
Segmentation By clustering
It is a method to perform Image Segmentation of pixel-wise segmentation. In
this type of segmentation, we try to cluster the pixels that are together. There
are two approaches for performing the Segmentation by clustering.

 Clustering by Merging
 Clustering by Divisive
Clustering by merging or Agglomerative Clustering:
In this approach, we follow the bottom-up approach, which means we assign
the pixel closest to the cluster. The algorithm for performing the agglomerative
clustering as follows:

 Take each point as a separate cluster.
 For a given number of epochs or until clustering is satisfactory.

 Merge two clusters with the smallest inter-cluster distance (WCSS).
 Repeat the above step
The agglomerative clustering is represented by Dendrogram. It can be
performed in 3 methods: by selecting the closest pair for merging, by selecting
the farthest pair for merging, or by selecting the pair which is at an average
distance (neither closest nor farthest). The dendrogram representing these
types of clustering is below:

Nearest clustering

Average Clustering

Farthest Clustering

Clustering by division or Divisive splitting
In this approach, we follow the top-down approach, which means we assign the
pixel closest to the cluster. The algorithm for performing the agglomerative
clustering as follows:

 Construct a single cluster containing all points.
 For a given number of epochs or until clustering is satisfactory.

 Split the cluster into two clusters with the largest inter-cluster
distance.

 Repeat the above steps.
In this article, we will be discussing how to perform the K-Means Clustering.

K-Means Clustering
K-means clustering is a very popular clustering algorithm which applied when
we have a dataset with labels unknown. The goal is to find certain groups
based on some kind of similarity in the data with the number of groups

represented by K. This algorithm is generally used in areas like market
segmentation, customer segmentation, etc. But, it can also be used to segment
different objects in the images on the basis of the pixel values.
The algorithm for image segmentation works as follows:

1. First, we need to select the value of K in K-means clustering.
2. Select a feature vector for every pixel (color values such as RGB value,

texture etc.).
3. Define a similarity measure b/w feature vectors such as Euclidean distance

to measure the similarity b/w any two points/pixel.
4. Apply K-means algorithm to the cluster centers
5. Apply connected component’s algorithm.
6. Combine any component of size less than the threshold to an adjacent

component that is similar to it until you can’t combine more.
Following are the steps for applying the K-means clustering algorithm:

 Select K points and assign them one cluster center each.
 Until the cluster center won’t change, perform the following steps:

 Allocate each point to the nearest cluster center and ensure that
each cluster center has one point.

 Replace the cluster center with the mean of the points assigned to
it.

 End
The optimal value of K?

For a certain class of clustering algorithms, there is a parameter commonly
referred to as K that specifies the number of clusters to detect. We may have
the predefined value of K, if we have domain knowledge about data that how
many categories it contains. But, before calculating the optimal value of K, we
first need to define the objective function for the above algorithm. The objective
function can be given by:

Where j is the number of clusters, and i will be the points belong to the
jth cluster. The above objective function is called within-cluster sum of square
(WCSS) distance.
A good way to find the optimal value of K is to brute force a smaller range of
values (1-10) and plot the graph of WCSS distance vs K. The point where the
graph is sharply bent downward can be considered the optimal value of K. This
method is called Elbow method.

For image segmentation, we plot the histogram of the image and try to find
peaks, valleys in it. Then, we will perform the peakiness test on that histogram.

Implementation

 In this implementation, we will be performing Image Segmentation using K-
Means clustering. We will be using OpenCV k-Means API to perform this
clustering.

 Python3

imports

import numpy as np

import cv2 as cv

import matplotlib.pyplot as plt

plt.rcParams["figure.figsize"] = (12,50)

load image

img = cv.imread('road.jpg')

Z = img.reshape((-1,3))

convert to np.float32

Z = np.float32(Z)

define stopping criteria, number of clusters(K) and apply kmeans()

TERM_CRITERIA_EPS : stop when the epsilon value is reached

TERM_CRITERIA_MAX_ITER: stop when Max iteration is reached

criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 10, 1.0)

fig, ax = plt.subplots(10,2, sharey=True)

for i in range(10):

 K = i+3

 # apply K-means algorithm

 ret,label,center=cv.kmeans(Z,K,None,criteria,attempts = 10,

 cv.KMEANS_RANDOM_CENTERS)

 # Now convert back into uint8, and make original image

 center = np.uint8(center)

 res = center[label.flatten()]

 res2 = res.reshape((img.shape))

 # plot the original image and K-means image

 ax[i, 1].imshow(res2)

 ax[i,1].set_title('K = %s Image'%K)

 ax[i, 0].imshow(img)

 ax[i,0].set_title('Original Image')

Output:

Image Segmentation for K=3,4,5

Image Segmentation for K=6,7,8

