data	and	show	changes.

14.2:	Working	with	Architecture	Components:
Deleting	and	updating	data

Build	and	run	an	app

Appendix:	Homework

538

You	have	learned	about	many	ways	to	store	data.	Choosing	the	right	storage	option
depends	on	how	large	your	data	is,	and	how	long	the	data	has	to	survive.

Create	an	app	that	demonstrates	how	data	stored	in	at	least	two	different	locations	survives
configuration	changes	and	the	destruction	of	the	app.	You	can	do	this	by	storing	small
pieces	of	data,	such	as	strings,	in	different	data	stores.

The	app	should	demonstrate	what	happens	to	data	that	is	not	saved.
The	app	could	demonstrate	what	happens	to	data	that	is	preserved	with
	saveInstanceState	,	data	that	uses		LiveData		with	a		ViewModel	,	and	data	that	is	stored
in	a	file	or	database.

Answer	these	questions

Question	1

Android	Architecture	Components	provide	some	convenience	annotations	for	DAOs.	Which
of	the	following	are	available.

	@Dao	

	@Insert	

	@Delete	

	@Update	

	@Query	

	@Select	

Question	2

What	are	the	benefits	of	using	Architecture	Components?

Architecture	Components	help	you	structure	your	app	in	a	way	that	is	robust	and
testable.
Architecture	Components	help	you	create	better	UIs.
Architecture	Components	provide	a	simple,	flexible,	and	practical	approach	to
structuring	your	app.
If	you	use	the	the	provided	libraries	and	architecture,	your	app	is	more	maintainable
with	less	boilerplate	code.

Submit	your	app	for	grading

Guidance	for	graders

Appendix:	Homework

539

Check	that	the	app	has	the	following	features:

Saves	data	in	at	least	two	different	ways.
Demonstrates	how	data	is	preserved	differently	with	different	storage	options.

Appendix:	Homework

540

	Introduction
	Appendix: Setup
	Appendix: Homework

