Chapter 4: Enzyme Kinetics

Purpose:

1) Investigate the kinetics of LDH purified from bovine heart and muscle

2) Learn how to determine kinetic information

3) Understand the effects of inhibitors on enzyme activity

Enzyme Kinetics

- Rate of enzyme catalyzed reaction depends on substrate concentration
- Want to measure initial rate, $V_o [E] \log$, [S] high
- As [S] increases, V_o increases to certain point and then levels off V_{max}

Michaelis-Menton Mechanism for Enzyme Action

- 1st Step: Fast reversible binding of Enzyme to Substrate (Enzyme-Substrate complex)
- 2nd Step: Slower breakdown of the ES complex to Enzyme + Product

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

$$k_{-1}$$

- At any time during reaction the enzyme is present as both E and ES
- Maximal rate (V_{max}) observed when [ES] is highest, and [E] is lowest
 - Enzyme is saturated with substrate

Lineweaver-Burk Manipulation

Eadie-Hofstee Manipulation

Introduction of an Inhibitor

- Competitive Inhibition Competes with substrate for active site
- Uncompetitive Inhibition Binds to distinct site from substrate active site and binds only to ES complex
- Non-Competitive Inhibition (Mixed) Binds to both substrate active site and distinct site
- Pure Non-Competitive Inhibition Binds to a distinct site on the enzyme complex that decreases overall activity

Competitive Inhibition

Uncompetitive Inhibition

Non-Competitive Inhibition (Mixed)

Pure Non-Competitive Inhibition

Cole, Cengage Learning

Chapter 4: Procedure

- Make new cocktail with Tris-Buffer pH 8.2 –
 Cocktail A
 - This cocktail gives a higher $\rm K_{\rm M}$ value for LDH
- Perform activity assays where you vary [pyruvate] without inhibitor
 - Starting ΔA_{340} /min = 0.02-0.04
 - Dilute appropriately to get in range

Chapter 4: Procedure

- Make new cocktail with Tris-Buffer pH 8.2 and inhibitor (your choice) – Cocktail B
 - Make sure to write down letter and concentration of inhibitor
- Perform activity assays where you vary [pyruvate] in presence of the inhibitor
 - Rates with inhibitor < Rates of uninhibited reactions

Make sure to prepare data tables p. 106-7 BEFORE LAB! Include all cocktail recipes in your notebook!

Lab Notebook: Chapter 4

- Raw Data for uninhibited and inhibited LDH
- Calculation of rates in mM:

 Michaelis-Menton and Lineweaver-Burk Plots for uninhibited and inhibited LDH

- Calculation of $K_{\rm M}$ and $V_{\rm max}$ Show unit calculations!
- Calculation of K₁ for your type of inhibition