

Bayes' Theorem

Dr Bibhunandini Das

Bayesian Decision Theory

- Applications of the results of probability theory involves estimating unknown probability
- Making decisions on the basis of new (sample) information
- Baysian Decision Theory- The purpose is the solution of problems involving decision-making under uncertainty

- Conditional probability takes into account information about the occurrence of one event to predict the probability of another event
- Can be extended to 'revise' probabilities based on new information and to determine the probability that a particular effect was due to specific cause
- Procedures of revising the probabilities-Bayes' Theorem

- British Mathematician Rev. Thomas Bayes
- A unique method for calculating conditional probabilities
- Example-
- Use the results of the first examination in statistics (event A) as sample evidence in estimating the probability of getting first class (event B)
- Sample output of 2 defectives in 50 trials (event A) might be used to estimate the probability that a machine is not working correctly (event B)

- Bayes' theorem is based on the formula for conditional probability
- A_1 and A_2 = The set of events which are mutually exclusive and exhaustive (the combination of two events is the entire experiment
- B = A simple event which intersects each of the A events

- The part of B which is within A_1 represents the area ' A_1 and B' and the part of B within A_2 represents the area ' A_2 and B'
- Then the probability of event A₁ given event B is

•
$$P(A_1/B) = \frac{P(A_1 \text{ and } B)}{P(B)}$$

• The probability of event A₂ given B is

•
$$P(A_2/B) = \frac{P(A_2 \text{ and } B)}{P(B)}$$

- Where
- $P(B) = P(A_1 \text{ and } B) + P(A_2 \text{ and } B)$
- $P(A_1 \text{ and } B) = P(A_1) \times P({}^B/_{A_1})$
- $P(A_2 \text{ and } B) = P(A_2) \times P(B_{A_2})$
- Let A_1 , A_2 , A_3 ……. A_i …, A_n be a set of n mutually exclusive and collectively exhaustive events.

• If B is another event such that P(B) is not zero, then

•
$$P({}^{A_1}/_B) = \frac{P({}^{B}/_{A_1})P(A_1)}{\sum_{i=1}^{K} P({}^{B}/_{A_1})P(A_1)}$$

- Probability before revision by Bayes' rule- a *priori* or simply prior probability
- A probability which has undergone revision in the light of sample information (*via* Bayes' rule)-a *posterior* probability

- Posterior probabilities- revised probabilities
- By revising the prior probabilities in the light of the additional information gained
- Are always conditional probabilities- the conditional event being the sample information
- A *priori* probability which is unconditional probability becomes a *posterior* probability

Bayesian Approach-Example

 Assume that a factory has two machines. Past records show that machine 1 produces 30% of the items of output and machine 2 produces 70% of the items. Further 5% of the items produced by machine 1 were defective and only 1% produced by machine 2 were defective. If a defective item is drawn at random, what is the probability that the defective item was produced by machine 1 or machine 2.

Solution

- A_1 = the event of drawing an item produced by machine 1
- A_2 = the event of drawing an item produced by machine 2
- B = the event of drawing a defective item produced either by machine 1 or machine 2
- $P(A_1) = 30\% = 0.30$
- $P(A_2) = 70\% = 0.70$
- $P({}^{B}/_{A_{1}}) = 5\% = 0.05$
- $P(B_{A_2}) = 1\% = 0.0$
- 1

Solution

(1) Events	(2) Prior probability $(P(A_1))$	(3) Conditional Probability event B given event A $(({}^{B}/_{A_{i}})$	(4) Joint probability A (A ₁ and B) (2)× (3)	(5) Posterior (revised) probability $P\left(\frac{A_1}{B}\right)$ (4)÷ P(B)
$\begin{array}{c} A_1 \\ A_2 \end{array}$	0.30 0.70	0.05 0.01	0.015 0.007	0.015/0.022 =0.682 0.007/0.022= 0.318
Total	100		P(B)=0.022	1.000