Introduction to Electrostatic Fields

by Dr P A Sunny Dayal

Associate Professor, Dept of ECE Centurion University of Technology and Management Andhra Pradesh

Introduction

- Electrostatic fields are also called as static electric fields or steady electric fields. These fields are time invariant.
- They are produced by static charges or charge distributions.
- These fields have wide range of applications.

APPLICATIONS OF ELECTROSTATIC FIELDS

- The Electrostatic Fields are used
 - □ in Ink-jet printers to obtain the speed of printing and quality of print
 - In LCDs
 - □ in Touch pads
 - □ in Capacitance keyboards /Electrical Switchboards
 - □ in ECGs, EEGs, ERG, EMG, EOG
 - □ in X-ray machines
 - in Spray Painting
 - □ in Electrodeposition

APPLICATIONS OF ELECTROSTATIC FIELDS (Cont'd.)

- The Electrostatic Fields are used
 - □ in Cathode ray oscilloscopes to obtain the electron beam deflection
 - □ in ore separators to sort out minerals, to sort out seeds in agriculture and for spraying plants and trees
 - □ in Electrostatic generators
 - □to produce Potential
 - □to produce Force on charges for their mobility
 - □ in Electric Power Transmission
 - □ in Lightning Protection

APPLICATIONS OF ELECTROSTATIC FIELDS (Cont'd.)

The Electrostatic Fields are used
to measure Moisture content
to Spin cotton
in Field Effect Transistors
in Capacitors
in Electrochemical machining

Fundamental laws for electrostatic fields Two fundamental laws for electrostatic fields:

- Coulomb's Law: useful in finding field due to any charge configuration
- Gauss's Law: applied for symmetrical charge distribution

Both laws are based on experimental studies and are interdependent.

Coulomb's law of force
$$\mathbf{F}_{12} = K \frac{Q_1 Q_2}{R^2} \mathbf{a}_{R_{12}}$$

where the constant of proportionality *K* in SI units is $\frac{1}{4\pi\varepsilon_0}$, ε_0 being the permittivity of the free space ($\varepsilon_0 = 8.85 \times 10^{-12}$ F/m)

Fundamental laws for electrostatic fields (Cont'd.)

- study on electric fields in free space or in vacuum
- From figure 1, $\mathbf{a}_{R_{12}} = -\mathbf{a}_{R_{21}}, \mathbf{F}_{21} = -\mathbf{F}_{12}$

$$\mathbf{F}_{12} = \frac{Q_1 Q_2}{4 \pi \varepsilon_0 R^2} \mathbf{a}_{R_{12}} = \frac{Q_1 Q_2}{4 \pi \varepsilon_0 R^3} \mathbf{R}_{12} = \frac{Q_1 Q_2 (\mathbf{r}_2 - \mathbf{r}_1)}{4 \pi \varepsilon_0 |\mathbf{r}_2 - \mathbf{r}_1|^3}$$

Fundamental laws for electrostatic fields (Cont'd.)

• Like charges repel each other while unlike charges attract

• The principle of superposition can be applied to determine the resultant force on a point charge Q due to other charges Q_1 , Q_2 ,, Q_N

$$\mathbf{F} = \frac{Q}{4\pi\varepsilon_0} \sum_{k=1}^{N} \frac{Q_k(\mathbf{r} - \mathbf{r}_k)}{\left|\mathbf{r} - \mathbf{r}_k\right|^3}$$

Fundamental laws for electrostatic fields (Cont'd.)

Electric field intensity

Electric field can be defined as the force per unit charge from Coulomb's law

$$\Xi = \frac{Q}{4\pi\varepsilon_0 R^2} a_R = \frac{Q(\mathbf{r} - \mathbf{r}')}{4\pi\varepsilon_0 |\mathbf{r} - \mathbf{r}'|^3}$$

Electric field at point **r** due to a point charge located at **r**'

• E at point r due to N point charges $Q_1, Q_2, ..., Q_N$ located at $r_1, r_2, ..., r_N$ is obtained by the principle of superposition.

$$\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \sum_{k=1}^{N} \frac{Q_k(\mathbf{r} - \mathbf{r}_k)}{|\mathbf{r} - \mathbf{r}_k|^3}$$

Electric fields due to continuous charge distributions

• For a continuous charge distribution:

$$Q = \int_{L} \rho_{L} \, dl \quad \text{for line charge}$$
$$Q = \int_{S} \rho_{S} \, dS \quad \text{for surface charge}$$
$$Q = \int_{V} \rho_{V} \, dV \quad \text{for volume charge}$$

Point Line charge charge

Surface charge

Volume charge

Figure 3

Electric fields due to continuous charge distributions (Cont'd.)

A spherical charge distribution :

$$\mathbf{E} = \frac{Q}{4\pi\varepsilon_0 r^2} \mathbf{a}_r$$

where $Q = \int \rho_v dv = \rho_v \int_v dv = \rho_v \frac{4\pi a^3}{3}$ (a : sphere radius)

The expression is identical to that of E at the same point (r) due to an effective charge Q located at the center of the spherical charge distribution.