

INTRODUCTION

The dairy industry involves processing raw milk into products such as consumer milk, butter, cheese, yogurt, condensed milk, dried milk (milk powder), and ice cream, using processes such as chilling, pasteurization, and homogenization. Typical by-products include buttermilk, whey, and their derivatives. Dairy industries have shown tremendous growth in size and number inmost countries of the world. These industries discharge wastewater which is characterized by high chemical oxygen demand, biological oxygen demand, nutrients, and organic and inorganic contents. Such wastewaters, if discharged without proper treatment, severely pollute receiving water bodies.

DAIRY PROCESSING

Dairy processing plants can be divided into two categories:

- Fluid milk processing involving the pasteurization and processing of raw milk into liquid milk for direct consumption, as well as cream, flavored milk, and fermented products such as buttermilk and yogurt.
- Industrial milk processing involving the pasteurization and processing of raw milk into value-added dairy products such as cheese and casein, butter and other milk fats, milk powder and condensed milk, whey powder and other dairy ingredients, and ice cream and other frozen dairy products.

DAIRY PROCESSING ACTIVITIES

- **Raw Milk Collection, Reception and Storage**
- **Separation and Standardization**
- Homogenization
- **Heat Treatment and Cooling of Milk Products**
- >Milk and Dairy Product Production
 - Milk production
 - Cheese production
 - Butter production
 - Milk powder production
- > Packaging of Milk and Dairy Products

SOURCES OF WASTEWATER

DAIRY PROCESS

Preparation stages

1) Milk receiving/storage

 Pasteurization/Ultra heat treatment

SOURCES OF WASTE

- Poor drainage of tankers
- Spills and leaks from pipes
- Foaming
- Spils from storage tanks
- Cleaning operations
- Liquid losses
- Foaming
- Recovery of downgraded product
- Cleaning operations
- Deposits on surface of heating equipment.

3) Homogenisation

Liquid losses/leaks

4) Separation/Clarification

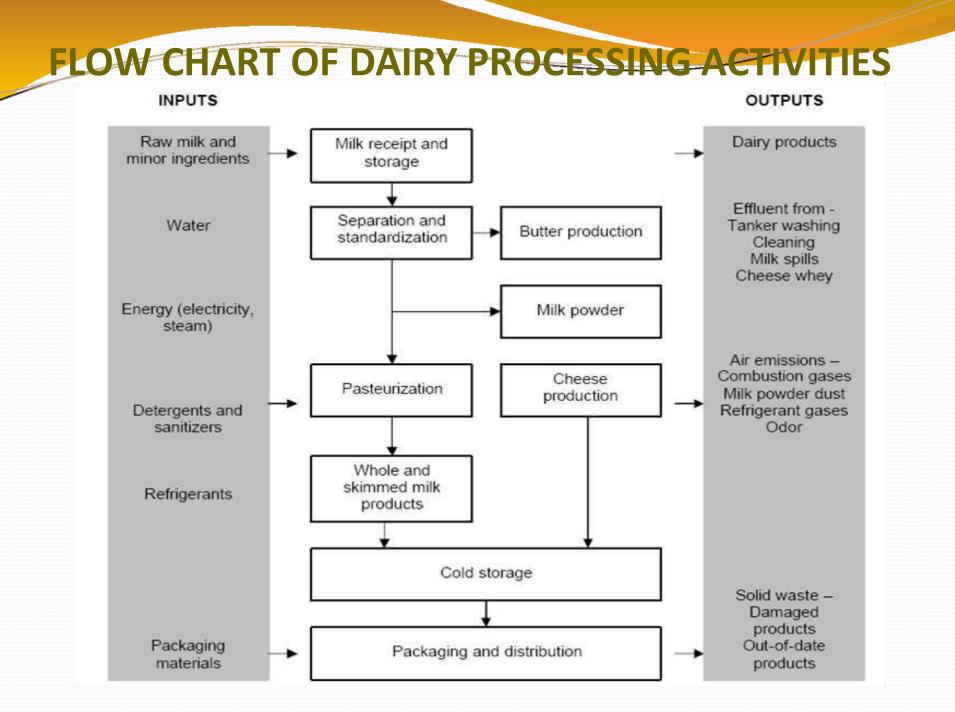
Product Processing Stage

5) Market milk

- Cleaning operations
- Foaming
- Pipe leaks
- Product washing
- Sludge removal from clarifier
- Damaged milk packages
- Overfilling
- Poor drainage
- Cleaning of filling machinery
- Leaks
- Cleaning operations

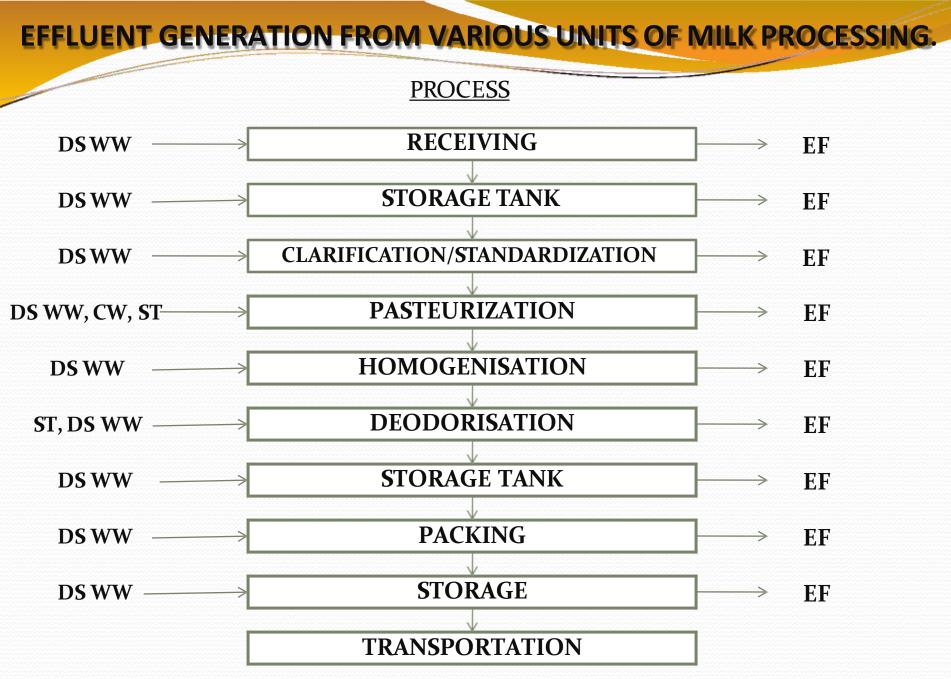
7) Butter Making

8) Milk powder manufacture


- **Overfilling** vats
- Incomplete separation of whey from curd
- Using salt in cheese making
- Product washing
- Vacreation(reduced pressure pasteurization using stream) and salt use.
 Spills of powder handling
- Start up and shut down losses
- Plant malfunction
- Stack losses
- Cleaning of evaporators and driers
- Bagging losses

PACKAGING OF MILK AND DAIRY PRODUCTS

- Packaging protects the product from bacteriological, light, and oxygen contamination.
- Liquid milk products may be packed in a beverage carton, which is mainly paperboard covered by a thin layer of food-grade polyethylene on eitherside.
- Milk cartons for long-life milk have an additional layer of aluminum foil.
- Many other packaging materials are also used, ranging from simple plastic pouches to glass bottles, PET laminates and PVC bottles.



WASTEWATER GENERATION

- The dairy industry is one of the most polluting of industries, not only in terms of the volume of effluent generated, but also in terms of its characteristics as well.
- A chain of operations involving receiving and storing of raw materials, processing of raw materials into finished products, packaging and storing of finished products, and a group of other ancillary operations (e.g., heat transfer and cleaning) will produce wastewater.

DS-Detergents and Sanitizing Agents, WW-Wash Water, ST-Steam, CW-Cooling Water.

CHARACTERISTICS OF WASTEWATER

- Dairy wastewater contains milk solids, detergents, sanitizers, milk wastes, and cleaning water.
- It is characterized by high concentrations of nutrients, and organic and inorganic contents.
- Salting activities during cheese production may result in high salinity levels.
- Wastewater may also contain acids, alkali with a number of active ingredients, and disinfectants, as well as a significant microbiological load, pathogenic viruses, and bacteria.
- Other wastewater streams include cooling water from utilities, storm water, and sanitary sewage.

CHARACTERISTICS OF WASTEWATER

Parameters	UNITS	GUIDELINE VALUE
рН	-	4-12
Suspended solids	mg/l	24-5700
BOD ₅	mg/l	450-4,790
COD	mg/l	80 - 95000
Total nitrogen	mg/l	15-180
Total phosphorus	mg/l	11-160
Oil and grease	mg/l	10
Total coliform bacteria	Mpn/100ml	400
Magnesium	mg/l	25-49
Potassium	mg/l	11-160
Chloride	mg/l	48-469
Calcium	mg/l	57-112

- > Dairy generates 800 m³/day waste water effluent
- Waste water sources are spilled milk, spoiled milk, wash water from bottles/ equipment/ plant, spillage & leakage from pumps
- The waste water effluent & treated water characteristics from ETP at 27°C (Source: Ecosystem India; Primary Survey)

Parameters	рН	BOD	COD	TSS	TDS	Oil & Grease
Unit	-	[mg/ liter]				
Effluent	5.9 to 7.5	1200-1600	3500-4500	300-600	800-1200	150-400
Treated water	6.5 - 8.5	< 30	< 100	< 100	< 800	< 10
Efficiency [%]	-	97.85	97.5	77.8	-	93.3

Comments: (i) Effluent COD is high (~COD 2400 mg/l) (ii) Disposal of oil & grease from Fat Separation Tank is a limitation

EFFECTS WHEN WASTEWATER DISCHARGED TO LAND

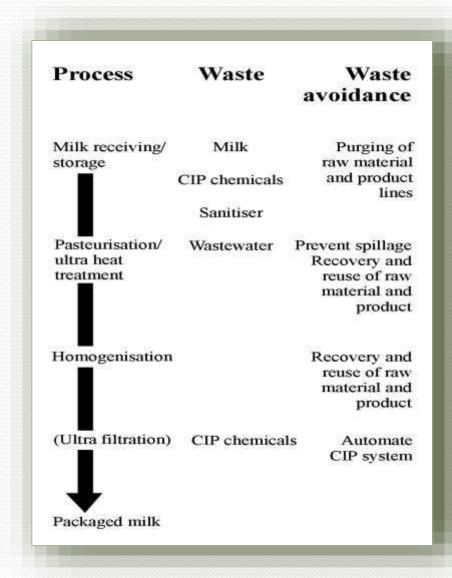
- Dissolved salts contained in dairy plant wastewater can adversely affect soil structure if wastewater is used to irrigate land.
- Wastewater can also leach into underlying groundwater and affect its quality.
- High salt levels affect the type of vegetation that grow.
- Over-irrigation may cause the underlying water table to rise, resulting in further deterioration of surface soils and vegetation.

EFFECTS WHEN WASTEWATER DISCHARGED TO SEWER

- The volume and organic load of wastewater from just one dairy factory during peak season may well exceed the township's domestic waste.
- This may overload the sewage treatment plant, cause odors and give rise to poor effluent quality.
- Domestic wastewaters have a BOD5 concentration of about 250 to 300 mg/L but in peak season a large dairy factory could be discharging two mega liters of wastewater at BOD5 of 2,000 mg/L each day – the additional load on a sewerage plant is equivalent to an extra 16,000 persons which is very difficultto treat.

WASTE MINIMIZATION

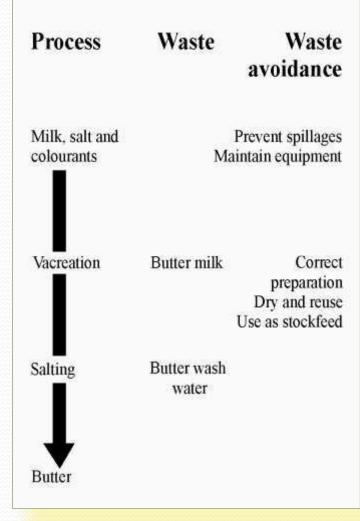
Waste minimization measures may include:


- reducing use of water
- reducing use of chemicals or substitution of mineral salts – for example, potassium in place of sodium compounds
- recycling water and chemicals
- recovery and reuse of product from first reuse
- recovering and reusing spilled raw materials and products.

AVOIDING WASTE DURING LIQUID MILK PRODUCTION

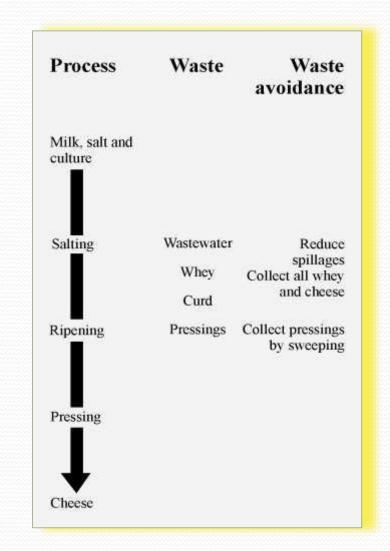
Liquid milk production may lead to the generation of odour, wastewater, noise and solid waste.

Suggestions for avoiding wastes during liquid milk production are given in Figure.


VOIDING WASTE DURING BUITTER PRODUCTION

> Ways to prevent the build up of surface deposits include:

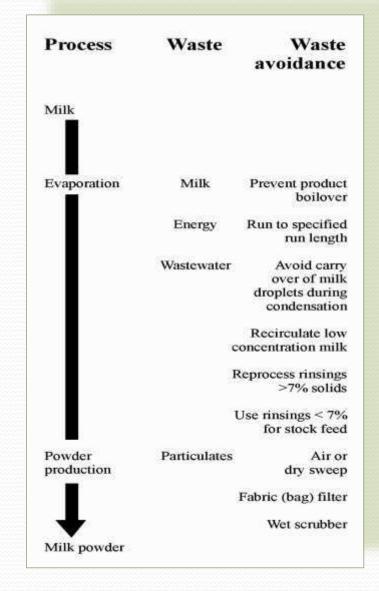
- minimisation of surface area
- prevention of build-up of milk stone deposits
- maintenance of butter churns
- correct preparation before filling
- not over-working the batch


>To avoid spills, buttermilk collection facilities should be large enough to hold all buttermilk discharged. Buttermilk should be dried or used as animal feed and solids recovered from butter wash water also may be sold as stock feed.

> Suggestions for avoiding wastes during butter production are summarised in Figure .

AVOIDING WASTE DURING CHEESE PRODUCTION

- Making cheese generates a large volume
- of by-products such as whey.
- Waste reduction can be achieved by:
 not overfilling cheesevats to stop curd loss
 - completely removing whey and curds from vats before rinsing
 segregating all whey drained from cheese
 - sweeping up pressings (particles)
 screening all liquid streams to collect fines.
- >These suggestions are summarised in
 Figure


AVOIDING WASTE DURING MILK POWDER PRODUCTION

It is suggested that evaporators be operated to: *maintain a liquid level low enough to stop product boil-over

*run to specified length – excessivelylong runs with higher than specified running rates lead to blocked tubes which not only produce high pollution, but are difficult and time consuming to clean

*use effluent entrainment separators to avoid carry-over of milk droplets during condensation of evaporated water
*minimize air emissions by using fabricfilters or wet scrubbers.

*These suggestions are summarized in Figure

REUSE AND RECYCLE

- Many dairy plants have technologies in place for recovering wastewater and/or for reuse in the dairy plant.
- Reuse and recycling can considerably decrease the volume of mains water required to operate the plant.
- Reuse and recycling reduce the cost of both mains water and wastewater disposal.
- Fats, milk solids and minerals can also be recovered from wastewater and recycled either at the dairy plant or offsite.
- Cleaning chemicals can also be recovered and reused on site.

BY-PRODUCT RECOVERY

- A dairy by-product may be defined as a product of commercial value produced today the manufacture of a main product.
- In recent years there has been wide spread and increasing interest through out the world in creating newer channels of utilization for the by-products of the dairy industry.
- Conversion of edible substances into non-food items is not ordinarily justifiable especially in countries where there is an overall shortage of milk supplies.
- It has always been realized that economic disposal of byproducts is an essential perquisite to profitable dairying.

DAIRY BY-PRODUCTS

MAIN PRODUC T	BY PRODUCT	PRODUCTS MADE		
		Flavored milk		
	SKIM MILK	Sterilized flavored milk		
CREAM		Cultured Buttermilk		
		Concentrated sour skim milk		
		Plain and Sweetened Condensed skim milk		
		Dried skim milk or Skimmilk powder or Non Fat Dry Milk (NFDM)		
		Cottage cheese, edible casein		
	הזיתידה	Condensed buttermilk		
BUTTER	BUTTER MILK	Dried buttermilk		
		Soft cheese		

DAIRY BY-PRODUCTS

MAIN PRODUCT	BY PRODUCT	PRODUCTS MADE	
		Whey beverage, Yeast whey	
CHEESE, CASIN, PANEER	WHEY	Plain and sweetened condensed whey	CEAS SAWhey Protein
		whey protein concentrate, lactose	Million Contraction
		whey protein concentrate, whey paste, lactose	一個目
		Ricotta cheese	
CHER	OTTEE		and and a second second

-2

6 30

BIOCHEM

GHEE

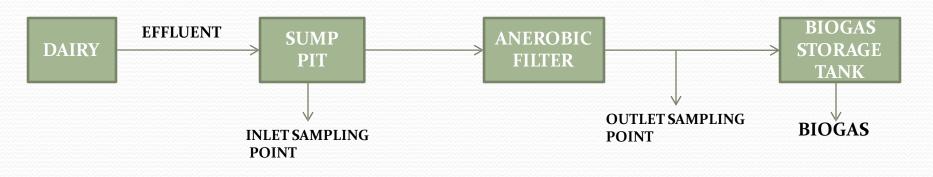
GHEE RESIDUE Sweetmeat, Toffee, Sweet paste

UTILIZATION OF DAIRY WASTE FROM MILK INDUSTRY IN PRODUCTION OF GLYCERINE AND BIODIESEL

- Partı. Preparation of oil from dairy wasteproduct
- 1. Batch extraction
- 2. Continuous extraction
- Part 2. Preparation of biodiesel and glycerin bytrans esterification reaction.
 - 1. Analysis of residue free fattyacid content in extracted dairy wasteoil.
 - 2. Study the effect of catalysts on trans esterification reaction
- Part 3. Purification of crude biodiesel andglycerin.
 - 1. The purification of crude biodiesel
 - 2. The purification of crudeglycerin

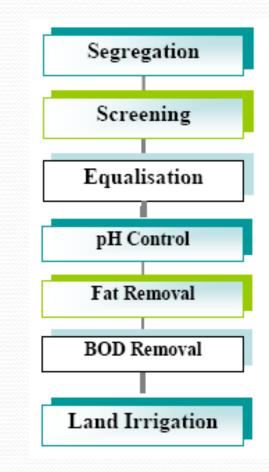
• Part 4 Quality check of biodiesel and glycerin

- 1. Purity check of biodiesel
- 2. Analysis an impurity inglycerin



SOXHLET APPARATUS

UTILIZATION AND TREATMENT OF DAIRY EFFLUENT THROUGH


BIOGAS GENERATION

- Biogas generation from dairy effluent has been viewed with the aim of control of water pollution through treatment of dairy waste as well as generation of biogas.
- Biogas, a mixture consisting primarily of methane and carbon dioxide, is produced from dairy wastes through anaerobic digestion.
- Anaerobic digestion not only reduce the COD of an effluent, but also little microbial biomass is produced by the process.
- The gas generation fluctuated between 0.5m 3 /day to maximum of 4.5m 3 /day with an average of 3m3 /day.
- The biggest advantage is energy recovery in the form of methane and up to 95 percent of the organic matter in a waste stream can be converted in to biogas.

TREATMENT OF DAIRY EFFLUENT

The highly variable nature of dairy wastewaters in terms of volumes and flow rates and in terms of pH and suspended solid (SS) content makes the choice of an effective wastewater treatment regime difficult. Because dairy wastewaters are highly biodegradable, they can be biological effectively treated with wastewater treatment systems, but can pose a potential environmental hazard if not treated properly.

BIOLOGICAL TREATMENT SYSTEMS USED TO TREAT DAILY F

Biological Treatment	Treatment Method	Wastewater Resource	COD Removal %	BOD Removal %	Notices
	Activated sludge	Milk powder/butter	90		
	Trickling filters	Dairy wastewater	-	92	
Aerobic	Sequence batch reactor	Dairy wastewater	91-97		
		Cheese-making wastewater	> 97		OLR = 0.5 kg COD / m^3 .day
		Dairy wastes	80		OLR = 10 g COD / 1
	Rotation biological contactors	Dairy wastewater	85		0.5 kg COD/ m ³ .hou
	Aerated ponds	Milk wastes	-	85	5 days of aeration
	Completely stirred reactors	Cheese factory wastewater (80 % water + 20 % whey) (17000 mg/l COD)	90		HRT > 9 days
	The fluidized-bed reactor	Dairy wastewater	80		
	UASB reactor	Synthetic ice cream wastewater	86		HRT = 18.4 h .3 kg TOC / <i>m</i> ³ .day
Anae robic		Cheese effluent	86		HRT = 16 h 49.5 kg COD / <i>m</i> ³ .da
		Dairy wastewater	70-90		
	Fixed-bed digester	Cheese whey (59000 mg/l)	90-95		HRT = 2-2.5 days 12.5 kg COD / m^3 .da
	Membrane anaerobic reactor + Microfiltration membrane	Cheese whey (62000 mg/l)	99.5		HRT = 7.5 days
	Separated phase digester	Dairy wastewater (COD 50000 mg/l)	72		