
System Modeling
&

Control

Presented by

Prof. Amit Kumar Sahoo

CUTM, BBSR

Module VII
Controllers

Controllers

Suppose you have a system that needs
to be controlled

Your software gives commands, the
system responds to it

Turn x degrees to the right

Move forward 15 wheel rotations

Can you always trust your commands will
be executed accurately?

Introduction

Lesson - 35

Problem example

Increase the quantity until you get to the setpoint

Temperature, angle, speed, etc

If too much, reduce the quantity, until the setpoint

setpoint

overshoot Ripple

Closed loop controller

setpoint
controller system

measured quantity

error signal output

• closed loop because it has feedback

• output is measured at a certain frequency

• signal is generated at a certain frequency

• which frequency is not smaller?

On-off control

For some systems, on-off signaling is sufficient

For example, a thermostat, when the heater is
either on or off, and early cruise-control systems

Could do airflow or speed control also

More modern systems do it

Depending on the frequency of control, overhead of
on-off, etc, this could cause overshoots and
undershoots (ripples)

Oscillation is a common behavior in control systems

Need to avoid it at all costs… well, almost all costs

Proportional control

Good alternative to on-off control: more “control” 

Signal becomes proportional to the error

P (setpoint – output)

Example, car speed for cruise control

Need to find out value of constant P

Tuning the controller is a hard job

If P is too high, what happens?

If P is too low, what happens?

Typically a prop cntrl decreases response time
(quickly gets to the setpoint) but increases
overshoot

Adding derivative control

To avoid (or reduce) overshoot/ripple, take into
account how fast are you approaching the
setpoint

If very fast, overshoot may be forthcoming: reduce the
signal recommended by the proportional controller

If very slow, may never get to setpoint: increase the
signal

In general: D (current measure – previous measure)

PD controllers are slower than P, but less
oscillation, smaller overshoot/ripple

Integral control

There may still be error in the PD controller

For example, the output is close to setpoint

P is very small and so is the error, discretization of signal will
provide no change in the P controller

D controller will not change signal, unless there is change in
output

Take the sum of the errors over time, even if they’re
small, they’ll eventually add up

I * sum_over_time (setpoint — output)

Again the main problem is the value of I

Can we let sum grow to infinity?

Summary

Different types of controllers

PID hardest task is tuning

Controller Response

time

Overshoot Error

On-off Smallest Highest Large

Proportional Small Large Small

Integral Decreases Increases Zero

Derivative Increases Decreases Small change

Lesson - 36

Tips for Designing a PID Controller

1. Obtain an open-loop response and determine what needs to be improved

2. Add a proportional control to improve the rise time

3. Add a derivative control to improve the overshoot

4. Add an integral control to eliminate the steady-state error

5. Adjust each of Kp, Ki, and Kd until you obtain a desired overall

response.

Lastly, please keep in mind that you do not need to implement all three controllers

(proportional, derivative, and integral) into a single system, if not necessary. For

example, if a PI controller gives a good enough response (like the above

example), then you don't need to implement derivative controller to the system.

Keep the controller as simple as possible.

