CLIMATE CHANGE AND ITS EFFECTS ON ECOSYSTEMS

H2H Conservation in a Changing Climate

Northern Institute of Applied Climate Science

Climate

Carbon

Bioenergy

www.nrs.fs.fed.us/niacs/

NIACS is a regional multi-institutional partnership

Forest Service

- Northern Research Station
- Eastern Region
- Northeastern Area S&PF

Non-FS partners

- Michigan Technological University
- National Council for Air & Stream Improvement
- Trust for Public Land

CLIMATE CHANGE RESPONSE FRAMEWORK

Climate-Informed Conservation and Forest Management

forestadaptation.org

Climate Change Response Framework

Structured, process oriented, works on multiple scales

Applied Climate Science

Scientists still disagree about climate change, right? So who am I supposed to believe?

Disagreement?

Intergovernmental Panel on Climate Change (2007)

- Evidence for climate change is "unequivocal"
- It is "extremely likely" that humans are major contributors
- Future changes depend partly on human actions

18 National Academies have endorse the consensus position in IPCC 2007

- National Academy of Sciences (USA)
- Royal Society of Canada

Scientists still disagree about climate change, right? So who am I supposed to believe?

- No scientific debate on "if".
- Current scientific debate revolves around how much, how fast, and feedback mechanisms.
- Most climate scientists agree humans are a driver.

A practical risk assessment may be a better strategy than belief.

Hasn't climate always changed? Why worry now?

Change happens.

Milankovitch Cycles

Eccentricity – more or less oval orbit, every ~100,000 years **Precession** – earth wobbles on its axis, every ~23,000 years **Tilt** – earth shifts its tilt every ~41,000 years

Change happens.

see also: Hansen et al. 1990, Petit et al. 1999, Shackleton 2000, Ruddiman 2006, Shakun et al. 2012

Change happens.

The average global surface temperature has risen 1.4 °F over the past 100 years

IPCC 2007

Hasn't the climate always changed? Why worry now?

- Milankovitch cycles have previously driven climate changes.
- Humans are driving the current change.
- The change is very rapid.

The rapidity and potential severity of climate change will affect forestry, agriculture, infrastructure, demographics, economies, ... virtually everything. The atmosphere is massive, how can we actually change it?

Anthropogenic change?

Anthropogenic change?

Billion tons of Carbon (GTC)

2007, IPCC 2007,

Tarnocai et al. 2009.

fossil fuels and cement,

1751-2008.

Figure modified from Climatesafety.org

Anthropogenic change?

- Global GHG emissions from human activities increased 70% between 1970-2004
- Emissions of CO₂, the most important anthropogenic
 GHG, grew about 80% between 1970 and 2004.

IPCC 2007

The atmosphere is massive, how can we change it?

- We move massive amounts of carbon into the atmosphere.
- Fossil carbon is an addition it has been isolated from the carbon cycle for millions of years.
- Land cover change transfers carbon to the atmosphere.

The measurement record clearly shows our additions to the atmosphere.

How has climate changed over the past century?

Observed Climate Trends

Warmer temperatures

- CT temperatures increased more than 2.5°F since 1895
- Winter has warmed most
- Extremely hot days have increased
- Longer growing season
- Plants flowering more than a week earlier at Walden pond since 1880s

Annual Temperature Change since 1895

Observed Climate Trends

Altered Precipitation

- CT precipitation increased nearly 3" since 1895
- Extremely high variability from year to year
- Slight decrease in spring; increase of 2" in fall
- Substantial increases in extreme rain events: 71% increase across northeast since 1958

Annual Precipitation Change since 1895

Observed Climate Trends

Sea-level Rise

- Sea level rose about 1 foot since 1900
- Increases in coastal flooding

How is the climate expected to change over the next century?

Future Changes – inherent uncertainty

Anticipated Climate Changes

Warmer temperatures

3-9°F increase annually

Altered precipitation

- High variability: slight decrease to more than 15% increase
- Generally increasing in winter & spring
- Potential decreases or less substantial increases in summer & fall
- More extreme rain

Sea-level Rise

I2 to 23" by end of century

Hammonasset Beach State Park will be mostly inundated by sea level rise by the end of the century. (Photo Crodit: CT DEEP)

How could ecosystems be affected?

WATER: Less Snow

Projected decreases in snow fall, cover, and depth

- 30-70% decreases in snowfall
- Greatest snowfall decreases in December or January

Percent change in snowfall (late 21st century)

Notaro et al. 2014; Figure: Center for Climatic Change, http://ccr.aos.wisc.edu/resources/data_scripts/LCC/

WATER: Less Snow, but More Rain

Precipitation is projected to increase = <u>more rain</u>

Dale et al 2001, Huntingon 2004, Parmesan 2006

WATER: Less Snow, but More Rain

Precipitation is projected to increase = <u>more rain</u>

Altered streamflow timing and amount

- Earlier spring peak flows
- Potential increases in flashiness and episodic high flows
- Potential declines in summer seasonal stream flow

WATER: Potential for Summer Drought

Greater uncertainty about future precipitation, but increased risk of summer moisture stress

WATER: Potential for Summer Drought

Greater uncertainty about future precipitation, but increased risk of summer moisture stress

Warmer temps increase water loss

PLANTS: Longer Growing Season

Warmer temps result in longer growing seasons

- Projected to increase 3-7+ weeks
- Evidence of phenological shifts

Longer period for plant growth

Potential risks:

- Early bud break/loss of cold hardening
- Frost damage during spring freezing

Habitat based on:

- Temperature
- Precipitation
- Elevation
- Latitude
- Soils
- Slope & Aspect
- Land use
- Competition
- Past management

Habitat based on:

- Temperature
- Precipitation
- Elevation
- Latitude
- Soils
- Slope & Aspect
- Land use
- Competition
- Past management

www.fs.fed.us/nrs/atlas/

Climate Change Atlas: What happens to tree and bird habitat when climate changes?

- •134 Trees
- 147 Birds

- Habitat based on:
- Temperature
- Precipitation
- Elevation
- Latitude
- Soils
- Slope & Aspect

Red Spruce: Current Habitat (modeled)

www.fs.fed.us/nrs/atlas/

- Habitat based on:
- Temperature
- Precipitation
- Elevation
- Latitude
- Soils
- Slope & Aspect

Red Spruce: Current Habitat (modeled)

GFDL A1FI (More Change)

www.fs.fed.us/nrs/atlas/

Habitat based on:

- Temperature
- Precipitation
- Elevation
- Latitude
- Soils
- Slope & Aspect

Black Oak: Current Habitat (modeled)

PCM B1 (Less Change)

GFDL A1FI (More Change)

www.fs.fed.us/nrs/atlas/

- Immense lag times
 - Range shifts ≠ instant catastrophic dieback
- Factors causing change will increase over time
 - Temperature
 - Moisture
 - Competition
- Mature and established trees should fare better
 - Developed root system
 - Greater carbohydrate reserves
- Game changers: Disturbance, Land use, ...

PLANTS: Invasive Plants

- Expanded ranges under warmer conditions
- Stress or disturbance from other impacts can affect the potential for invasion or success

Invasives Plants Atlas of New England (www.eddmaps.org)

DISTURBANCE: Extreme Events

- Heavy precipitation
- Ice storms
- "Events" are not well modeled

- Heat waves/droughts
- Wind storms
- Hurricanes

DISTURBANCE: Insect Pests & Diseases

- Stress from other impacts increases susceptibility
- Pests migrating northward
- Decreased probability of cold lethal temperatures
- Accelerated lifecycles

HWA lethal temp: -20 to -30°F

Ayres and Lombardero 2000, Woods et al. 2005, Parmesan 2006, Dukes et al. 2009 Image: Frumhoff et al. 2007

Climate Change Impacts

- 1) Less Snow, More Rain
- 2) Potential for Summer Drought
- 3) Longer Growing Season
- 4) Changes in Suitable Habitat
- 5) Invasive Plants
- 6) Extreme Events
- 7) Forest Pests and Diseases

Where do we go from here?

Vulnerability: Local Considerations

Research and assessments describe **broad trends** but **local conditions** make the difference.

