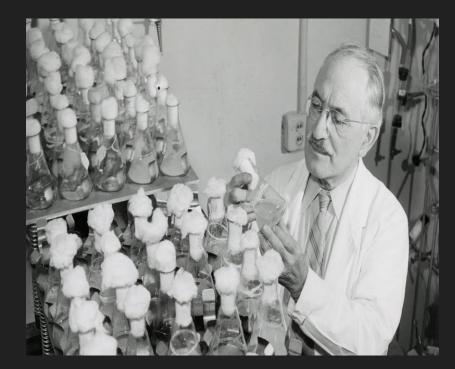


Line up

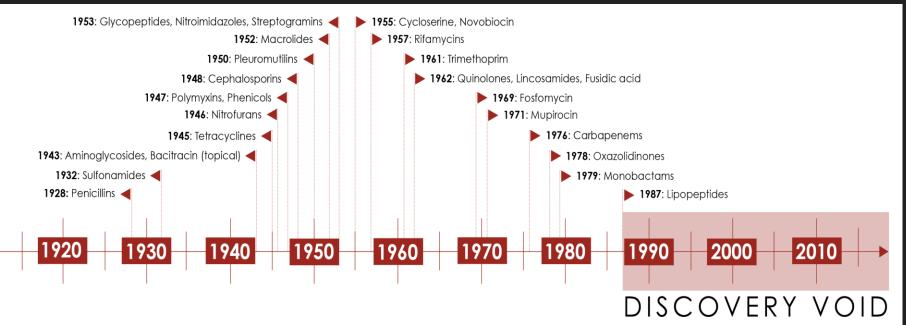

- Introduction
- Definition
- Timeline
- Sources
- Classification

INTRODUCTION

- Bacterial cells; grow and divide; infection
- Antimicrobial agents; interfere specific processes; growth and/or division
- Inhibitors;
- > Cell walls
- > Cytoplasmic membranes
- > Nucleic acid synthesis
- Ribosome function

ANTIBIOTICS

- Term antibiotic was first used by in 1942 by Selman Waksman
- Antibiotics: "against life"
- Antibacterial substances; microorganisms
- Prevent; growth, multiplication, destroy, pathogenic ation
- Differ in; spectrum of AMA, and mechanism of action
- Natural or synthetic man-made compounds



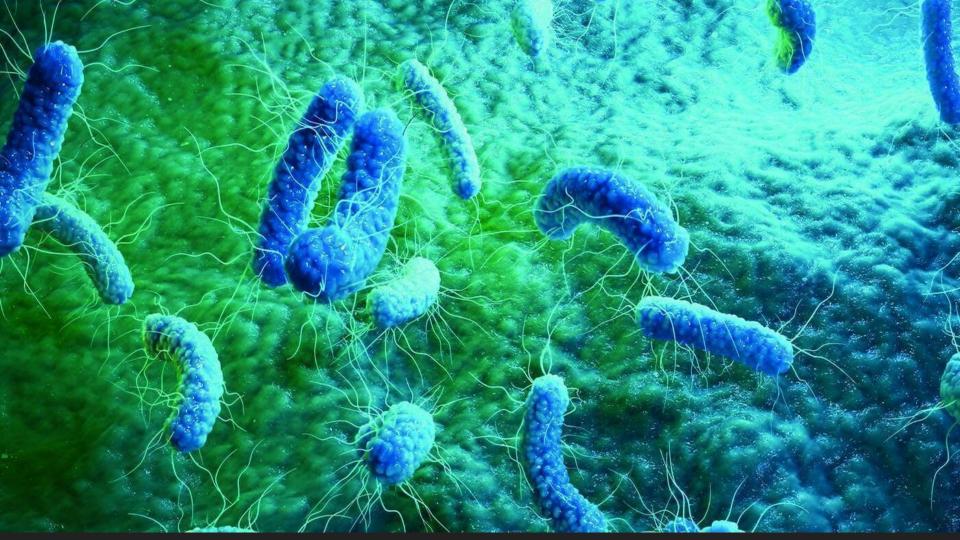
DEFINITIONS

An antibiotic is a chemical substance produced by various species of microorganisms that is capable of inhibiting growth of other microorganisms in small concentrations

An antibiotic is a product produced by a microorganism or a similar substance produced wholly or partially by chemical synthesis, which in low concentrations inhibits other microorganisms

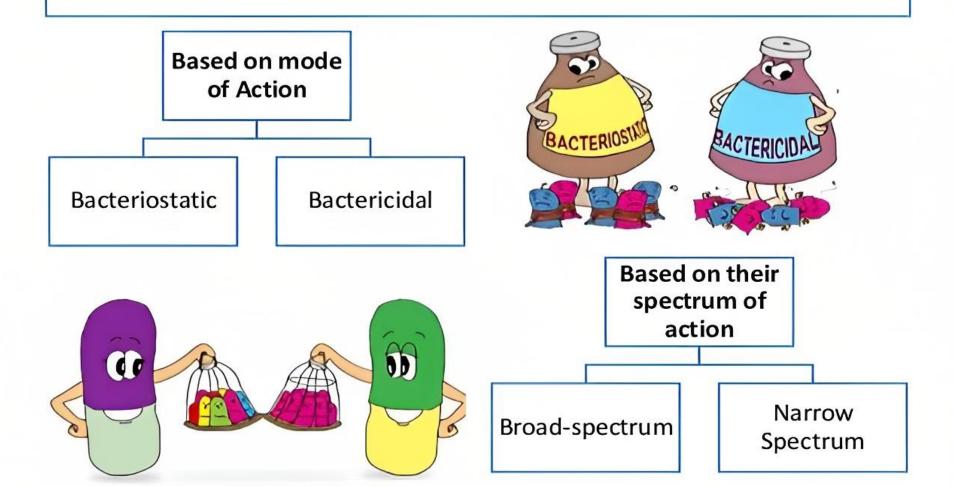
Time-line of the discovery of different antibiotic classes

SOURCES OF ANTIBIOTICS


- Fungi: Penicillin and Cephalosporin
- Actinomycetes; Gram-positive filamentous bacteria; Streptomyces
- **Bacillus;** Gram-positive spore forming bacteria
- Few from myxobacteria; Gram-negative bacteria
- New species explores; plants, herbs and fish

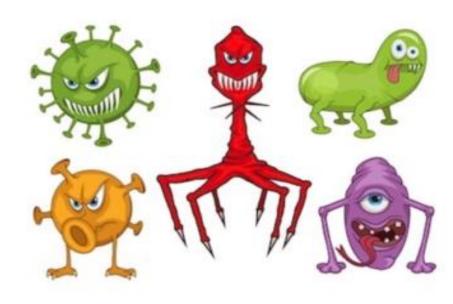
Sources of some common antibiotics

S/n Microorganism		Antibiotic		
1.	Bacillus subtilis	Bacitracin		
2.	Bacillus polymyxa	Polymyxin		
3.	Streptomyces nodosus	Amphotericin B		
4.	Streptomyces venezuelae	Chloramphenicol		
5.	Streptomyces aureofaciens	Tetracycline/chlortetracycline		
6.	Streptomyces erythraeus	Erythromycin		
7.	Streptomyces griseus	Streptomycin		
8.	Micromonospora purpureae	Gentamicin		
9.	Cephalosporium species	Cephalothin		
10.	Penicillium griseofulvum	Griseofulvin		
11.	Penicillium notatum	Penicillin		


Microorganism	Antimicrobial			
Fungi				
Penicillium chrysogenum	Penicillin			
Penicillium griseofulvin	Griseofulvin			
Cephalosporium spp.	Cephalothin			
Bacteria				
Bacillus licheniformis	Bacitracin			
Bacillus polymyxa	Polymyxin			
Micromonospora purpurea	Gentamicin			
Streptomyces griseus	Streptomycin			
Streptomyces fradiae	Neomycin			
Streptomyces aureofaciens	Tetracycline			
Streptomyces orientalis	Vancomycin			
Streptomyces venezuelae	Chloramphenicol			
Streptomyces erythraeus	Erythromycin			

CLASSIFICATION OF ANTIBIOTICS

Classification of Antibiotics


"<u>Antibiotics Can Terminate Protein</u> Synthesis For Microbial Cells Like Germs"

- 1. Aminoglycosides
- 2. Cephalosporins
- 3. Tetracyclines
- 4. Penicillins
- 5. Sulfonamides

- 6. Fluoroquinolones
- 7. Macrolides
- 8. Carbapenems
- 9. Lincosamides
- 10. Glycopeptides

Antibiotic Classes Medication Names

- 1. Aminoglycosides Mycin
- 2. Cephalosporins Cef/Ceph
- 3. Tetracyclines Cycline
- 4. Penicillins Cillin
- 5. Sulfonamides Sulfa
- 6. Fluoroquinolones Floxacin
- 7. Macrolides Thromycin
- 8. Carbapenems Penem
- 9. Lincosamides Mycin
- 10. Glycopeptides In (Mycin)

Antibiotic Classes

Antibiotics	Aminoglycosides	Streptomycin Gentamicin	Gram (-)	Inhibit Protein Synthesis (30s)	Bacteremia, Abdominal Infections
Can	Cephalosporins	Ceftriaxone Cefepime	Gram (+)/(-)	Inhibit Cell Wall Synthesis	Skin, Urinary, Resp. Infections
Terminate	Tetracyclines	Tetracycline Doxycycline	Gram (+)/(-)	Inhibit Protein Synthesis (30s)	Lyme Disease, PID, STIs
Protein	Penicillins	Ampicillin Amoxicillin	Gram (+)/(-)	Inhibit Cell Wall Synthesis	ENT, Skin, Urinary Infections
Synthesis	Sulfonamides	Sulfasalazine Sulfamethoxazole	Gram (+)/(-)	Inhibit Folate Synthesis	UTIs, Burns, Eye Infections
For	Fluoroquinolones	Ciprofloxacin Levofloxacin	Gram (+)/(-)	Inhibit DNA Replication	Respiratory & Urinary Infections
Microbial	Macrolides	Azithromycin Erythromycin	Gram (+)	Inhibit Protein Synthesis (50s)	Pneumonia, Sinus, ENT, STIs
Cells	Carbapenems	Meropenem Ertapenem	Gram (+)/(-)	Inhibit Cell Wall Synthesis	Urinary, Abdom. Infections
Like	Lincosamides	Clindamycin	Gram (+)	Inhibit Protein Synthesis (50s)	Skin, Bone, Lung Infections
Germs	Glycopeptides	Vancomycin	Gram (+)	Inhibit Cell Wall Synthesis	MRSA, Skin, Endocarditis

CELL WALL INHIBITORS

Inhibit synthesis of bacterial cell walls Penicillins & cephalosporins Cycloserine, Vancomycin Bacitracin

CELL MEMBRANE DISRUPTORS

Agents that act directly on the cell membranes of the microorganisms

Polymixin

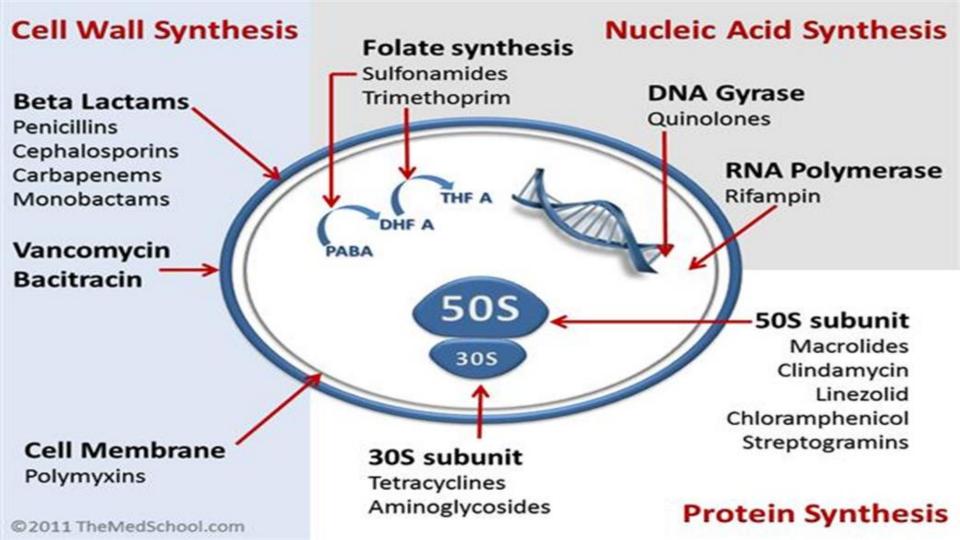
Alter cell memb. Permeability, leakage of intracellular comp

MODE OF ACTION

PROTEIN SYNTHESIS INHIBITORS

Agents that affect the function of 30S or 50S ribosomal subunits to cause a reversible inhibition of protein synthesis Bacteriostatic drugs:

Chloramphenicol, Tetracyclines, Erythromycin, Clindamycin Agents that bind to 30S ribosomal subunit & alter protein synthesis, which eventually leads to cell death Aminoglycosides


NUCLEIC ACID

Agents that affect bacterial nucleic acid metabolism. Rifamycins which inhibit RNA polymerase Quinolones which inhibit topoisomerases

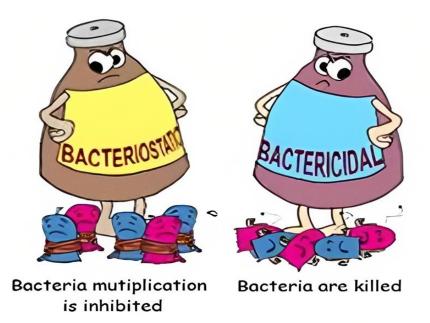
METABOLISM

Anti-metabolites

including trimethoprim & sulphonamides

Antibiotic Classes Mechanism of Action

- 1. Aminoglycosides Inhibit Protein Synthesis
- 2. Cephalosporins Inhibit Cell Wall Synthesis
- 3. Tetracyclines Inhibit Protein Synthesis
- 4. Penicillins Inhibit Cell Wall Synthesis
- 5. SulFOnamides Inhibit FOlate Synthesis = "FO"
- 6. FluoroQUINolones Inhibit DNA Replication = QUINtuplets
- 7. Macrolides Inhibit Protein Synthesis
- 8. Carbapenems Inhibit Cell Wall Synthesis
- 9. Lincosamides Inhibit Protein Synthesis
- 10. Glycopeptides Inhibit Cell Wall Synthesis


MALT = Protein

Macrolides Aminoglycosides Lincosamides Tetracyclines

TYPE OF ACTION

Bacteriostatic Agents

Bactericidal Agents

→ Antimicrobial agents may be either bactericidal, killing the target bacterium or fungus, or bacteriostatic, inhibiting its growth

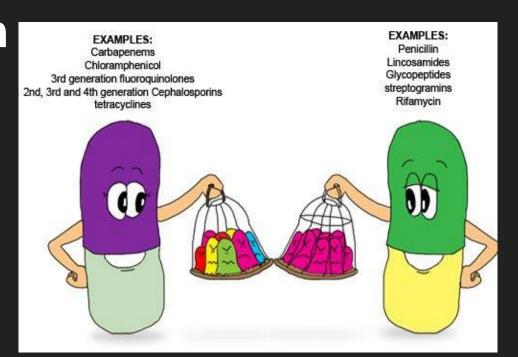
→ Bactericidal agents are more effective

→ Bacteriostatic agents can be extremely beneficial

permit the normal defenses of the host to destroy the microorganisms

Bacteriostatic Agents Sulphonamides Tetracyclines Chloramphenicol Erythromycin Ethambutol

Bactericidal Agents


- Penicillins/Cephalosporins/Carbapenems
- Aminoglycosides
- Rifampin
- Cephalosporins
- Vancomycin
- Nalidixic acid
- Ciprofloxacin

SPECTRUM OF ACTIVITY

Narrow spectrum

Broad spectrum


Narrow spectrum Penicillin G Streptomycin **Broad spectrum** Tetracyclines Chloramphenicol

Antibiotic Classes Gram Coverage

- 1. AmiNOglycosides Gram (-) = NO
- 2. Cephalosporins Gram (+)/(-)
- 3. Tetracyclines Gram (+)/(-)
- 4. Penicillins Gram (+)/(-)
- 5. Sulfonamides Gram (+)/(-)
- 6. Fluoroquinolones Gram (+)/(-)
- 7. Macrolides Gram (+)
- 8. Carbapenems Gram (+)/(-)
- 9. Lincosamides Gram (+)
- 10. Glycopeptides Gram (+)

GLAM

