- Batch cultivation is closed system where there is no interaction between the system and the surrounding during the process. Except air during the aerobic cultivation.
- In Batch cultivation we prepare medium, sterilize it and inoculate the culture into the bioreactor.
- Allow the cells to grow and produce the product.
- Once the product formation reaches maximum harvest the fermentation broth.

How cells grow during Batch cultivation

- After inoculating the medium and start measuring the biomass at different time intervals, you may find six different phases. They are
- Lag phase
- 2. Accelerated growth phase
- Exponential growth phase
- 4. Decelerated growth phase
- 5. Stationary phase
- Death phase

Environmental conditions affecting cell growth

- Substrate concentration
- Temperature
- ▶ pH
- Dissolved oxygen
- Others

Substrate concentration

The effect of substrate concentration on the Specific growth rate is represented by monod equation

$$\mu = \mu_{max} \frac{S}{K_s + S}$$

μ - Specific growth rate

μ_{max} – Maximum specific growth rate

S - Residual substrate concentration

K_s- Substrate saturation constant

Medium optimization by continuous cultivation

- First construct x-D diagram
- Pulse various compounds to the medium during steady state and identify the positive nutrients.
- Shift the inlet medium with positive nutrients.
- Continue this process till you have completed with all the positive nutrients
- Final x-D diagram and evaluate kinetic constants

Why continuous cultivation is not used in the industries

- Secondary metabolites are produced only during the stationary phase. Hence the continuous cultivation is not suitable for them.
- Maintenance of sterility is very difficult.
- High infrastructure cost is required.

Fed Batch cultivation

- Batch cultivation have low productivity
- Though continuous cultivation productivity is higher it cannot be used for secondary metabolites
- Fed batch cultivation is semi open system
- Here nutrients are fed slowly into medium either continuously or discontinuously in stages.