
 

Chap 7: Boundary Layer 
If the movement of fluid is not affected by its viscosity, it could  be  treated as  the  

flow of  ideal fluid , therefore  its analysis would be easier. The flow around a solid, 

however ,cannot be treated in such a manner because of viscous friction. Nevertheless 

,only the very thin region near the wall is affected by this friction. Prandtl identified 

this phenomenon and had the idea to divide the flow into two regions. They are: 

1. the region near the wall where the movement of flow is controlled by the frictional 

resistance . 

2. the other region outside the above not affected by the friction and, 

 

 Development of boundary layer 

 

The distance from the body surface when the velocity reaches 99% of  the  velocity  

of  the  main flow is defined as  the  boundary  layer  thickness δ. The  boundary  

layer  continuously  thickens with the distance over which it flows. This process is 

visualized as  shown  in  the  below Figure. 

 

 

 

 

 

 

 

 

 

 
However ,  viscous  flow  boundary  layer  characteristics  for  external   flows   are  

significantly different as shown below for flow over a flat plate: 

 

 

 

 

 

 

 
The most important fluid flow parameter is the local Reynolds number defined as : 

 

 
 

Transition  from  laminar  to  turbulent  flow  typically  occurs  at  the  local  transition  

Reynolds number which for flat plate flows can be in the range of 

              500,000 ≤  Recr  ≥ 3,000, 000 



 

When  the  flow  distribution  and  the  drag  are considered,  it  is  useful  to  use  the  

following displacement thickness δ* and momentum thickness θ  instead of  δ . 
 

 

*δDisplacement thickness  
 

δ*
 = distance the solid surface would have to be displaced to maintain the same mass 

flow rate as for non-viscous flow. 

 

 

 

 

 

 

 

 

 

 
Therefore, with an expression for the local velocity profile we can obtain δ* = f(δ) 

Example: 

 

 

 

 

Note that for this assumed form for the velocity profile: 

1. At y = 0, u = 0 correct for no slip condition 

2. At y = δ, u = U∞ correct for edge of boundary layer 

 

 

 

 

 

 

 

 

 

 . This closely approximates flow for a flat plate. 

 

 

Momentum Thickness θ: 
 

The concept is  similar  to that  of  displacement  thickness  in  that  θ  is   related  to  

the  loss  of momentum due to viscous effects in the boundary layer. 
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The momentum thickness θ  equates the momentum decrease per unit time due  to  

the  existence of the body wall to the momentum per unit time which passes at 

velocity U through  a  height  of thickness θ. The momentum decrease is equivalent to 

the force acting on the  body  according  to 

the law of momentum conservation. Therefore the drag on a body generated by the 

viscosity can be obtained by using the momentum thickness 

 

Drage on a flat plate 
 

Consider the viscous flow regions  shown  in  the  adjacent  figure. Define  a  control  

volume  as shown and integrate around the control volume to obtain the net change  in  

momentum  for  the 

control volume. 

 

 

 

  

 

 

 
If  D = drag force on the plate due to viscous flow, we can write 

 

- D = Σ ( momentum leaving c.v. ) - Σ ( momentum entering c.v. ) 

 

The drag force on the plate is given by the following momentum  integral  across  the  

exit  plane 

 

 

  ,  where b is the plate width into the paper . 

 

The above Equation was derived in  1921  by  Kármán ,  who  wrote  it  in  the  

convenient  form 

of the momentum thickness  θ  :  

 

  

 

 

Momentum thickness is thus a measure of total plate drag. Kármán then noted that the  

drag  also equals the integrated wall shear stress along the plate 

 

 

 



 

      (1)     

              
  

 

 

 

By comparing the above equations , Kármán arrived at what is  now  called  the  

momentum integral relation for flat-plate boundary-layer flow 

 

  

 

It is valid for either laminar or turbulent flat-plate flow                                                  

                 

Laminar flow  
To get a numerical result for laminar flow, Kármán  assumed  that  the  velocity  

profiles  had  an approximately parabolic shape 

 

 

 

 

which makes it possible to estimate both momentum thickness and wall shear 

 

 

 

 

                                                                   

    

 

 

By  substituting  ( 2 )  into ( 1 )   and   integrating  from  0  to  x,  assuming  that   δ = 

0  at  x = 0, the leading  edge 

 

 

 

 

This is the desired thickness estimate. We define the boundary layer thickness  δ as  

the  locus  of points where the velocity u  parallel  to the  plate  reaches  99%  of  the 

external  velocity  so that the above value of  δ is represented about 10% higher than 

the known exact solution  for  laminar flow, the accepted formulas for flat-plate flow 

 

 
 

 

By combining this Equation  and ( 2 ),  we  also  obtain  a  shear-stress  estimate  

along  the  plate 

 

 

 

 

(2) 

(1) 

(3) 

(4) 



 

The dimensionless quantity cf, called  the  skin-friction  coefficient, is  analogous  to 

the  friction factor f in ducts. Again this estimate, in spite of the crudeness of the 

profile  above  assumption is only 10%  higher than of exact solution . So the known 

exact  laminar-plate-flow  solution  of  cf 

as the following : 

 

 

 

 

With the profile known, Blasius, of course, could also compute the wall shear and 

displacement 

thickness 

 

  

 

 

 

These estimates are only 6 percent away from the exact solutions for laminar flat-

plate 

 

  

Notice how close these are to our integral estimates, Eqs. (3), (4), and (5). we have 

 

 

 

 

 

 

 

we compute the total drag force 

 

 

 

 

The  drag  increases  only as  the  square   root  of   the   plate  length. The  

nondimensional  drag coefficient is defined as 

 

 

 

 

 

Thus the drag on one side in the airflow is 

 

 
 

EXAMPLE  

A sharp flat plate with L= 1 m and b= 3 m is immersed  parallel  to  a  stream  of  

velocity  2 m/s. 

Exact solution of the displacement thicknesss ) ) 

(5) 

 
  

(1) 



Find the drag on one side of the plate, and at the trailing edge  find  the  thicknesses  δ 

, δ*, and θ for   (a)  air ,  ρ = 1.23  kg/m
3 

 and   = 1.46 × 10 
-5

 m
2
/s ,  and   (b)  water,  

ρ = 1000  kg/m
3
  and  

=1.02× 10 
-6

 m
2
/s 

 

Part (a) 

The airflow Reynolds number is 

 

 

 

 

Since this is less than 3×10
6
, the boundary layer is laminar. The drag coefficient is : 

 

 

 

 

Thus the drag on one side in the airflow is 

 

 

 

We find the other two thicknesses simply by ratios: 

 

 

 

Part (b) 

 

The water Reynolds number is 

 

 

 

 

This is rather close to the critical value of 3 ×10
6
 , so that  a rough  surface  or  noisy  

free stream 

might trigger transition to turbulence; but let us assume that the flow is laminar. The  

water  drag 

coefficient is 

 

 

 

 

 

 

The drag is 215 times more for water in spite  of  the  higher  Reynolds  number  and  

lower  drag 

coefficient because water is 57 times more viscous and 813 times denser  than  air. 

From  Eq.(1), in  laminar  flow,  it  should   have  (57)
1/2

 (813) 
1/2

  = 7.53 (28.5)  = 215  

times  more  drag. The boundary-layer thickness is given by : 

 

 

 



 

 

 

 

 

 

 

 

The water layer is 3.8 times thinner than the air layer, which reflects the square root  

of   the 14.3 

ratio of air to water kinematic viscosity. 

 

 

Turbulent flow 
 

A  Prandtl,  is  pointed out  that  the  turbulent  profiles  can be  approximated by a 

one-seventh-power law  

 

 

 

 

 

There is no exact theory for turbulent flat-plate flow, the most widely  accepted  result  

is  simply an integral analysis similar to our study of the laminar-profile 

approximation . We begin with the same equation , which is valid for laminar or 

turbulent flow : 

 

    

 

 

With this simple approximation, the momentum thickness  can easily be evaluated: 

 

 

 

 

 

 

 

 

From the definition of cf , it can be rewritten as : 

 

 

 

 

A  Prandtl   is   simplified   the   friction   law  as   the   following   a   suggestion   of   

power-law approximation 

 

 

 

 



 

 

 

 

Separate the variables and integrate, assuming δ = 0 at  x = 0 : 

 

 

 

 

we obtain the friction variation 

 

 

 

 

 

Writing this out in dimensional form, we have 

 

 

 

 

Turbulent  plate  friction  drops  slowly  with  x,  increases  nearly  as  ρ  and  U
2
,  and   

is   rather 

insensitive to viscosity. We can evaluate the drag coefficient  

 

 

 

 

Then the drag on both sides of the plate  : 
 

 

 

 

 

EXAMPLE  

A  hydrofoil  0.366 m  long  and  1.82 m  wide  is  placed   in  a  water  flow  of  12.9  

m/s ,  with  ρ = 1025.3 kg/m
3
  and  =1.02× 10

-6
  m

2
/s. (a) Estimate the boundary-

layer thickness at  the  end of the plate. Estimate the friction drag for (b) turbulent 

smooth-wall flow from the leading  edge, (c) laminar  turbulent  flow  with    Retren =  

5 × 10
5
  

 

 

Thus the trailing-edge flow is certainly turbulent. The maximum boundary-layer 

thickness would 

occur for turbulent flow starting at the leading edge. 

 

 

                 

For fully turbulent smooth-wall flow, the drag coefficient on one side of the plate is, 

 

 

 

0.0065 m 

 



 

Then the drag on both sides of the foil is approximately 

 

 

 

 

 

 

 

The drag can be recomputed for this 

lower drag coefficient: 

 

 

 

Example: Consider the smooth square 10 by 10 cm duct in below Figure. The fluid is 

air at  20°C  and 1 atm, flowing at Vavr = 24 m/s. It is desired to increase the pressure 

drop over the 1-m length  by adding sharp 8-mm-long flat plates across the duct, as 

shown. (a) Estimate  the  pressure  drop  if there are no plates. (b) Estimate how many 

plates are needed to generate an additional 100 Pa  of pressure drop.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) To estimate the plate-induced pressure drop, first calculate the drag on one plate: 

 

 

 

Since the duct walls must support these plates, the effect is an additional pressure 

drop: 

                                          Boundary Layer 
 

Q1:  For flow at 20 m/s past a thin flat plate, estimate the  distances  x  from  the  

leading edge  at which  the  boundary  layer  thickness  will  be  either 1 mm or 10 cm,  

for (a) air;  and  (b) water   

For air,  take  ρ = 1.2 kg/m
3
  and  μ = 1.8 ×10

-5
  kg/m.s  and  for  water ,  take  ρ= 998 

kg/m
3
  and  

μ = 0.001 kg/m.s.                                            Ans :  a) 0.0533 m , 6.06 m     b) 0.0442 

m  ,  9.5 m  
 

 

355.84  N 

320.25  N 



Q2
 
:  Air, equivalent to a Standard Altitude of 4000 m, flows at 201 m/s past a wing 

which  has  a thickness of 18 cm, a chord length  of 1.5 m, and a  wingspan  of 12 m. 

What  is  the  appropriate value  of  the  Reynolds   number   for   correlating   the   lift   

and   drag   of   this   wing ?  Take  ρ0.819 kg/m

, μ1.66 × 10

-5
 kg/ms.                                                                 

Ans : 1.5 × 10
7 

 

 

Q3: A smooth ceramic sphere (s.g 2.6) is immersed in a flow of  water  at  of  

velocity 25 cm/s. What is the sphere diameter if it is encountering (a) creeping 

motion, Red 1; or (b) transition to turbulence, Red = 250,000?  For water, take ρ = 

998 kg/m
3
 and μ = 0.001 kg/m.s. 

  Ans:  4×10
-6

 m   ,   1 
 

 

Q4: Air, ρ =1.2 kg/m
3
 and μ = 1.8× 10

-5
 kg/m.s, flows at 10 m/s  past a flat  plate. At  

the trailing edge of the plate, the following velocity profile data are measured: 

 

 

 

 

 

If the upper surface has an area of 0.6 m
2
, estimate, using momentum concepts, the 

friction drag, in newtons, on the upper surface. Take the relation of 

friction drag as  

Ans: 0.073 b                                                                                                                     
                     

  

Q5 : Given the parabolic profile with the more accurate sinusoidal profile and repeat 

the flat-plate momentum analysis : 

 

 

 

 

and  δ
*
/θ Compute momentum-integral estimates of                                    

 

 

 

 

Q6 : Air  flows  at  2 m/s  past  a  sharp  flat  plate. Assuming  that  the  Kármán 

parabolic-profile analysis, is accurate : 

 

 

For air, take ρ= 1.2 kg/m
3
 and μ = 1.8×10

-5
  kg/m.s. Estimate:    (a)  the  local  

velocity  u  ;    and             (b) the local shear stress  at  the  position (x, y) (50 cm, 5 

mm).  

 u 



                                                                                                           Ans : 1.44 m/s  ,   

0.036 N/m
2
  

Q7 :  Helium at 20C and low pressure flows past a thin flat  plate 1 m  long  and 2 m  

wide. It  is desired that the total friction drag of the plate be 0.5 N. What is the 

appropriate absolute pressure of the helium if U 35 m/s? 

        Ans : 

25500 N/m
2 
 

Q8:  Suppose you buy a 4 ×2.44 m  sheet of  plywood  and   

put it on your roof rack, as  in  the  Figure. You drive home 

at 15.6 m/s. (a) If the board  is  perfectly  aligned  with  the  

airflow ,  how  thick   is  the  boundary  layer  at  the  end ?  

(b) Estimate   the    drag   if   the   flow   remains   laminar. 

(c)  Estimate   the  drag   for  ( smooth )   turbulent   flow . 

                    

        

                                                                      Ans: a) 0.00765 m , 0.047 m    b) 0.73 N  

    c) 3.3 N  
Q9: Devise a scheme for determining the boundary-layer thickness  more  accurately  

when  the flow is laminar up to a point Rex,crit  and turbulent thereafter. Apply this  

scheme  to  computation of the boundary-layer thickness at x 1.5 m in 40 m/s flow 

of air at  20C  and 1 atm  past  a  flat 

plate. Assume Rex,crit 1.2E6.   

Ans: 0.0213 m                      
 

Q10: Air at 20C and 1 atm enters Lo= 40-cm square 

duct as  in   the   Figure.  Using   the   displacement 

thickness   estimate   (a)  the   mean   velocity   and   

(b) the mean pressure  in  the  core  of  the  flow  at 

the  position  x 3 m.   (c)  What   is   the   average 

gradient, ∆p/x  in Pa/m, in this section? 

  

 

 

Ans : 2.175 m/s  , 0.56 N/m
2 

, -0.15 pa/m  
 

Q11:  A thin smooth disk of diameter D is Immersed parallel to a  uniform  stream  of 

velocity  U. Assuming laminar flow and using flat-plate theory as a guide, develop  an  

approximate  formula for the coefficient of the drag of the disk. 

Ans: 
  

Q12:  In  the  flow  of   air at 20C and 1 atm 

past a flat  plate   in   the   Figure  ,  the   wall 

shear is to be determined at  position  x  by  a 

floating element (a small  area  connected  to 

a strain-gage force measurement). At x 2 m,  

the   element   indicates  a   shear   stress   of 

2.1 N. Assuming  turbulent  flow   from   the 

leading edge, estimate (a) the stream velocity 

help : use  

Vexit V 



U,  (b) the boundary layer thickness δat  the 

Element ,  and   (c)  the  boundary-layer  

velocity u, in m/s, at 5 cm above the element. 
       


