Resistance (R):
Resistance is a property of an electrical component that opposes the flow of electric current.
It is measured in ohms (Ω).
The higher the resistance, the lower the current flow for a given voltage.
Inductance (L):
Inductance is the property of an electrical component to store energy in a magnetic field.
It is measured in henries (H).
Inductors resist changes in current flow, causing a delay or "inductive reactance" in AC circuits.
Capacitance (C):
Capacitance is the ability of an electrical component to store and release electrical energy.
It is measured in farads (F).
Capacitors resist changes in voltage, causing a delay or "capacitive reactance" in AC circuits.
R-L-C Series Circuit:
In a series circuit, the components are connected end-to-end, so the same current flows through each element.
In an R-L-C series circuit, a resistor (R), inductor (L), and capacitor (C) are connected in series.
The total impedance (Z) of the circuit is the sum of the individual impedances of the components (Z = R + $j\omega L$ + $1/(j\omega C)$), where j is the imaginary unit and ω is the angular frequency.
The current in a series R-L-C circuit depends on the applied voltage and the impedance of the circuit.
R-L-C Parallel Circuit:
In a parallel circuit, the components are connected across the same voltage source, so the voltage across each element is the same.
In an R-L-C parallel circuit, a resistor (R), inductor (L), and capacitor (C) are connected in parallel.

The total admittance (Y) of the circuit is the sum of the individual admittances of the components (Y = $1/R + j\omega C + 1/(j\omega L)$).

The total current in a parallel R-L-C circuit depends on the applied voltage and the total admittance of the circuit.

It's important to note that the behavior of R-L-C circuits can vary significantly depending on the frequency of the applied voltage, as the impedance and admittance of inductors and capacitors are frequency-dependent. Therefore, the concepts of impedance and admittance are used to analyze and design R-L-C circuits in AC systems.