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Support Vector Machine (SVM) is one of the most powerful out-of-the-box supervised machine
learning algorithms. Unlike many other machine learning algorithms such as neural networks,
you don’t have to do a lot of tweaks to obtain good results with SVM. I spent quite a time

reading articles, blogs, and online materials trying to get the gist of this performant algorithm
and found that most of the tutorials out online are explaining SVM from a big overview, while
treating the underlying mathematical background as a block box. I often still felt confused after I
finished reading the whole article. What exactly is the problem SVM is trying to solve? How do
we get the optimal hyperplane? How does SVM handle non-linearly separable data? Why use

kernels? To fully understand the answers to these questions, we need to go under the hood and
explore the mathematics behind SVMs and understand how they work.

In this blog post, I will focus on the underlying mathematical part of SVMs and this requires that
you have at least some background in linear algebra and optimization theory.

Definitions
Before we get into the SVM algorithm, let’s first talk about some definitions we need to use later.

Length of a vector
The length of a vector x is called its norm, which is written as ||x||. The Euclidean norm formula
to calculate the norm of a vector x = ( ) is:

Direction of a vector
The direction of a vector x = ( ) is written as w, and is defined as:

If we look at figure 1, we can see that  and . Thus, the direction

vector w can also be written as:
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It is worth noting that the norm of a direction vector is always equal to 1. Because of this, the
direction vector w is also called the unit vector.

Dot product
The dot product of two vectors returns a scalar. It gives us some insights into how the two
vectors are related.

Figure 2 shows two vectors x and y and the angle  between them. The geometric formula of

dot product is defined as:

By looking at figure 3, we can see . Then we can get:

θ
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We substitute this into the geometric dot product formula, we get:

This is the algebraic formula of dot product. In general, dot product can be computed as the
following for two n-dimensional vectors:

Linear separability
Linear separability is one important concept in SVM. Although in practical cases the data might
not be linearly separable, we will start from the linearly separable cases (since they are easy to

understand and deal with) and then derive the non-linearly separable cases.

Figure 4 shows the two-dimensional data are separated by a line. In this case, we say the data
are linearly separable. Figure 5 is an example of non-linearly separable data, which means we
can not find a line to separate the two-dimensional data. Similarly, for three-dimensional data,
we say the data are linearly separable if we can find a plane to separate them.

x ⋅ y = ||x|| ||y||  = +
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Hyperplane
Then, the question arises when there are more than three dimensions. What do we use to
separate the multi-dimensional data? We use hyperplane. How could we define a hyperplane?

Let’s look at the two-dimensional case first. The two-dimensional linearly separable data can be
separated by a line. The function of the line is . We rename x with  and y with 
and we get:

If we define x =  and w = , we get:

This equation is derived from two-dimensional vectors. But in fact, it also works for any number

of dimensions. This is the equation of the hyperplane.

Classifier
Once we have the hyperplane, we can then use the hyperplane to make predictions. We define
the hypothesis function h as:

The point above or on the hyperplane will be classified as class +1, and the point below the

hyperplane will be classified as class -1.

So basically, the goal of the SVM learning algorithm is to find a hyperplane which could
separate the data accurately. There might be many such hyperplanes. And we need to find the
best one, which is often referred as the optimal hyperplane.

SVM optimization problem
If you are familiar with the perceptron, it finds the hyperplane by iteratively updating its weights
and trying to minimize the cost function. However, if you run the algorithm multiple times, you
probably will not get the same hyperplane every time. SVM doesn’t suffer from this problem.

SVM works by finding the optimal hyperplane which could best separate the data.

The question then comes up as how do we choose the optimal hyperplane and how do we
compare the hyperplanes.

Metrics to compare hyperplanes
First version

y = ax + b x1 x2

a − + b = 0x1 x2

( , )x1 x2 (a, −1)

w ⋅ x + b = 0

h( ) = {xi
+1
−1

if w ⋅ x + b ≥ 0
if w ⋅ x + b < 0
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Let’s first consider the equation of the hyperplane . We know that if the point (x,y)
is on the hyperplane, . If the point (x,y) is not on the hyperplane, the value of 

 could be positive or negative. For all the training example points, we want to know the

point which is closest to the hyperplane. We could calculate . To formally define
the problem:

Given a dataset , we compute  for each training
example, and B is the smallest  we get.

If we have s hyperplanes, each of them will have a  value, and we’ll select the hyperplane
with the largest  value.

The problem with this metric is that it could fail to distinguish between a good hyperplane and a
bad one. Because we take the absolute value of solu , we could get the same value for a

correct and an incorrect hyperplane. We need to adjust this metric.

Second version

We could use the information of the label y. Let’s define , and the sign of  will

always be positive if the point is correctly classified and will be negative if incorrectly classified.

To make it formal, given a dataset , we compute  for each training example, and  is the
smallest  we get. In literature,  is called the functional margin of the dataset.

When comparing hyperplanes, the hyperplane with the largest  will be favorably selected.

It looks like we found the correct metric. However, this metric suffers from a problem called
scale variant. For example, we have two vectors  and . Since they
have the same unit vector , the two vectors  and  represent the same
hyperplane. However, when we compute , the one with  will return a larger number than
the one with . We need to find a metric which is scale invariant.

Third version

We divide  by the length of the vector . We define .

To make it formal, given a dataset , we compute  for each training example, and  is the
smallest  we get. In literature,  is called the geometric margin of the dataset.

When comparing hyperplanes, the hyperplane with the largest  will be favorably selected.

We now have a perfect metric for comparing different hyperplanes. Our objective is to find an
optimal hyperplane, which means we need to find the values of w and b of the optimal

hyperplane.

The problem of finding the values of w and b is called an optimization problem.

Derivation of SVM optimization problem
To find the values of w and b of the optimal hyperplane, we need to solve the following
optimization problem, with the constraint that the geometric margin of each example should be
greater than or equal to :

w ⋅ x + b = 0

w ⋅ x + b = 0

w ⋅ x + b

β = |w ⋅ x + b|

D = {( , )| ∈ , ∈ {−1, 1}xi yi xi Rn yi }m
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We also know that , the above problem can be rewritten as:

If we rescale w and b, we are still maximizing M and the optimization result will not change.
Let’s rescale w and b and make F=1, the above problem can be rewritten as:

This maximization problem is equivalent to the following minimization problem:

This minimization problem is equivalent to the following minimization problem:

The above statement is the SVM optimization problem. It is called a convex quadratic

optimization problem. And we’ll talk about how to solve this problem in the next section.

Solving SVM optimization problem – Hard
Margin SVM
We can restate the SVM optimization problem using the Lagrange multiplier method.

SVM Lagrange problem
Lagrange stated that if we want to find the minimum of  under the equality constraint , we just
need to solve for:

 is called the Lagrange multiplier.

In terms of the SVM optimization problem, , 
. The Lagrangian function is then 

.

To solve for  analytically, the number of examples has to be small. Thus, we
will rewrite the problem using the duality principle.

Equivalently, we need to solve the following Lagrangian primal problem:

More accurately,  should be KKT (Karush-Kuhn-Tucker) multipliers because we are dealing
with inequality constraints here. But we will use the term Lagrangian multipliers for continuity.

There is an  for each example, we need to maximize  for all examples. And there is
a (w,b) for each hyperplane, we need to minimize the  in the meantime. 

Mmax
w,b

subject to  ≥ M , i = 1...mγi

M = F

∥w∥

Mmax
w,b

subject to  ≥ F , i = 1...mfi

max
w,b

1

||w||
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||w||min
w,b
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||w|min
w,b

1

2
|2

subject to  (w ⋅ x + b) − 1 ≥ 0, i = 1...myi

f g

∇f(x) − α∇g(x) = 0

α
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g(w, b) = (w ⋅ x + b) − 1, i = 1...myi
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Wolfe dual problem
Let’s see what the dual problem is for the above primal problem.

The Lagrangian function is:

For the dual problem, we have that:

From the above two equations, we get  and . We substitute
them into the Lagrangian function  and get:

The dual problem is thus stated as:

The advantage of the Wolfe dual problem over the Lagrange primal problem is that the objective
function now only depends on the Lagrangian multipliers, which is easier to be solved
analytically.

Note because the constraints are inequalities, we actually extend the Lagrange multipliers

method to the KKT (Karush-Kuhn-Tucker) conditions. The complementary slackness condition
of KKT conditions states that:

 are the point/points where we reach the optimal. The  value is positive for these points.
And the  value of other points are close to zero. So  must be zero. These
examples are called support vectors, which are the closest points to the hyperplane.

Compute w and b
After we solve the Wolfe dual problem, we obtain a vector of  containing the Lagrangian
multiplier value for every example. We can then proceed to compute w and b, which determines
the optimal hyperplane.

According to the equation above:

We get:

To compute the value of b, we got:
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We multiply both sides by  and we know . We get:

Thus, we could compute b as:

S is the number of support vectors.

Classifier
Once we have the hyperplane, we can then use the hyperplane to make predictions. The
hypothesis function h is:

Solving Wolfe dual problem
We can solve the Wolfe dual problem using some package or library analytically. For example,
we can use a Python package called CVXOPT, which is for convex optimization. This package

provides a QP solver for quadratic programming problems. We can rearrange our dual problem,
state the required parameters, feed them to the QP solver, and get expected solution. Thesolu
solution will contain the values of Lagrange multipliers for each example. We can then computesolu
w and b and get the optimal hyperplane. I will not list the code here cause it is out of the scope
of this article, but you are free to implement it on your own, which should not be very difficult.

In practice, most machine learning libraries use an algorithm specifically created to solve this

problem quickly: the SMO (sequential minimal optimization) algorithm. Compared to CVXOPT
QP solver, SMO tries to solve a simpler problem and works quite faster. I will not state the
details of SMO, but you can find more materials online and learn more about it.

Different from the Perceptrons, running SVM multiple times will always return the same result.

Hard Margin SVM
The above SVM formulation is called Hard Margin SVM. The problem with Hard Margin SVM is

that it does not tolerate outliers. It does not work with non-linearly separable data because of
outliers. The reason is that if you remember our initial optimization problem the constraints are 

 for each example. For the optimization problem to be solvable, all the
constraints have to be satisfied. If there is an outlier example which makes the constraint not be
satisfied, then the optimization will not be solvable. In the next section we’ll talk about how to

deal with this limitation using a variant called Soft Margin SVM.

Solving SVM optimization problem – Soft
Margin SVM
The problem with Hard Margin SVM is that it only works for linearly separable data. However,
this would not be the case in the real world. It is most likely that in practical cases the data will
contain some noise and might not be linearly separable. We’ll look at how Soft Margin SVM
handles this problem.

Basically, the trick Soft Margin SVM is using is very simple, it adds slack variables  to the

constraints of the optimization problem. The constraints now become:

By adding the slack variables, when minimizing the objective function, it is possible to satisfy the
constraint even if the example does not meet the original constraint. The problem is we can

yi = 1y2
i

b = − w ⋅yi x⋆

b = ( − w ⋅ x)
1

S
∑
i=1

S

yi

h( ) = {xi
+1
−1

if w ⋅ x + b ≥ 0
if w ⋅ x + b < 0

(w ⋅ + b) ≥ 1yi xi

ζi

(w ⋅ + b) ≥ 1 − , i = 1...myi xi ζi
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always choose a large enough value of  so that all the examples will satisfy the constraints.

One technique to handle this is to use regularization. For example, we could use L1
regularization to penalize large values of . The regularized optimization problem becomes:

Also, we want to make sure that we do not minimize the objective function by choosing negative
values of . We add the constraints . We also add a regularization parameter C to

determine how important  should be, which means how much we want to avoid misclassifying
each training example. The regularized optimization problem becomes:

Again, if we use Lagrange multipliers method like above, and we do all the hard math, the
optimization problem could be transformed to a dual problem:

Here the constraint  has been changed to .

Regularization parameter C
So, what does the regularization parameter C do? As we said, it determines how important 

should be. A smaller C emphasizes the importance of  and a larger C diminishes the
importance of .

Another way of thinking of C is it gives you control of how the SVM will handle errors. If we set
C to positive infinite, we will get the same result as the Hard Margin SVM. On the contrary, if we
set C to 0, there will be no constraint anymore, and we will end up with a hyperplane not
classifying anything. The rules of thumb are: small values of C will result in a wider margin, at

the cost of some misclassifications; large values of C will give you the Hard Margin classifier
and tolerates zero constraint violation. We need to find a value of C which will not make the
solution be impacted by the noisy data.solu

Kernel trick
Now, the Soft Margin SVM can handle the non-linearly separable data caused by noisy data.
What if the non-linear separability is not caused by the noise? What if the data are

characteristically non-linearly separable? Can we still separate the data using SVM? The
answer is of course Yes. And we’ll talk about a technique called kernel trick to deal with this.

Image you have a two-dimensional non-linearly separable dataset, you would like to classify it
using SVM. It looks like not possible because the data is not linearly separable. However, if we
transform the two-dimensional data to a higher dimension, say, three-dimension or even ten-
dimension, we would be able to find a hyperplane to separate the data.

The problem is, if we have a large dataset containing, say, millions of examples, the
transformation will take a long time to run, let alone the calculations in the later optimization

problem. Let’s revisit the Wolfe dual problem:

ζ

ζ

||w| +min
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2
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ζ ≥ 0ζi

ζ

||w| + Cmin
w,b,ζ
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2
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To solve this problem, we actually only care about the result of the dot product . If there is
a function which could calculate the dot product and the result is the same as when we
transform the data into higher dimension, it would be fantastic. This function is called a kernel
function.

So, the kernel trick is: if you define a kernel function as , we rewrite the
Wolfe dual problem:

This is a small change, but is actually a powerful trick. What it does is to calculate the result of a
dot product performed in another space. We now have the ability to change the kernel function

in order to classify non-linearly separable data.

There are multiple kernel types we could use to classify the data. Some of the most popular
ones are linear kernel, polynomial kernel, and RBF kernel.

The linear kernel is defined as:

This is the same as the one we used in the above discussion. In practice, you should know that
a linear kernel works well for text classification.

The polynomial kernel is defined as:

This kernel contains two parameters: a constant c and a degree of freedom d. A d value with 1
is just the linear kernel. A larger value of d will make the decision boundary more complex and
might result in overfitting.

The RBF kernel is defined as:

The RBF (Radial Basis Function) kernel is also called the Gaussian kernel. It will result in a

more complex decision boundary. The RBF kernel contains a parameter . A small value of 
will make the model behave like a linear SVM. A large value of  will make the model heavily
impacted by the support vectors examples.

In practice, it is recommended to try RBF kernel first cause it normally performs well.

Conclusion
If you are getting this far, congratulations! I hope this is not a too long article for you to read and
a too arcane explanation for you to understand the gist of SVM. Sometimes layman’s approach

is not always a good one, especially for experienced readers or researchers who want to master
the underlying logic of an algorithm. Then you have to, I hate but I gotta say, dive into the hard
math and understand the formulas.

#machine learning  #algorithms  More topics

Written by Shuzhan Fan on May 7, 2018
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