Gauss's Law and Applications

by

Dr P A Sunny Dayal

Associate Professor, Dept of ECE
Centurion University of Technology and Management
Andhra Pradesh

Electric Flux Density

Relationship between electric field (E) and electric flux density (D)
 (in free space)

$$\mathbf{D} = \boldsymbol{\varepsilon}_0 \mathbf{E}$$

■ Electric flux (in C) through a surface S is:

$$\psi = \int_{S} \mathbf{D} \cdot d\mathbf{S}$$

- Electric flux crossing the surface S (open surface integral)
- Electric flux density is also called electric displacement (in C/m²)

Gauss's Law-Maxwell's Equation

• Integral form of Gauss's law: $\psi = \oint \mathbf{D} \cdot d\mathbf{S} = Q_{enc} = \int_{V} \rho_{V} dV \implies$

Electric flux enclosed in the surfaces (closed surface integral)

- Divergence theorem => $\oint_{S} \mathbf{D} \cdot d\mathbf{S} = \int_{V} \nabla \cdot \mathbf{D} dv$
- Comparing the above two volume integrals, we obtain Maxwell's equation:

$$\rho_{v} = \nabla \cdot \mathbf{D}$$

This is the point or differential form of Gauss's law

Gauss's Law-Maxwell's Equation (Cont'd.)

- Volume charge density is the same as the divergence of the electric flux density.
- It should be noted that ρ_v is 'free' volume charge density and not 'bound' volume charge density
- E or D field lines originate (terminate) from (on) positive (negative) charges.

Application of Gauss's Law

- Symmetric charge distribution should exist.
- A hypothetic closed surface (called Gaussian surface) is constructed around or in vicinity of the charge distribution such that **D** is normal or tangential to the Gaussian surface.
- **D** is normal to the surface: $\mathbf{D} \cdot d\mathbf{S} = \mathbf{D} \, dS$
- **D** is tangential to the surface: $\mathbf{D} \cdot d\mathbf{S} = 0$ (the two vectors are perpendicular to each other)
- **D** due to a point charge *Q*Consider that the charge *Q* is placed at the origin.
- For determining \mathbf{D} at a point P, a spherical surface containing P and centered at the origin satisfies the symmetry requirement.

Application of Gauss's Law (Cont'd.)

D is everywhere normal to the Gaussian surface:

$$Q = \oint \mathbf{D} \cdot d\mathbf{S} = \int D_r \mathbf{a}_r \cdot 4\pi r^2 \mathbf{a}_r = D_r 4\pi r^2 \quad \therefore \quad \mathbf{D} = \frac{Q}{4\pi r^2} \mathbf{a}_r$$
This is expected since
$$\mathbf{E} = \frac{Q}{4\pi \varepsilon_0 r^2} \mathbf{a}_r$$

- and $\mathbf{D} = \varepsilon_0 \mathbf{E}$
- Similarly, $\mathbf{D} = \frac{\rho_L}{2\pi\rho} \mathbf{a}_{\rho}$ for infinite line charge
- $\mathbf{D} = \frac{\rho_S}{2} \mathbf{a}_z \quad \text{for infinite sheet of charge}$

Application of Gauss's Law (Cont'd.)

• It is useful to find out electric field from the knowledge of enclosed charge and surface.

• It is useful to find out flux, ψ or flux density D, from the knowledge of enclosed charge and surface.

• It is useful to find out the enclosed charge from the knowledge of either D or E.

Limitations of Gauss's Law

• It can not be applied on Non-Gaussian surfaces.

• It can not be applied if the surface does not enclose the volume completely.