

Different types of nozzles and their uses

Energy	Туре	Uses	
Hydraulic	Impact	Low pressure nozzle with coarse spray, herbicide application	
	Flat Fan	Spraying flat surface, soil	
	Flood Jet	Band spray	
	Hollow cone	Foliage spray	
Gaseous	Air blast	Foliage spray, tree & bushes	
Centrifugal	Spinning disc type	Low volume spray, air carrier sprayer	
Kinetic	Rose can	Coarse spray, Herbicide	
Thermal	Fogging machine	Space treatment, inside building and forests	

Types of nozzole

Hollow cone nozzle

Variable cone nozzles are also available. (Depth of swirl chamber can be changed)

Used where, Foliage penetration is essential for effective insect and disease control when drift is not a major consideration.

At pressure of 40-80 psi hollow cone nozzles give excellent spray coverage to the under side of the leaves.

Reduced pressure reduces the penetration correspondingly.

Flat fan nozzle

Construction is same as that of the hollow cone nozzle without a swirl chamber.

If there is hole through the centre of the valve a solid cone spray is produced.

This type of nozzles produce medium size droplets and are primarily used for broadcast spraying where foliage penetration and coverage are not essential.

The spray angle is narrow to medium and gives even coverage.

- At pressure of 15-30 psi the nozzles give excellent results.
- It produces coarser droplets, which are not susceptible to drift.

Flood jet Nozzle

Deliver a wide flat spray with large droplets.

Spray angle varying from 70 to 160 degree.

Operating flood-jet nozzle at 5-25 psi minimizes the drift but pressure changes critically affect the width of the spray pattern.

The spray is not as uniform as that from the flat pan type.

It is used for broadcasting fertilizers and post emergence herbicides.

Gaseous Energy Nozzle

Principle: Striking one fluid, pesticide or herbicide, with another fluid, i. e air stream

Higher air velocity, smaller droplets Higher flow rate bigger droplets Highly viscous liquid can be used

Shaping Lives... Empowering Communities...

Centrifugal energy nozzle

- Used in spinning disc type sprayer
- Liquid fed near the centre of the rotating surface
- Disc rotates at 4000 to 5000 RPM
- Liquid leaves the disc as sheet of liquid, break into ligament due to aerodynamic waves and finally into droplets.
- d = k * 1/ w * √ (γ /D ρ)
 - Where, d = droplet size (um)
 - W = angular velocity of disc (rad/s)
 - D= diameter of the disc, mm
 - $-\rho$ = density of liquid
 - $-\gamma$ = surface tension of liquid, mN/m
 - K = constant, 3.76
 - This can be written as d = Constant/ RPM
 - Constant = 50 * 10⁴

NOZZLE SELECTION

Type of coverage	Nozzle type	Spray angle, degree	Discharge , cc/min	Operating pressure, Kg/cm ²
Foliage spraying	Hollow cone nozzle Adjustable nozzle	60 75	450 450	2.8 2.8
Under leaf spraying	Solid cone nozzle with back to back arrangement	70	450	2.8
Shade trees	Adjustable nozzle Triple action nozzle	70 70	450 570	2.8 2.8
Weedicide spraying	Flooding nozzle	25 to 110	170-2100	0.7
Fertilizer spraying	Hollow cone nozzle	70 to 80	900-1200	2.8

CALIBRATION

- Put clean water into sprayer and check for leaks
- Spray water into a bucket for one minute and measure the volume.
- Measure the swath width by spraying water on a dry surface.
- Measure the distance you can walk through your crop in one minute.

The application rate (I/ha) is calculated by using the following formula: <u>Volume of spray, (I/min)</u> X 10000 Swath (m) X Speed, (m/min)

Example:

<u>0.6 l/min X 10000</u> = 200 l/ha 0.5 m X 60 m/min

If the tank capacity is 15 l, then number of times the tank is to be filled is 200/15 =13.3 loadings.

If one litre of pesticide product/ha is required, then 1000ml/13.3= 75 ml pesticide is to be added per loading.