Bioinformatics introduction to biological databases

Gulshan Kumar School of Fisheries

Introduction

 Bioinformatics is an interdisciplinary field mainly involving molecular biology and genetics, computer science, mathematics, and statistics to address data intensive biological problems. Data intensive, large-scale biological problems are addressed from a computational point of view. The most common problems are modeling biological processes at the molecular level and making inferences from collected data.

- A bioinformatics solution usually involves the following steps:
- • Collect statistics from biological data.
- • Build a computational model.
- • Solve a computational modeling problem.
- Test and evaluate a computational algorithm.

- Biological databases
- A *database* is a computerized archive **used to** store and organize data in such a way that information can be retrieved easily via a variety of search criteria.
- Types of databases
- In bioinformatics, and indeed in other data intensive research fields, databases are often categorised as primary or secondary.

- Biological Databases
- The data repositories more relevant to the biological sciences include:
- nucleotide and protein sequences
- protein structures
- genomes
- genetic expression
- bibliography

- Main sequence databases:
- <u>NCBI</u> (The National Center for Biotechnology Information advances science and health by providing access to biomedical and genomic information.
- <u>EMBL</u> (European Molecular Biology Laboratory)
- Main protein databases:
- <u>Uniprot</u> (<u>UniProt</u> is a protein database that includes information divided in two sections: Swiss-Prot and TrEMBL. UniProt aims to store sequence and functional information for the proteins.)
- <u>PDB</u> (Protein Data Bank) stores 3D structures for proteins and nucleic acids.)
- <u>MMDB</u>

- Bibliography:
- <u>Pubmed</u>
- Web of Science