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ABSTRACT: 

The issue of data quality (DQ) is of growing importance in Remote Sensing (RS), due to the widespread use of digital services (incl. 

apps) that exploit remote sensing data. In this position paper a body of experts from the ISPRS Intercommission working group III/IVb 

“DQ” identifies, categorises and reasons about issues that are considered as crucial for a RS research and application agenda. This 

ISPRS initiative ensures to build on earlier work by other organisations such as IEEE, CEOS or GEO, in particular on the meritorious 

work of the Quality Assurance Framework for Earth Observation (QA4EO) which was established and endorsed by the Committee on 

Earth Observation Satellites (CEOS) but aims to broaden the view by including experts from computer science and particularly 

database science. The main activities and outcomes include: providing a taxonomy of DQ dimensions in the RS domain, achieving a 

global approach to DQ for heterogeneous-format RS data sets, investigate DQ dimensions in use, conceive a methodology for managing 

cost effective solutions on DQ in RS initiatives, and to address future challenges on RS DQ dimensions arising in the new era of the 

big Earth data.  

1. INTRODUCTION

1.1 Background 

Data Quality (DQ) is of growing importance in Remote Sensing 

(RS), due to the growing relevance that RS data have in planning 

and operational decision of public bodies and private firms, and 

the huge amount of digital services (or apps) that exploit RS data. 

One may postulate that for many years RS data were difficult to 

access, expensive and required a lot of knowhow. The ease of 

collecting, storing, and processing RS data went along with the 

advent of what some are calling the fourth paradigm of science. 

Recently, DQ issues have evolved from the area of databases, 

where relational tables are considered, to the wider set of 

perceptual and linguistic data representations, such as (perceptual) 

drawings, maps, images, videos, and (linguistic) structured texts 

and loosely structured texts. For all such different types of data 

representations, a comprehensive analysis is provided in (Batini 

& Scannapieco, 2016) of quality dimensions and metrics that are 

relevant for the representation; furthermore, techniques and 

methodologies are provided for the life cycle of DQ management, 

in the two phases of DQ assessment and improvement. The 

evolution of dimensions and methodologies from the area of 

“small” data to the rapidly emerging area of “big data” is 

discussed as an open problem. 

1.2 Aims and scope 

In this paper we address several open issues that are currently 

investigated on how to migrate/adapt/enrich such topics in the 

area of remote sensing data. First of all, we notice that remote 

sensing data had since the beginning some of the characteristics 

* Corresponding author 

of big data, due to volume and velocity of data acquisition and 

processing involved in many applications, while RS data are 

typically structured data that come along with metadata. We will 

therefore cautiously discuss the questions whether RS are in fact 

“big data” and will therefore build on earlier work. We 

particularly refer to the Quality Assurance Framework for Earth 

Observation (QA4EO; http://QA4EO.org/) which was 

established and endorsed by the Committee on Earth Observation 

Satellites (CEOS; http://ceos.org/) as a direct response to a call 

from the Group on Earth Observations (GEO; 

http://earthobservations.org/).  

At first, (Section 2), we address the issue of data dimensions 

classification. The efforts of standardization bodies and scholars 

concern DQ in general in GIS, while there is no consensus in the 

literature on a stable taxonomy for DQ dimensions and metrics 

in RS data. We propose a taxonomy to organize remote sensing 

quality dimensions.  

In Section 3 we consider RS applications in which datasets are 

characterized by heterogeneous representations, including raster 

images, vector images, georeferenced maps, relational tables. 

Emphasis is put on outlining the information resources used in 

organizations towards a common conceptual representation. 

Second, we assess the quality of information considering such the 

underlaying basic (geometrical, temporal etc.), yet data quality 

dimensions identified in section 2. 

Section 4 analyses DQ dimensions currently in use and their 

relationships under different use scenarios under the aspect of 
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DQ. Here we discuss models proposed for utility and for the 

utility assessment process in RS applications.  

In Section 5 the economic perspective in the area of RS projects 

related to DQ improvement is investigated, sketching a 

methodology for the net benefit optimization of the information 

resource; here, the optimization refers to economic benefit as 

compared to the required investment on data quality management. 

Section 6 discusses the evolution of RS DQ dimensions and 

methodologies in the new era of big data. We discuss different 

terms for “big” remote sensing data, including datasets that 

originate from social networks and media, from the Internet of 

Things or from mobile computing. 

 

2. A TAXONOMY OF DATA QUALITY DIMENSIONS 

IN THE REMOTE SENSING DOMAIN 

2.1 Data dimensions 

As a first issue, we address different topics of data dimensions 

classification. The efforts of standardization bodies and scholars 

concern DQ in general in Geographic Information Systems (GIS), 

while there is no consensus in the literature on a stable taxonomy 

for DQ dimensions and metrics in RS data. Since we cannot 

investigate this issue comprehensively due to limited space, we 

show how remote sensing quality dimensions can be organized 

in a multilevel taxonomy by enriching a one-level taxonomy 

proposed in (Batini et al. 2015) and (Batini & Scannapieco 2016). 

In order to obtain a sound classification, we extend the concept 

of “structural characteristics” from GIS data in general, where it 

corresponds to topological, geometrical, metrics, thematic 

characteristics, to RS data; for example the characteristics of 

images in remote sensing can be complemented with RS specific 

data acquisition information e.g. on orbits, flightpaths or 

atmospheric conditions which provide a ‘second level’ DQ 

information.  

 

 

2.2 Data quality dimensions in remote sensing 

As a merit of a long-term initiative the GEO QA4EO guidelines 

define Quality Indicators as “a means of providing a user of data 

or derived product (which is the result of a process) with 

sufficient information to assess its suitability for a particular 

application”. In addition, this information should be based on a 

quantitative assessment of its traceability to an agreed reference 

or measurement standard (ideally SI), but can be presented as 

numeric or a text descriptor, providing the quantitative linkage is 

defined. 

 

Prior to the systematic discussion of the data quality dimensions, 

remote sensing itself has to be clarified. Our understanding is, 

that photogrammetry (both aerial and close-range) as well as 

laser scanning (both airborne, terrestrial and mobile) are taken as 

part of remote sensing. Remote sensing is furthermore meant 

with the used algorithms, techniques to process the acquired data 

sets. Let us have a look on the quality dimension clusters and go 

into the details. 

 

The Resolution is an outstanding important cluster in remote 

sensing. Spatial resolution describes the pixel size, but it is a base 

to categorize the sensors, like e.g. very high resolution (VHR) 

imaging sensors. Speaking also about laser scanning, the point 

density belongs to this quality description. Radiometric 

resolution gives information about the image quantization: how 

many different intensity values are represented in the pixels of 

the captured image. Spectral resolution is also a substantial 

measure in remote sensing, because typically the used images 

have more than three channels. Multispectral, hyperspectral or 

ultraspectral images belong to remote sensing – all are based on 

this quality measure. Temporal resolution controls the usability 

of a monitoring system; it informs about the frequency of the 

captured images. 

Precision in the cluster Accuracy has fourfold meaning in remote 

sensing: (1) Geometric or spatial precision expresses how 

homogeneous is the image rasterization. It has strong connection 

to the geometric resolution and depends from the camera or 

sensor model. (2) Radiometric precision of a remotely sensed 

image informs about the goodness of the intensity values, 

containing the effects of the atmosphere, the vertical angle of the 

Sun (its position in the sky), but e.g. in radar imagery the surface 

permeability, too. (3) Spectral precision describes the accuracy 

of the boundaries of the spectral bands; which can be critical in 

hyperspectral imaging. (4) Temporal precision depends also 

from the temporal resolution; it gives how the capturing date and 

time was accurate. 

Positional accuracy refers to the connection between image 

(coordinate system) and map (coordinate system), depending on 

the amount, distribution and accuracy of the ground control 

points (GCPs). Subtypes of positional accuracy can be absolute 

and relative. These positional accuracies can be understood in 

horizontal and vertical meaning. 

Thematic precision can also be defined in the accuracy cluster, 

but it is dependent from the data processing, e.g. image 

classification. It speaks about the recognition or classification 

goodness. Semantic accuracy similarly to its GIS representation 

is a very interesting quality measure; it is based on the thematic 

precision but is a hierarchical term. (In case of a road for example, 

the thematic precision covers the features about the road axes, 

boundaries, drainages etc. Semantic measure would then be 

informative about any paved road as aggregates of the elementary 

classified components.) Attribute accuracy has strong correlation 

with the thematic accuracy (in some sense, it is the same: 

mapping of road types from remotely sensed images, e.g. asphalt 

pavement vs. block pavement). In stereophotogrammetry a 

height of a building is an attribute, which depends on the 

measurement accuracy, image scale, point identification 

accuracy, orientation parameters – it is a derived accuracy 

measure. There are further thematic accuracy related measures in 

remote sensing. The classification accuracy (sometimes 

correctness of classification) is a group of measures, where 

overall accuracy, average accuracy, producers’ accuracy, users’ 

accuracy and Cohen-kappa are the most widely used terms. These 

are derived from error (confusion) matrix containing amounts for 

classified and reference pixels of all analyzed classes. 

Temporal validity can be used for a map instead of an image 

having the meaning how long e.g. a land cover map like CORINE 

is valid. 

 

In the cluster Completeness the Data completeness is dealing 

with the completeness of an image, handling for example the 

effect of shadowing objects, sun flares on water surfaces or 

masking out by an object (e.g. propeller of a UAV). Spatial 

completeness is a feature on the area coverage. In 

photogrammetry (especially in stereophotogrammetry) its 3D 

version, the stereo completeness has extreme importance. In 

monitoring systems and applications the Temporal completeness 

term features how the taken images represent a complete time 

series. The thematic completeness measure describes the image 

interpretation quality how the expected and defined classes are 

evaluated. This feature is important with the use of e.g. multiple 

classifiers. 

 

The spatial redundancy in the Redundancy cluster is a value 

being proportional to the number of overlapping images or to the 
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overlapping area. By the use of stereo image evaluation or 

Structure-from-Motion (SfM) algorithm it has great importance. 

The temporal redundancy has correlation to the controllability in 

time series: how many timely repetitions of the images are in the 

data set. 

 

The Readability cluster has spatial readability and Radiometric 

readability; which measure in photointerpretation, how the 

objects can be identified/separated in spatial and radiometric 

manner. Both measures have strong connection to the relevant 

resolution features. 

 

The Accessibility cluster has a focus in remote sensing on the 

sources of the images; the data providers controls how the 

acquired images can be obtained, speaking about satellite or 

airborne images. Some “accelerations” are established for remote 

sensing imagery: the International Charter on "Space and Major 

Disasters" for example. In monitoring systems, the fast 

accessibility is critical, but has temporal, technical and legal 

aspects. 

In remote sensing we can speak about spatial consistency in the 

Consistency cluster. It represents the quality of image 

interpretation/understanding: how are the different objects or 

classes recognized/evaluated integrally. A bridge above a water 

surface, like river can be detected in pixel-wised manner, but the 

question is how coherent they are in the output map. This 

phenomenon has very close to the thematic consistency, where 

the recognition integrity is represented in this way. The 

topological consistency is defined mainly for network-type 

surface objects, like roads or rivers, where the connection of all 

atomic segments are rated by this measure. Urban mapping 

focuses on the built environment objects, where e.g. house-parcel 

inclusions are described by this feature. The temporal 

consistency is for monitoring again, representing for example the 

possibility or impossibility of land cover changes in time. Having 

multiple data sources (even airborne or terrestrial), their integral 

usage can be qualified by this measure. 

 

2.3 Additional aspects for satellite remote sensing data 

Atmospheric conditions particularly influence the usability of 

optical remote sensing data. As a consequence a major quality 

dimension of RS data usability is cloud cover. Data quality 

dimension related to cloud cover can be described as data 

completeness, radiometric completeness. In addition to this, the 

distribution of cloud cover highly influences the usability of the 

images in spatial terms. Therefore cloud cover distribution on 

images can be defined in terms of spatial completeness. 

 

Radiometric accuracy of image data is not only influenced by the 

effects of the atmosphere and the path length but topographic 

effects of shadows. Regarding optical systems shadows account 

for radiometric distortions in data. In contrast, topographic 

effects on active microwave data accounts for a higher geometric 

than radiometric distortion due to its oblique nature. The latter 

effect is related to spatial completeness of the data.  

 

Another phenomenon related to spatial completeness of remote 

sensing data is performance related. Sensors often face hardware 

problems like sensor failure or malfunctions. It can be both 

understood as spectral and spatial incompleteness in data.  

 

Radiometric accuracy is enhanced by in field and on-board 

sensor calibration procedures in many cases. Accuracy becomes 

essential especially in sensors where radiometric measurement is 

assisted by on-board calibration of measured values in each 

acquired data scan line. Thermal IR remote sensing is a good 

example for that. Another example is the on-board calibration of 

optical sensors by deep-space view. In this case radiometric noise 

reduction of images is the main objective of the procedure.  

Further to this satellite sensors have to be geometrically 

calibrated not only in laboratory but also in-flight after launching 

enhancing image geometry periodically. Lens distortion, 

boresight misalignment and time synchronization can be 

improved from time to time (Jacobsen, 2006). The resulting 

outcomes influence spatial/geometrical accuracy of the images. 

Moreover, spatial accuracy is further influenced by the 

processing of images. Satellite data can be acquired in different 

preprocessing contexts. Depending on the processing policy of 

different provides, data quality can strongly be at variance. 

Spatial correctness can be measured and enhanced by reference 

locations, both by end-users or by the data provider controlling 

spatial accuracy. 

 

Redundancy measure is an essential objective in processing of 

remote sensing data. The information content of images is 

significantly higher than the useful information obtained as a 

result of image processing. Reduction of information is mainly 

achieved by aggregation of similar element of an image. It is 

mainly carried out by spectral classification, segmentation or 

other clustering strategies reducing information content to 

achieve usefulness of information for end-users. The scale of 

both spatial and radiometric redundancy in image processing is 

highly depending on the objectives of the end-user. Therefore no 

general metrics can be assigned to measure redundancy.  

 

The processing of hyperspectral images accounts for a great 

challenge in image information reduction. Several processing 

chains were developed in the past specifically to assist 

information extraction and information aggregation in 

hyperspectral image cubes. Not only the processing but also the 

visualization of image cubes introduces a type of spectral 

information reduction itself.   

 

Parallel to this, image layers/spectral channels contain a great 

amount of information duplication. Different channels can be 

affected by high spectral correlation depending on the spatial 

location in the image. Several strategies exist to reduce high 

correlating information during image processes like principal 

component analysis. It assists the reduction of information 

content and aggregates high spectral variation in a reduced 

amount of spatial layers. This can be defined as spectral 

redundancy of images and can be measured by quantitative 

means.  
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Relational data GIS Remote sensing specifics (on top) 

Accuracy Syntactic a. 

Semantic a. 

Currency 

Timeliness 

Schema a. wrt the model 

Schema a. wrt requirements 

Precision (Spatial, Geometric, 

Temporal, Thematic) 

Positional accuracy 

Absolute position accuracy 

Relative position accuracy 

Gridded data pos. accuracy 

Horizontal accuracy 

Vertical accuracy 

Geometric precision 

Semantic Thematic 

Quantitative attributes accuracy 

Non quantitative attributes accuracy 

Temporal validity 

Correctness of classification 

Here, several categories are currently 

identified at a ‘meta-level’ according to 

data capture (orbit/flightpaths, 

atmospheric conditions, 3D information 

in relation to the IFOV) 

Completeness Value completeness 

Tuple completeness 

Attribute complet. 

Relation completeness 

Schema completeness 

Data Completeness 

Schema Completeness 

Spatial Completeness 

Temporal Completeness 

Thematic Completeness 

Spatial Completeness 

Temporal Completeness 

Thematic Completeness 

Very difficult topic: 

Can RS data ever be “complete”? 

Redundancy Schema minimality 

Schema normalization 

Map Schema minimality 

Map Instance minimality 

Thematic minimality 

Very difficult, yet specific topic: 

redundancy is partially necessary for RS 

data, e.g. for stereoscopic images 

Readability Schema readability 

Instance readability 

Map Schema readability 

Map Instance readability 

Thematic readability 

 

Accessibility Web site accessibility 

Accessibility to disabled persons 

Web Site accessibility 

Accessibility to disabled persons 

 

Consistency C.. through integrity constraints 

C through edits 

Spatial  

Logical 

Conceptual 

Domain 

Format 

Topological  

Temporal 

Thematic 

Very important topic which includes some 

RS specifics in respect to orbits/ 

flightpaths …. 

Trust of 

Sources 

Provenance 

Lineage 

Veracity (Objectivity, Truthfulness, 

and Credibility),  

Trustworthiness 

Provenance 

Lineage 

Maybe the aspect with the highest degree 

of specificity of RS data 

 

Table 1. Data Quality Dimension in GIS and RS: This table is mainly based on Batini & Scannapieco 2016. The last column is only a 

first and indicative version of ongoing work of this ISPRS working group and will be replaced for the final print version).   
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3. DATA QUALITY FOR REMOTE SENSING: 

SPECIFICS 

In most real world applications that use RS data, datasets are 

characterized by heterogeneous representations, such as raster 

images, vector images, georeferenced maps, relational tables, etc. 

Batini & Scannapieco (2016) discuss how to extend 

methodologies for DQ assessment and improvement (for a 

detailed comparison of such methodologies see (Batini 2009)) to 

take into account sources made of heterogeneous information 

types. In (Batini 2016) semi structured data are considered, but 

the approach can be followed also for other data types. The main 

idea underpinning the extended methodology is to determine the 

information resources used in an organization or community to a 

common conceptual representation and then to assess the quality 

of information considering such homogeneous conceptual 

representation.  

 

When revisiting the general concepts in section 2, it may not be 

obvious why remote sensing (RS) data quality needs to be 

discussed separately. We argue that it is not about the data 

dimensions as seen in computer science (and as depicted in table 

1). Rather, the physical dimensions of the data derived through 

remote sensing platforms bear specifics which are typically 

classified in regard to a) platforms (orbits, flightpaths) and b) 

sensors/cameras used. The remotely sensed data thus, in the 

majority of cases are stored in regular or irregular raster format 

types or points (LiDAR) that are to be processed further. Again, 

while the data are not different from a Computer Science point of 

view, information about the data generation process can make a 

difference! 

We may refer to the quality as a measure of the difference 

between the data and the reality that they represent. Under such 

a view it may become clearer that the data and the corresponding 

reality diverge (Goodchild 2006) and can we relate the quality of 

remote sensing data to the following major factors: 

1. The relations of the produced raster or primitive vector / 

raster data sets to the reality presented 

2. If the data set doesn’t present the reality in a direct manner, 

then its relation to the product / products which consequently 

present the reality is considered as an important quality 

factor. 

3. The fitness of use; that is the level of details the model 

should comprise to present the level of details from the 

reality 

4. The level of details from the reality shall be decided 

according to the purpose / purposes, or anticipated future 

goals 

5. The imbedded data richness that is comprised by an image, 

including the metadata. 

 

Further, a quality model replicating the reality should encompass 

all aspects of quality, covering a large spectrum and affects the 

entire process of the acquisition, management, communication, 

and use of geographic data (Devillers & Jeansoulin 2006). Herein 

two major (‘super’) levels are realized, namely the data as such 

and the process of deriving the data and meta-information 

associated to such a process. Quality Assurance thus shall insure 

the anticipated quality of the product or the data, whereas Quality 

Control shall provide the measure of closeness of the model 

elements presented by the data to the element of the sought realty, 

which should fall within the range set in relation to the fitness of 

use, and the quality of details reflected by how accurately the 

elements of the reality model can be presented with minimum 

uncertainty. Furthermore, the uncertainty provides information 

regarding the robustness and usefulness of the model quality. 

Whereas, the quality affects decisions based on the model or its 

analysed data or perhaps information, decisions maybe regarded 

as the conclusion of an informed and logical process, in which 

the treatment of uncertainty must be present (Devillers & 

Jeansoulin 2006).         

 

The described elements of (RS) data quality now can be used to 

describe the strength of both the operations to collect and build 

the data, and the model or the data itself. Examples include: 

different types of accuracies (see also table 1); completeness; 

consistency; precision and many more. For those RS specific DQ 

elements, basic geometrical; attribute and other model 

descriptions can be utilized. The model representing a specific 

reality related to a certain use, can be assessed in a similar way 

like assessing maps using standards, but to firmly assess the 

model It would be advisable and important to recognize that there 

is a tacit correspondence between the technically possible, the 

economically viable, and the utility for the intended uses 

(Chrisman 2006). 

 

 

4. DATA QUALITY DIMENSIONS 

4.1 Data quality dimensions in use  

In RS applications it is frequent that, either for planning or for 

operational purposes, an organization or an individual has to take 

a decision that, according to its outcome, may lead to different 

possible utilities. Since the decision, among other factors, is 

influenced by the accuracy, completeness, currency, etc., of the 

available information, its final utility is indeed influenced by the 

quality of information.  

The users of RS information have different requirements to the 

quality of the information depending on the purpose for which 

the RS data shall be used. Thereby, they define which subset of 

the possible quality dimensions becomes relevant. The QA4EO 

guidelines provide a framework that allows the development of 

an according documentation of the RS DQ that enables a user to 

judge the information’s ‘fitness for purpose’, with the appropriate 

set of quality dimensions.  

Applications can range from low to high levels of requirement to 

DQ. Low levels occur when the RS DQ is predominantly 

assessed by a subjective judgement of the user. An example is 

visualisation as the main purpose of the RS data like in the 

illustrated book ‘Untouched Nature’ (Eisl et al. 2013) that 

contains views of satellite images from many locations 

distributed over the world. Nevertheless, some readers may have 

an interest in information about the DQ, e.g. accurate location 

information and date of acquisition as documented in the book, if 

they want to search for more information about one of the 

presented RS datasets. Even if the general level of DQ 

requirement is low, a certain amount of DQ documentation can 

be valuable for users that want to follow an advanced purpose. 

Here the requirements to a DQ documentation can be considered 

as optional.  

The other end of the range with high levels of requirement to RS 

DQ and associated documentation occurs where the user’s 

purpose is the utilisation for safety-relevant decisions. Such high 

requirements to DQ generally occur when the consequences of 

using faulty information have a strong negative impact. Terrain 

information for aviation is an example of RS data where high 

standards of DQ are essential and according certification 

procedures are in place (Albrecht et al. 2014). Certification 

procedures of the European Aviation Safety Agency EASA 

clearly define what specific purpose the RS derived information 

serves, which quality levels the product has to adhere to and how 

its quality has to be documented (EASA 2014, EASA 2013).  
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Consequently, RS DQ and the need for its documentation with 

according dimensions depends on the specific purpose of the user 

and, where relevant, on existing standards in the user community. 

4.2 Metrics of quality dimensions 

We need to discuss models proposed for utility and for the utility 

assessment process in RS applications, observing that the 

definitions themselves of quality dimensions and metrics are 

deeply influenced by utility. Indeed, besides dimensions and their 

metrics that are called objective in (Batini & Scannapieco 2016), 

we discuss other dimensions and metrics whose definition and 

process of measurement inherently depend on the context of use 

of information, resulting in a new class of contextual dimensions 

and metrics. 

5. DATA QUALITY IMPROVEMENT: ECONOMIC

PERSPECTIVE 

While in a perfect world all relevant dimension and the respective 

metrics mentioned above should be taken into account in a real 

world scientists working with RS data need to balance and trade 

off perfection and effort, i.e. costs. This may be very obvious 

when distinguishing precision and accuracy.  

We may – very briefly – reason about the economic perspective 

in the area of RS projects. DQ standards in general are usually 

independent from an economically feasible perspective. They are 

standards and shall accommodate all instances. Nevertheless, DQ 

improvement is not a theoretical / hypothetical task.  

In the following subsection we sketch out a methodology for the 

net benefit optimization of the information resource; here, the 

optimization corresponds to the maximization of economic 

benefits in comparison with costs of DQ management. 

While in a perfect world all relevant dimension and the respective 

metrics mentioned above should be taken into account in a real 

world scientists working with RS data need to balance and trade 

off perfection and effort, i.e. costs. This may be very obvious 

when distinguishing precision and accuracy.  

We may – very briefly – reason about the economic perspective 

in the area of RS projects. Data quality standards in general are 

usually independent from an economically feasible perspective. 

They are standards and shall accommodate all instances. 

Nevertheless, data quality improvement is not a theoretical / 

hypothetical task.  

In the following subsection we sketch out a methodology for the 

net benefit optimization of the information resource; here, the 

optimization corresponds to the maximization of economic 

benefits in comparison with costs of data quality management. 

Modelling the costs and benefits of any type of information is a 

critical task at global, regional and local level (Shapiro &Varian 

1999) included the remote sensing data.  

To identify and describe the most important variables of the set-

up, operation, maintenance and service cost determined by the 

application sector, the stakeholder position,  the technology and 

on the benefit side of the equitation by the economic, social and 

political value to increase the efficiency, to support the 

democracy (Codagone 2006, Longhorn &Blakemore 2008,). 

It is a problematic question to define measurable indicators for 

cost/benefit modelling (Genovese & Roche 2010). 

In the private sector the commercial cost/benefit of RS data for 

commercial vendors can be measured by the production cost, 

recovery, service, profit margins and return on investment. For 

the data user the value of the RS data typically reflected in the 

price that the consumer pay for the offered service. 

In the public sector the commercial value for data owners and 

vendors evaluate by cost savings of service. For the data user has 

less quantifiable direct and indirect value of the usage of the RS 

data. But in the public sector there are big socio-economics and 

political value of the RS data for the whole society as a better 

decision-making, support the sustainable environment. 

Attributes of RS data value: 

Value of location attribute:  location attribute provides spatial 

context to other attributes. 

Time dependency value: time related value of data weather it is 

real-time requirement or historical. 

Value due to legal or other mandatory requirements: the 

information is given an official or legal status for certain type of 

transaction. 

Value due to network: some information has added network 

because it is used by large number of people. 

Value due to quality of an information source: the factors related 

to the production of RS data: context, quality, timeliness, 

accuracy, completeness, history, etc. 

Value determined by cost savings: reduce the duplication in data 

collection and transaction costs. 

Cost of RS products: 

Transaction cost: refer to the cost of measuring valuable 

attributes of what is being exchanged and the cost of protecting 

rights. 

Data collection cost: is a very costly procedure represent a high 

percentage the total cost of producing RS data, includes the 

production and transformation costs. 

Value pricing: 

User’s valuations and preferences: the producer sets the price 

according to the buyer’s needs, related to the preferences of the 

potential users, introduced product differentiation for particular 

target groups, avoid price dispersion. 

For the private organisations the revenues minus the cost give the 

added value, net benefits of RS data. For the public sector prices 

of RS data may be substantially below cost, but the final benefit 

must include the intangible benefits, which calculation is very 

complicated. 

6. RS DQ DIMENSIONS AND METHODOLOGIES IN

THE ERA OF BIG DATA 

Do these RS DQ dimensions and methodologies debated so far 

require changes in the new era of ‘big data’? (see Mayer 

Schönberger 2013 for a comprehensive discussion of the 

paradigm shifts from small to big data)  

As briefly discussed, RS has always dealt with large amounts of 

data – although typically structured data and in most cases 

associated metadata. For many scientists this is not the same as 

the metaphorical search for the ‘needle in the haystack’ we 

discuss different terms for “big” remote sensing data, including 

datasets that originate from social networks and media, from the 

Internet of Things or from mobile computing. 
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Most recently, the term “Big Earth Data” has been introduced 

(see e.g. Guo 2013). Particularly in China, the notion of ‘Digital 

Earth’ has been promoted intensively, e.g. by the Chinese 

Academy of Sciences and the Society of Digital Earth. Still, it 

seems that – typical for new terms, maybe paradigms – a 

terminological inconsistence exists around big Earth data and 

whether or not this may go far beyond Earth observations 

(sometimes even reduced to remote sensing); it may reach out to 

large sensor nets on ground, in the air, in the ocean or a 

combination of all. Still, some authors mainly refer to ‘big Earth 

data’ particularly in the course of massive free data, Landsat, and 

in particular Sentinel. 

A variety of “sensors” and “sensor networks” can be used to 

systematically assess and monitor dynamic geographic 

phenomena at different spatial and temporal scales. However, the 

monitoring is typically done for each phenomenon individually 

(e.g., for air temperature or mobility). In order to enhance—or at 

least verify—our understanding of both environmental and social 

processes for multidisciplinary studies, a more holistic 

monitoring framework is needed. One way to fully integrate the 

spatiotemporal dynamics of both environmental and social 

phenomena is the “adaptive geo-monitoring framework” 

(Blaschke et al. 2011, Sagl & Blaschke 2014) by adding the 

spatial dimension and the mutual context-awareness of dynamic 

geographic phenomena.  

This short article aimed to bridge the views of the remote sensing 

community and the database community. In particular, the 

authors followed the work of Batini et al. (2009, 2015) and Batini 

and Scannapieco (2016) while comprising the benefits from the 

efforts of the remote sensing community, especially of CEOS and 

IEEE. Likewise, a next logical step will be to inform the 

computer science community about the efforts of the remote 

sensing community regarding data quality issues. 

In particular, this ISPRS Working Group will discuss whether to 

extend the DQ dimensions to further processed data, and derived 

products as well. QA4EO and other quality guidelines (including 

the validation protocols of Copernicus core services) also address 

the entire processing chain, and uncertainty propagation through 

it. This opens new research avenues and needs going much 

beyond RS and GIS communities and will, for instance, 

necessitate to map quality from a cartographic point of view, or 

to ensure OGC compliance of generated vector data sets. 
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