FORCES ACTING ON TILLAGE IMPLEMENTS

BY

Shekhar kumar sahu

$D = F_i(A + BS + CS^2)WT$

where:

D		Implement draft, N (lbf);
F	5	a dimensionless soil texture adjustment
		parameter (table1);
1	-	1 for fine, 2 for medium and 3 for coarse
		textured soils;
A, B and C		machine-specific parameters (table1);
8		field speed, km/h (mile/h).
		and the second
W		machine width, m (tt) or number of tows
w	5	or tools (table1);
w T	is Is	or tools (table1); tillage depth, cm (in.) for major tools, 1
τ	ls	or tools (table1); tillage depth, cm (in.) for major tools, 1 (dimensionless) for minor tillage tools and

Fig. Comparison of observed and predicted draft values based on two draft equations for moldboard plough

Fig. 5.17: Comparison of observed and predicted draft values based on two draft equations for cultivator

Fig. Comparison of observed and predicted draft values based on two draft equations for offset disc harrow

$D = \{A \times CI + B \times S + C \times S^2\}W \times T$

where D = implement draft, NA, B and C = machine-specific parameters A = f (soil strength) B or C = f (speed of operation) S = speed of operation, km/h W = machine width, m or number of furrow opener or tools T = tillage depth, cm

Table 1 : Results of Stepwise Regression Analysis for Draft of Tillage Implements

Tillage	Variable	CI×W×T	$S \times W \times T$	$S^{2} \times W \times T$
implement	Coefficient	А	В	С
Moldboard Plow	Parameter Estimate	0.42	0.00#	16.40
	Standard Error	0.01		0.88
	F Value	1128.21		343.32
Cultivator	Parameter Estimate	0.04	5.50	0.40
	Standard Error	0.001	0.66	0.13
	F Value	1466.08	68.62	9.40
Offset disc harrow	Parameter Estimate	0.32	37.96	0.00
	Standard Error	0.006	1.14	
	F Value	2661.29	1105.55	

#The coefficients are entered as zero when found statistically not significant at 5 percent level

Parts of indigenous plough

Typical moldboard plow bottoms. (a) gunnel type share (b) with throw away share with down and side suctions.

Point of the share that enters first in the soil and also (1)supports the plough bottom.

0

Throat of the share that cuts the furrow slice from the (2)main soil body.

- Wing of the share that supports the plough bottom. (3)
- Gunnel of the share that supports the plough bottom (4) against the furrow wall.

Slip share : The entire share has to be replaced after it has worn out (Fig. 7.7a).

Slip nose share : The share point of such a share is a small replaceable unit (Fig. 7.7b). Before the complete share becomes unserviceable, the point can be changed many times to keep up the efficiency of work at lower cost. Shin share : This is similar to the slip share, the only difference being that an extension is provided to fit by the side of the mould board. This prevents the mould board from wearing along its cutting edge, called the shin (Fig. 7.5c). Bar share : It is provided with an extension on its gunnel side which acts as the landside of the plough bottom. It does not offer any advantage over the other types (Fig. 7.7d).

Bar point share : In addition to the main share, a steel bar, which extends as the share point, is also provided

	Table 7.1. 1	192		
(2)	S.N. Parts	Materials	Remarks	
(4)	 Share (a) Slip share 	High carbon steel, soft center steel, cast iron	(a) Slip share is the common type of share on animal drawn and tractor drawn ploughs. Co- mplete share is re-	(d)
(b)	(b) Slip Nose share	Cast iron	 (b) Only nose is replaced before full share needs replacement. 	· ·
	(c) Shin share	High carbon steel	(c) Share extends to fit by the side of the mould board.	
	(d) Bar share	High carbon steel	(d) Share extends to act as landside.	t
	(e) Bar point share	High carbon steel	(e) A long bar is used It is pushed forward as the point wear out. Replacement of complete share is	
			avoided.	- (e)

1. General purpose—It is the best for all round general farm use to give through pulverization.

100	S.N.	Parts	Materials	ate	Remarks
2.	Mo	uld board			
	(a)	General purpose	High carbon steel, iron	(a)	Turns the soil gent- ly and gives medium pulverization.
	(b)	Stubble	High carbon steel	(b)	Turns the soil quic- kly and gives thoro- ugh pulverization.
	(c)	Sod or Breaker	High carbon steel	(c)	Has abrupt curva- ture and greater length to give more through turning but less pulverization.
	(d)	Slat	High carbon steel	(d)	Is used in light sticky soils.
	(e)	Highspeed	High carbon steel	(e)	Has short and less abrupt curvature.

2. Stubble—It is adapted for ploughing an old ground where good pulverization is desired. It has relatively short and

broad mould board that is curved rather abruptly near the top.

- 3. Sod or Breaker—The breaker bottom is used in tough sod (grass land) where it is desired to turn the furrow slice completely so that the grass may not continue to grow.
- 4. Slat—It is preferred for more sticky soils where it is difficult to get the mould board to scour.
- 5. High speed—Most of the high speed bottoms are used on tractor ploughs for general farm use.

S.N. Parts	Materials	Remarks
3. Landside	Sott center steel or mild steel or cast iron	Sometimes, a detach- able. piece is provided at the extreme end, called the heel of the land side.
4. Frog	Mild steel or cast iron	All the other parts are fastened to the frog.

Kind of mold- board	Type od moldboard	$\frac{L}{H}$
Steep	cylindrical, seldom cylindroidal	0.7—0.8
Standard	cylindroidal and semihelical	0.8—1.0
Inclined	cylindroidal, semihelical and helical	1.01.3 seldom up to 1.4

Two nonintersecting forces, R_h and V

One force R, plus a couple V_a

Fig. 1 Two ways of expressing the total soil reaction on a tillage tool.

Fig. 2 Typical location of R_h and its relation to the landside force and the pull.

Fig. 3 Effect of speed upon L,S, and V forces for a 36-cm general purpose plow bottom tested in soil bin with and without the landside.

Table 1. Ratio of b/a for different type of tillage

14010 0.4

Turne of moldbourds	Angles				
Types of moldboards	Θ₀	a.	γ		
Helical, semihelical and cylindroidal for lea tillage and rapid tillage	30°—35°	12°—15°	20°—25°		
Semihelical and cylindroidal mold- boards for tractor plows for normal tillage	35°45° most commonly 40°	14°—18° most commonly 16°	22°28°		
Cylindroidal and cylindrical mold- boards for horse-drawn plows	40°50° most commonly 45°	15°20° most commonly 18°	20°30°		

The share forms a spatial wedge (Fig. 6.29) with three basic angles:

 α — load angle,

 γ — cutting angle,

 $\Theta_{\mathfrak{q}}$ — setting angle

Between these angles there is the following relation

$$\tan \gamma = \frac{\tan \alpha}{\sin \Theta_{\rho}} \qquad (6.1)$$

From the diagram presented in Fig. 6.20 this relation can easily be formulated as follows

$$\tan \alpha = \frac{OB}{OC}$$
$$OC = \frac{OD}{\sin \Theta_0}$$

ж.

Fig. 6.29. Share as a spatial wedge.

hence

٠

$$\tan \alpha = \frac{OB}{OD} \sin \Theta_{\mathfrak{z}}$$

and since

$$\frac{OB}{OD} = \tan \gamma$$

then

 $\tan \alpha = \tan \gamma \sin \Theta_0$

Fig. 6.30. Distribution of forces and speeds on the edge of the share.

Dimen-			Maximal de	pth of tilla	ge	
sion	15 cm	20 cm	25 cm	30 cm	35 cm	45 cm
ı	400	450	- 500	550	500700	500700
<i>S</i> ₁	115	125	135	150	150	160
S2	100	105	115	125	125	130

Forces acting upon a plow bottom

 Table 1. Ratio of b/a for different type of tillage

Types of mould boards	Angles, degree			
	θ	α	γ	
Helical, semi-helical and cylindroidal for lea tillage and rapid tillage	30-35	12-15	20-25	
For tractor plough for normal tillage	35-45	14-18	22-28	
Cylindroidal and cylindrical mould board plough for animal drawn ploughs	40-45	15-20	20-30	

 Table 2. Values of different angles commonly used on different mouldboard ploughs

S.N.	Type of tillage	Tillage depth (a), mm	Width of the furrow slice	b/a ratio
			(b) , mm	
1.	Very deep	350-1000	400-700	0.7-1.1
2.	Deep	250-350	300-400	1.1-1.5
3.	Medium	180-240	200-350	1.3-1.8
4.	skimming	50-120	240	2.0-5.0

Values of Δb , $\Delta h1$, $\Delta h2$, $\Delta h3$, $\Delta s1$, $\Delta s2$ for different types of plough

Values of Δb for different ploughs				
Standard plough	(+20)-(+40)mm			
Lea Plough	(-20)-(-40)mm			
Values of Δh_1 for different soils				
Medium firm and firm soil	(0)-(-20)mm			
Light and sandy soil	(0)-(+20)mm			
For grass lands	(-0.1b)- (-0.2b)			
Values of Δh_2				
For grass land	(0)If velocity of operation v<7kmh ⁻¹ (+5) -(+10) mm per 1 kmh ⁻¹ , above v>7 kmh ⁻¹			
Values of Δh_3				
For general ploughs	(0)–(-30) mm			
Helical and semi- helical mould board	Slightly less than the general plough			
Values of Δs_1 and Δs_2				
Δs_1	(+5)-(+10) mm			
Δs_2	20mm			

Determination of frontal plan of a mould board

Design of a cylindrical mouldboard

Plotting of parabolas by the tangential methods