Average Costs

Dr Bibhunandini Das

Average Costs

- The per unit costs
 - Average fixed costs (AFC)
 - Average variable costs (AVC)
 - Average total costs (ATC) or Average costs (AC)

Average Fixed Costs

- Refers to the per unit fixed cost of production
- Calculated by dividing TFC by total output

• AFC = $^{TFC}/_Q$

Average Fixed Costs Schedule and Curve

Output	TFC	AFC
0	12	∞
1	12	12
2	12	6
3	12	4
4	12	3
5	12	2.40

Explanation of Average Fixed Costs and AFC curve

- Falls with rise in output because constant TFC is divided by increasing output
- A rectangular hyperbola (area under AFC curve remains same at different points)

Explanation of Average Fixed Costs and AFC curve

- AFC can never touch the X-axis as TFC can never be zero
- AFC can never touch the Y-axis because at zero level of output, TFC is having positive value

Average Variable Costs (AVC)

- Refers to the per unit variable cost of production
- AVC = $^{TVC}/_Q$
- Initially falls with increase in output once the output rises till optimum level, AVC starts rising

AVC Schedule and AVC curve

Output	Τ٧Ϲ	AVC
0	0	_
1	6	6
2	10	5
3	15	5
4	24	6
5	35	7

Average Total Cost (ATC) or Average Costs (AC)

- Refers to the per unit total cost of production
- Calculated by dividing total cost by total output
 - AC = TC/Q or
 - AC = AFC + AVC

Average Costs

Output	AFC	AVC	AC
0	∞	_	_
1	12	6	18
2	6	5	11
3	4	5	9
4	3	6	9
5	2.4	7	9.40

Different Phases

- 1st Phase- When both AFC and AVC fall till the level of 2 units of output, AC falls
- 2nd Phase- From 2nd unit to 3rd units, AFC continues to fall, but AVC remains constant. So, AC falls till it reaches its minimum point.
 - From 3rd units to 4th units, fall in AFC is equal to rise in AVC- so AC remains constant

Different Phases

 3rd Phase- After 4th units of output, rise in AVC is more than fall in AFC- AC starts rising

Important Points....

- AC curve always lie above the AVC curve because AC at all levels of output includes both AVC and AFC
- AVC reaches its maximum points at a level of output lower than that of AC- when AVC is at its minimum point, AC is still falling because of falling AFC

Important Points....

- As the output increases, the gap between AC and AVC curve decreases, but they never intersect each other
- This is because the vertical distance between them is AFC, which can never be zero

- MC refers to addition to total cost when one more unit of output is produced
- $MC_n = TC_n TC_{n-1}$
 - n number of units produced
 - MC_n Marginal cost of the nth unit
 - TC_n Total cost of n units
 - TC_{n-1} Total cost of (n-1) units

- MC is the change in TC when one more unit of output is produced
- If change in units produced is more than one, then MC

can be calculated as $MC = \frac{Change in Total Cost}{Change in Units of Output} = \Delta TC / \Delta Q$

- MC is not affected by fixed costs
- TC = TFC + TVC
- As TFC does not change with change in output, MC is independent of TFC and is affected by change in TVC

- $MC_n = TC_n TC_{n-1}$(eq.1)
- TC = TFC + TVC
- $MC_n = (TFC_n + TVC_n) (TFC_{n-1} TVC_{n-1})$
- $\bullet = TFC_n + TVC_n TFC_{n-1} TVC_{n-1}$
- = $TFC_n TFC_{n-1} + TVC_n TVC_{n-1}$
 - So $MC_n = TVC_n TVC_{n-1}$

Relation between AC and MC

Output	ТС	AC	MC
0	12	_	_
1	18	18	6
2	22	11	4
3	27	9	5
4	36	9	9
5	47	9.40	11

Explanation

- When MC is less than AC- AC falls with the increase in output
- When MC is equal to AC- AC is constant
- When MC is greater than AC- AC starts rising

Long run Average Cost Curve

- Long run- a period of time during which the firm can vary all its inputs
- Short run- Some inputs are fixed and others are varied to increase the level of output