CLASSIFICATION OF MARINE ZOOPLANKTON

Marine Zooplankton

Classification of Marine Organisms

- 1. Benthos: bottom dwellers; sponges, crabs
- 2. Nekton: strong swimmers- whales, fish, squid
- 3. Plankton: animal/plants that drift in water. They have little control over their movement.

Includes:

Cyanobacteria, Diatoms, Dinoflagellates, Copepods, Amphipods, Chaetognaths, Jellyfish, Larvae of Invertebrates & Vertebrates ...etc

Plankton

- Victor Hensen in 1887
- The term "plankton" meaning wanderer to apply to the minute floating and drifting organisms
- Plant (phytoplankton) or animal (zooplankton)
- Plankton are often used as indicators of environmental and aquatic health because of their high sensitivity to environmental changes and short life span.
- Plankton forms an important link in the marine food chain as primary and secondary producers.

Zooplankton

Zooplankton (Greek: Zoon, animal; *planktos*, wandering) are myriads of diverse floating and drifting animals with limited power of locomotion

Majority of them are microscopic, unicellular or multicellular forms with size ranging from a few microns to a millimeter or more

These usually microscopic organisms occupy a key position in the pelagic food web, as they transfer organic energy produced by phytoplankton to higher trophic levels, including fishes exploited by man

Why study them?

- Most abundant animal on earth
- Secondary producers in marine systems
- Found in nearly both pelagic and benthic habitats
- Critical step in marine food chains
- Early life-stages of important commercial fish, shellfish
- Important in nutrient cycling

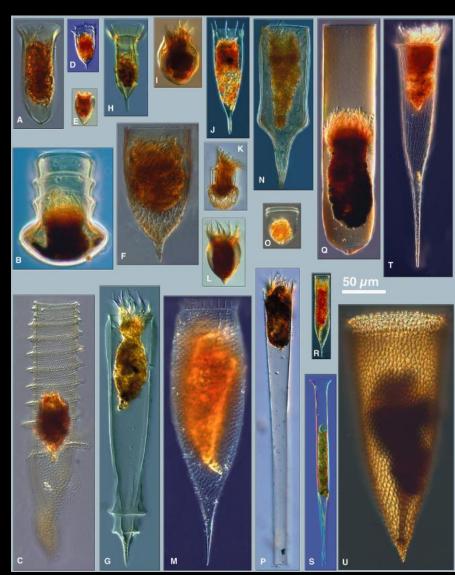
Classification Based on size

Femtoplankton (0.02–0.2 μm)

eg. Vibrio plankton, Bacterio plankton

Picoplankton (0.2–2µm)

eg. Phytoplankton, protozooplankton etc.


Nanoplankton $(2-20\mu m)$

eg. Phytoplankton, Heterotrophic nanoflagellates feeding on bacteria

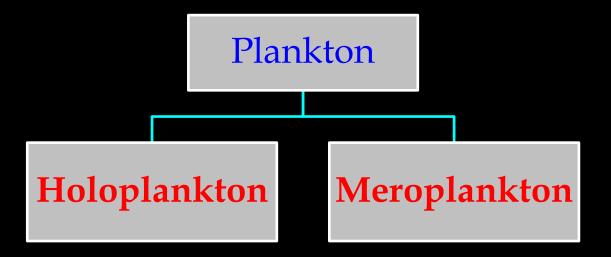
Microplankton (20–200μm)

eg. Phytoplankton, eggs and early

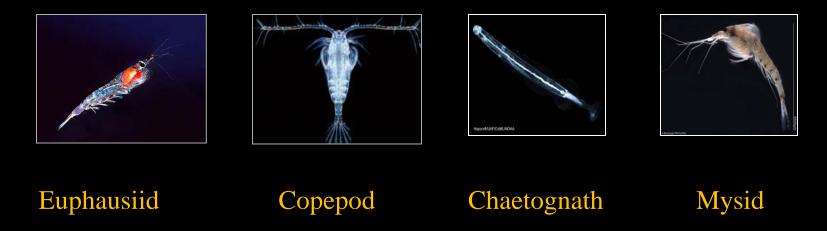
larval stages of crustaceans etc.

Classification Based on size

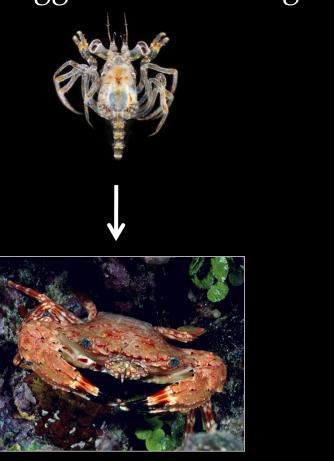
Term	Size	Examples
Macrozooplankton	> 20 mm (> 2 cm)	Metazoans: Chaetognaths; Medusae; Ctenophores; Salps, Doliolids, adult and juvenile Decapods
Mesozooplankton	0.2-20 mm	Metazoans: Copepods; Cladocerans; Ostracods; Chaetognaths; Tunicates;
		Pteropods; Heteropods


Based on ecology

Neritic Plankton:- those inhabiting waters overlying continental shelves


Oceanic Plankton:- those inhabiting waters beyond the continental shelves

Based on length of planktonic life



Holoplankton (Permanent plankton):- whole life as plankton

Meroplankton (Temporary plankton):- only a part of their life cycle as plankton

Eg: Eggs and larval stages

Based on depth distribution

Pleuston:- Those living at the surface of the sea, part of whose bodies project in to the air.

Neuston:- living in the upper most part (few to 1 mm) of the surface layer

Epipelagic:- living between 0-200 m

Mesopelagic:- living between about 200 and 1000 m in day time

Bathypelagic:- living below 1000 m-3000 m depth

Abbyssopelagic:->3000 depth

Epibethic or demersal:- live near or temporarily on the seafloor, mostly crustaceans (shrimps and mysids) and fishes

Based on food habit

- Herbivorous: feed on phytoplankton

 Eg. Most of the Copepods, shrimps larvae etc.
- Carnivorores: feeds on other small zooplankton. Eg. Chaetognaths, ctenophores etc.
- Omnivores:- feeds both on phytoplankton and zooplankton.

 Eg. Mysids
- Detrivores: feed primarily on dead organic matter (detritus)

Life cycle of zooplankton

In general, the smallest plankton have the shortest life cycles, bacteria and flagellates generally multiply within a few hours to one day.

Most mesozooplankton have life cycle of few weeks, while the macro-and mega plankton usually have life cycle spanning many months and longer.

Zooplankton Sampling

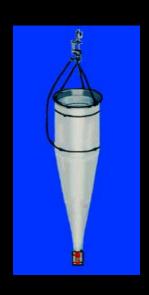
Type of Sampling

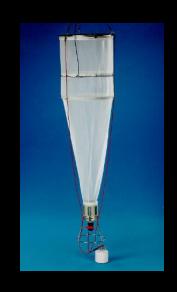
- Quantitative sampling:- to obtain information about their systematic, their distribution in time and space, their life histories, their community structure and trophic relationships.
- Qualitative sampling:- to obtain information about their production, biomass, population dynamics and physiology.
- Standard sampling:- to investigate long term variations in species composition and abundance of plankton community on a particular region.

Zooplankton methodology

- **Collection**
- **Fixation**
- preservation

Standard Plankton net


Different type of Plankton nets


Bongo Net

WP Net

Nansen closing net

IOS net

Heron Tranter Net

Multiple Plankton Sampler (MPS)

MOCNESS

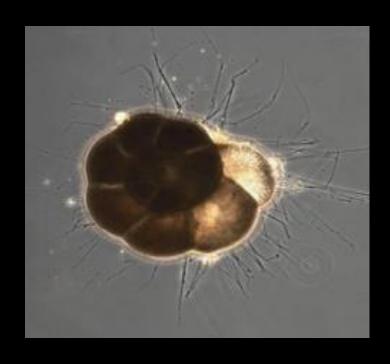
MPN

AMPS

BIONESS

RMT 1+8

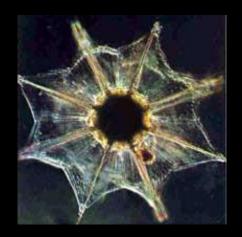
Preserved samples

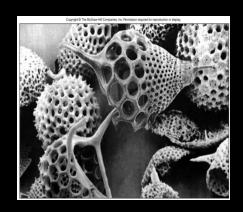

Important Zooplankton Groups

Phylum: Protozoa

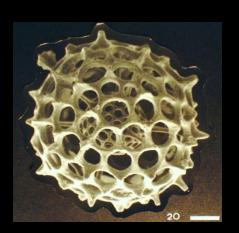
Class: Sarcodina

Foraminifera




Phylum: Protozoa

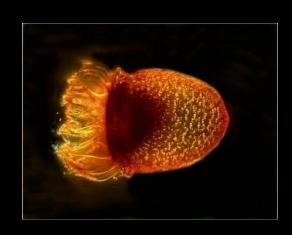
Class: Sarcodina


Acantharia

Radiolaria

Phylum: Protozoa

Class: Ciliata


Oligotricha

Tintinnidiidae

Phylum: Cnidaria

Hydrozoa

Siphonophora

Siphonophora

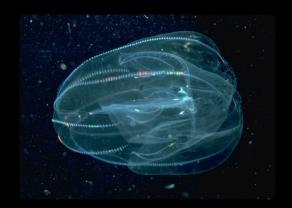
Leptomedusa

Phylum: Cnidaria

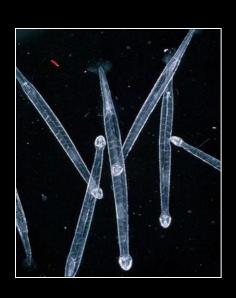
Scyphozoa

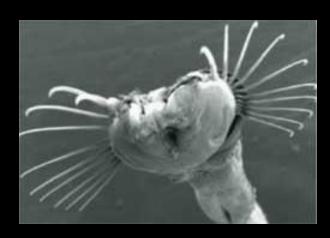
Phylum: Cnidaria

Anthozoa



Phylum: Ctenophora





Phylum: Chaetognatha

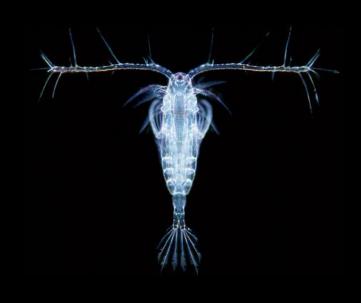

Phylum: Annelida

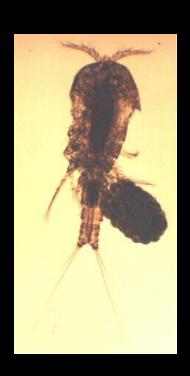
Polychaeta

Crustaceans

Cladocera

Copepoda




Cyclopoid

Calaniod

Herpaticoida

Ostracoda

Phylum: Arthropod Mysids

Amphipoda

Isopoda

Cumacea

Euphausiid

Decapoda

Phylum: Mollusca

Gastropod

Phylum: Mollusca

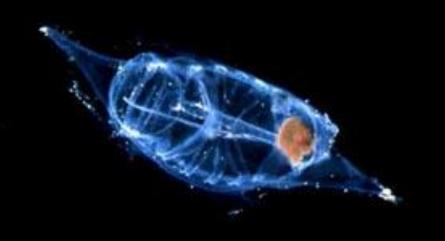

Pteropod

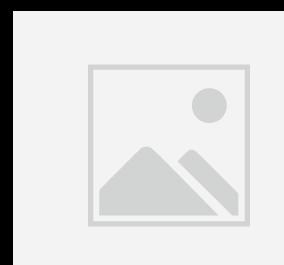
Phylum: Mollusca

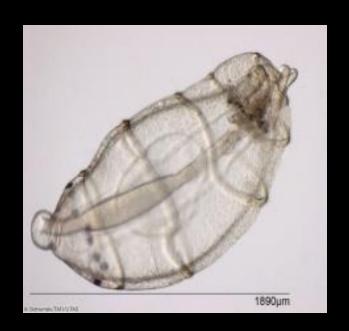
Heteropod

Phylum: Chordata

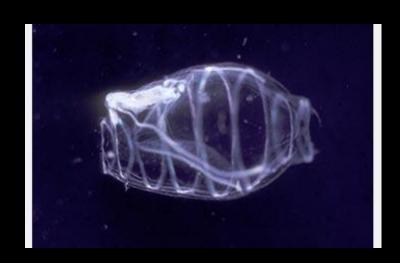
Subphylum: Urochordata


Oikoplura




Pyrosoma

Salpa



Doliolid

Protochordates

Invertebrate larvae

Phoronid larva

Nereid larva

Cephalochordate larva

Glaucothoe larva

Veliger larva

Phyllosoma larva

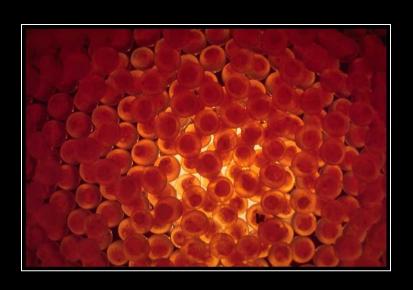
Invertebrate larvae

Megalopa larva

Nauplius

Brachyuran larva

Auricularia larva



Alima larva

Bipinnaria larva

Fish eggs and larvae

Ecological Significance of Zooplankton

- Vertical Migration
- Deep Scattering Layer (DSL)
- Bioluminescent zooplankton
- Tropical submergence
- Zooplankton and fisheries
- Ecological indicators water mass and fishery
- Food for baleen whales Antarctic krill
- Herring fish shoals Calanus

Economical significance

- Food for commercial fishes
- Calcareous and siliceous oozes a resource material for thermal insulators and chromatographic columns

Thank you