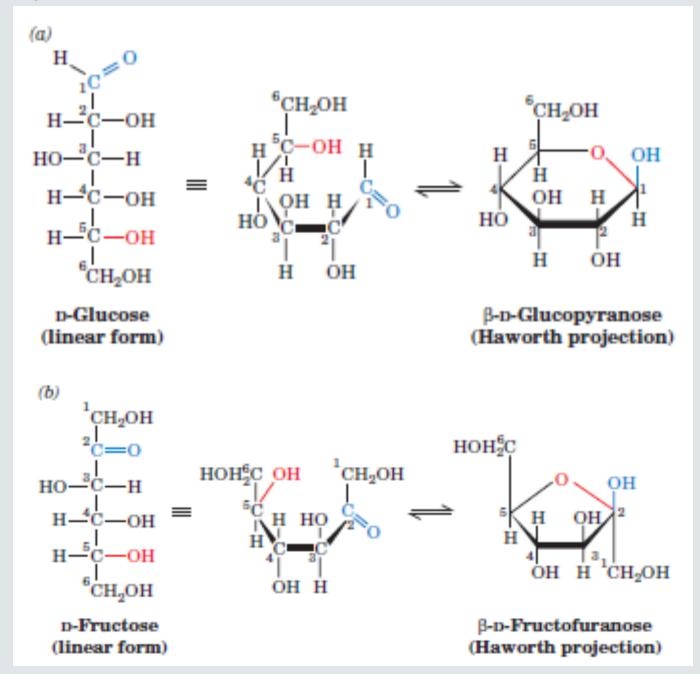
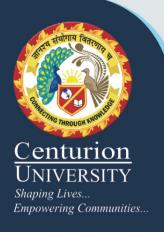


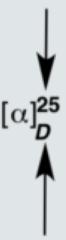
TOPIC-3: CARBOHYDRATES


Carbohydrates are polyhydroxy aldehydes or ketones of approximate composition (C.H₂O)n that are important components of biological systems.


Types:

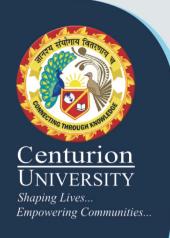
- Monosaccharides
- Oligosaccharides
- Polysaccharides

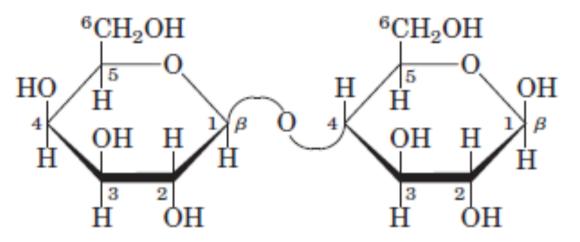
Cyclization reaction for hexoses



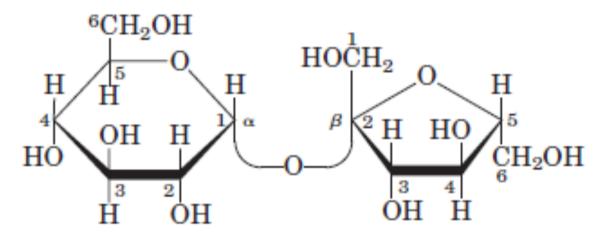
MUTAROTATION

Notations for temperature and wavelength are usually included


This # indicates that the experiment was run at 25 degrees Celsius


example, for D-(+)-glucose

$$[\alpha]_{D}^{25} = +52.7^{\circ} \text{ (c = 0.1, water)}$$


The capital letter "D" means the light used was the D line of the sodium spectrum (589.3 nm)

Disaccharides

Lactose (β form) β -D-galactopyranosyl-(1 \rightarrow 4)- β -D-glucopyranose $Gal(\beta 1\rightarrow 4)Glc$

Sucrose α -D-glucopyranosyl β -D-fructofuranoside $Glc(\alpha 1 \leftrightarrow 2\beta)Fru$

Polysaccharides

Homopolysaccharides		Heteropolysaccharides		
Unbranched	Branched	Two monomer types, unbranched	Multiple monomer types, branched	

...Polysaccharides

TABLE 7-2	Structures and Roles of Some Polysaccharides
	Structures and mores of some rong saccinariaes

			<u> </u>	
Polymer	Type*	Repeating unit [†]	Size (number of monosaccharide units)	Roles/significance
Starch				Energy storage: in plants
Amylose	Homo-	(α 1 $→$ 4)Glc, linear	50-5,000	
Amylopectin	Homo-	$(\alpha 1\rightarrow 4)$ Glc, with $(\alpha 1\rightarrow 6)$ Glc branches every 24–30 residues	Up to 10 ⁶	
Glycogen	Homo-	$(\alpha 1 \rightarrow 4)$ Glc, with $(\alpha 1 \rightarrow 6)$ Glc branches every 8–12 residues	Up to 50,000	Energy storage: in bacteria and animal cells
Cellulose	Homo-	(<i>β</i> 1→4)Glc	Up to 15,000	Structural: in plants, gives rigidity and strength to cell walls
Chitin	Homo-	(β1→4)GlcNAc	Very large	Structural: in insects, spiders, crustaceans, gives rigidity and strength to exoskeletons
Dextran	Homo-	$(\alpha 1 \rightarrow 6)$ Glc, with $(\alpha 1 \rightarrow 3)$ branches	Wide range	Structural: in bacteria, extracellular adhesive
Peptidoglycan	Hetero-; peptides attached	4)Mur2Ac(eta 1 $ ightarrow$ 4) GlcNAc(eta 1	Very large	Structural: in bacteria, gives rigidity and strength to cell envelope
Agarose	Hetero-	3)D-Gal(eta 1 $ ightarrow$ 4)3,6- anhydro-L-Gal($lpha$ 1	1,000	Structural: in algae, cell wall material
Hyaluronan (a glycosamino- glycan)	Hetero-; acidic	4)GlcA(eta 1 $ ightarrow$ 3) GlcNAc(eta 1	Up to 100,000	Structural: in vertebrates, extracellular matrix of skin and connective tissue; viscosity and lubrication in joints

^{*}Each polymer is classified as a homopolysaccharide (homo-) or heteropolysaccharide (hetero-).

[†]The abbreviated names for the peptidoglycan, agarose, and hyaluronan repeating units indicate that the polymer contains repeats of this disaccharide unit. For example, in peptidoglycan, the GlcNAc of one disaccharide unit is $(\beta 1 \rightarrow 4)$ -linked to the first residue of the next disaccharide unit.