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Electric Potential

 F=QE ; Work done in displacing Q by dl:
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Figure 4

 This is the total work done in moving the point charge Q from A to B
in the electric field.

 The negative sign indicates that an external agent does the work.
 The potential difference between the A and B points is defined as the

potential energy per unit charge:
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Electric Potential (Cont’d.)

 In figure 4, if the E field is due to a point charge Q located at the
origin, then

 Points A and B lie on two different equipotential contours-circles
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 Points A and B lie on two different equipotential contours-circles
with radii rA and rB

 E is in the radial direction , so any contribution from a displacement
in the or direction is zero. 
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Electric Potential (Cont’d.)

 Thus, VAB that is the potential at B reference to that at A

 If we choose infinity as reference with its potential equal to zero,
VA=0 as rA →infinity, the potential at any point (rB = r) due to Q at
the origin is:the origin is:
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Electric Potential (Cont’d.)

 The potential at any point is the potential difference between that
point and a chosen reference point at which the potential is zero.

 The principle of superposition applies to determining potential at a
point with position vector r due to point charges Q1,Q2,….,Qn
located at points with position vectors r1,r2,…rn:
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 For continuous charge distributions:
 Line charge

 Surface charge

 Volume charge
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Relationship between E and V – Maxwell’s Equations

 The potential at r due to a point charge at r’

, so VAB+VBA= conservative electrostatic field. No
net work is done in moving a charge along a closed path.

 For the potential field, the corresponding electric field is: V E
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Figure 5



Relationship between E and V – Maxwell’s Equations

 Applying Stokes’s theorem:

 Any curl-free field like the electrostatic field above is called 
conservative or irrotational field.

 For such a conservative field, its line integral does not depend on the 
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 For such a conservative field, its line integral does not depend on the 
path of integration

 The above is Maxwell’s equation for electrostatics
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Relationship between E and V – Maxwell’s Equations (Cont’d.)

 Gradient: from a lower to higher level.

 E:from a higher potential to a lower one.

 are directed in opposite directions.V and E



An Electric dipole and Flux lines

 An electric dipole is formed when two point charges of equal
magnitude but with opposite signs are separated by a small
distance

 Figure 6

 For an electric dipole centered at r' with dipole moment p, the
potential at r is given by
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An Electric dipole and Flux lines

 Flux density D is tangential to the electric flux lines at every point.
 An equipotential surface (line) is one on which V = constant
 An equipotential line is orthogonal to an electric flux line.
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An electric flux line is an imaginary path in such a way that its 
direction at any point is the direction of the electric field at any 
point



Torque on a dipole

 The two forces FA and FB

create a couple and produce a torque which acts on the dipole
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Figure 8

Direction of T: perpendicular to the plane containing E and the dipole 
moment p
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Energy Density in Electrostatic Fields

 Electrostatic energy due to n point charges:

 Figure 9
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 Figure 9

 For a continuous volume charge distribution
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