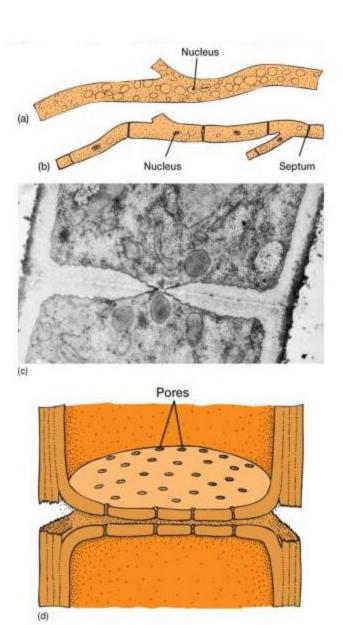

# **Fungi**

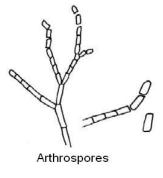

- Fungi are eukaryotic, spore-bearing organisms with absorptive nutrition.
- unicellular fungus yeast
- vegetative structure of a fungus is called Thallus
- fungal cell is encased in a cell wall made of chitin
- long, branched filaments called the hyphae, aggregate to form mycelium





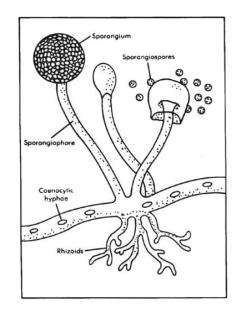


Thallus organisation (structure)

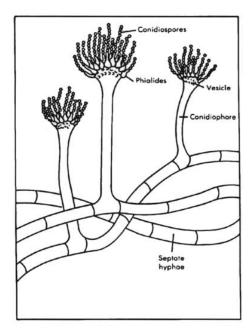



### **Nutrition**

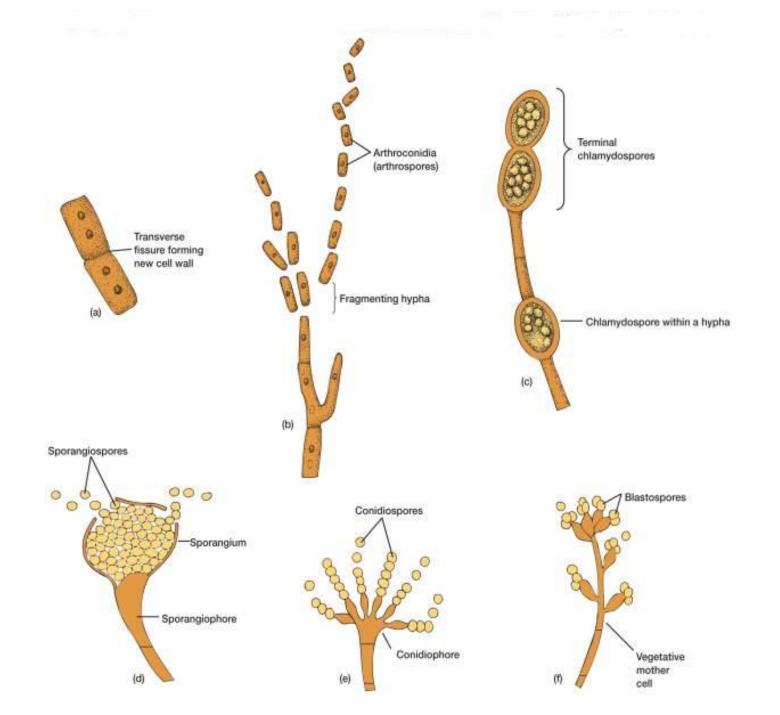
- Fungi grow best in dark, moist habitats
- classified as parasites and saprophytes
- Obligate saprophytes
- Facultative parasites or saprophytes
- Obligate parasites
- They are chemo-organoheterotrophs
- Fungi are usually aerobic
- Some yeasts facultatively anaerobic


### Reproduction in Fungi

- Fungi reproduce either sexually or asexually
- Asexual reproduction
- A parent cell can divide into two daughter cells
- Somatic vegetative cells may bud to produce new organisms
- By the production of asexual spores
- Arthrospores
- Chlamydospores







#### Sporangiospores

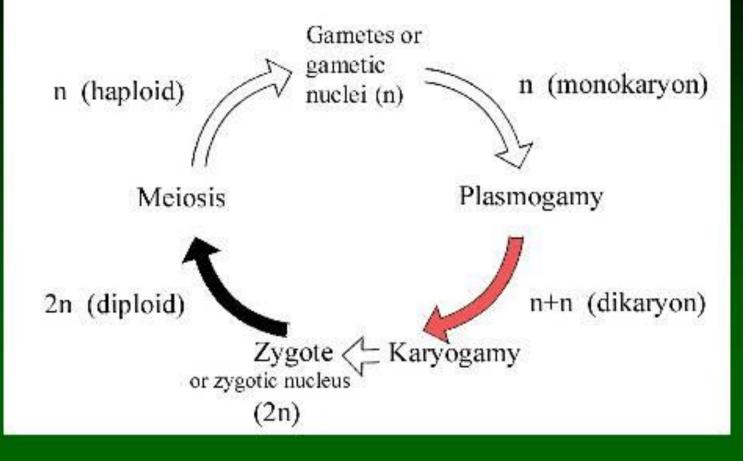


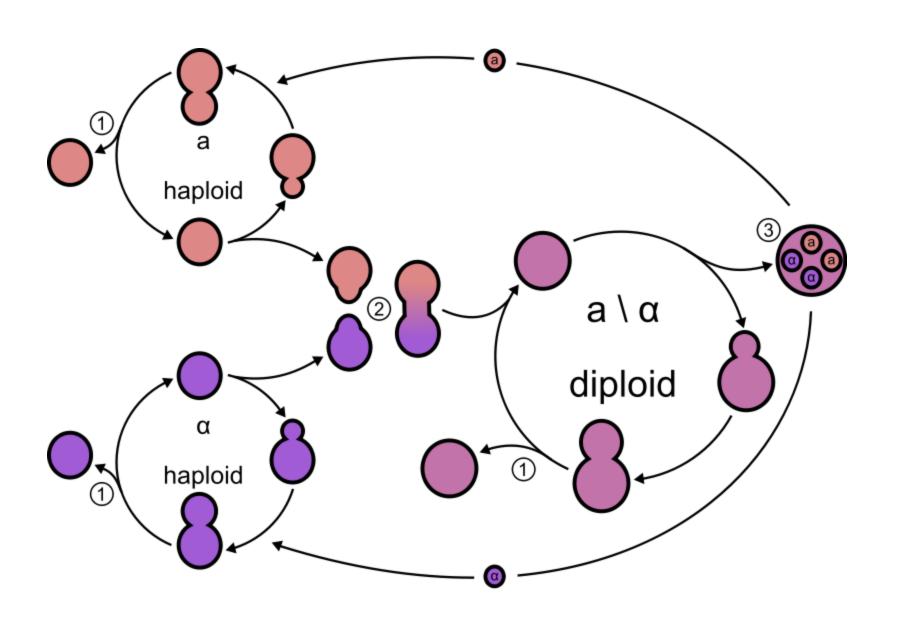
- Conidiospores
- Blastospores



Source: claguilera.blogspot.com



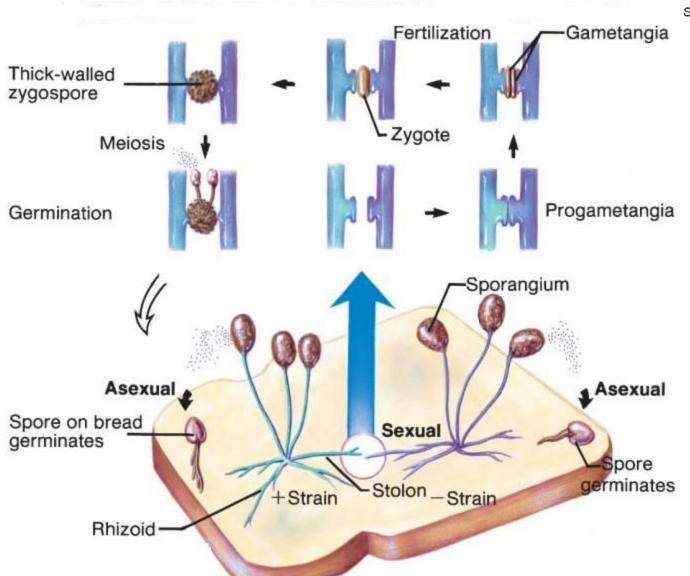

### **Sexual Reproduction**

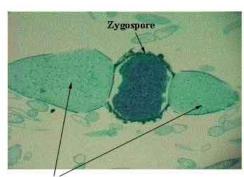

- Sexual reproduction involves the union of compatible nuclei
- sexual fusion may occur between haploid gametes or haphae

# Taxonomic classification of fungi

| Division      | Common Name      | Approx. No. of species |
|---------------|------------------|------------------------|
| Zygomycota    | Zygomycetes      | 600                    |
| Ascomycota    | Sac fungi        | 35,000                 |
| Basidiomycota | Club fungi       | 30,000                 |
| Deuteromycota | Fungi imperfecti | 30,000                 |

#### Generalized Nuclear Cycle of Fungi




### **Division Zygomycota**

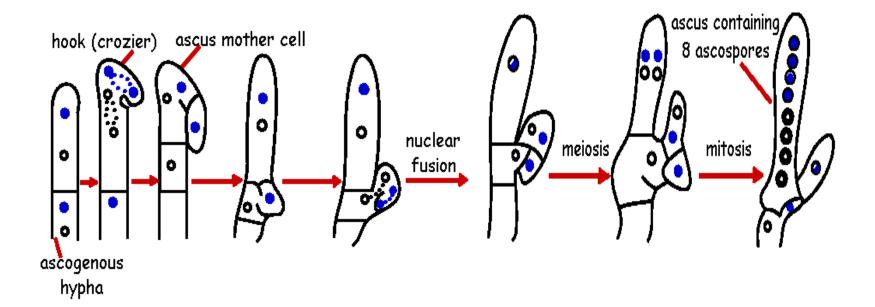
- zygomycetes are coenocytic. Most are saprophytic. A few are parasites
- Eg. Rhizopus stolonifer, the bread mold
- Special hyphae called rhizoids extend into the substrate and absorb nutrients
- Some hyphae produce asexual sporaniga
- when released can start a new mycelium
- Rhizopus usually reproduces asexually, if food becomes scarce, begins sexual reproduction

Rhizopus sp.
Sexual reproduction in a Zygomycetes





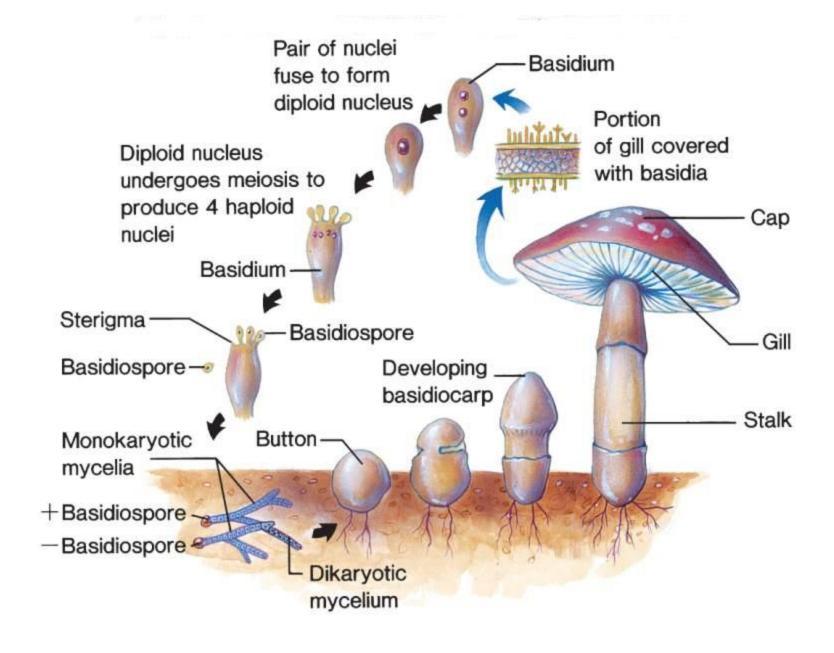
Suspensor cells


- When two mating strains come close, hyphae form projections progametangia mature to gametangia
- Zygote
- Zygospore
- Zygospore asexual sporangium and the cycle begins

### **Division Ascomycota**

- Fungi of this division are called ascomycetes or sac fungi
- Many ascomycetes are parasites of higher plants. *Ergotism*, *Claviceps purpurea*
- Mycelium of ascomycetes is composed of septate hyphae
- Asexual reproduction is common conidiospores
- Sexual reproduction involves the formation of an ascus containing ascospores
- Sexual reproduction special ascogenous hyphae

- Antheridium, ascogonium, migrate to form the ascogenous hyphae
- The paired nuclei divide that there is one pair of nuclei in each cell
- nuclear fusion occurs at the hyphal tips in the ascus mother cells
- diploid zygote nucleus undergoes meiosis, resulting in four haploid nuclei
- These divide mototically to produce a row of eight nuclei in each developing ascus


# Ascospores



Source: fungionline.org.uk

# **Division: Basidiomycota**

- Basidiomycetes are commonly called club fungi, mushrooms etc,
- the **basidium**, involved in sexual reproduction
- Most are saprophytic and decompose plant debris, especially cellulose and lignin
- Many mushrooms specific alkaloids either as poisons or hallucinogens
- The life cycle of a typical basidiomycete starts with a basidiospore germinating to produce a monokaryotic mycelium
- meets another monokaryotic, mycelium of a different making type, mycelia fuse to dikaryotic secondary mycelium



 This mycelium is stimulated to produce a solid mass of hyphae, as a button that pushes through the soil, elongates and develops a cap

Basidiocarp
 cap contains plate like gills

Source: fungionline.org.uk

### **Division Deuteromycota**

- When a fungus lacks the sexual phase, it is placed in the division Deuteromycota, Fungi Imperfeci
- few are parasitic on other fungi
- Several human pathogenic forms like athlete's foot, ringworm etc., belong to these group

### Slime molds and water molds

- These molds resemble fungi in appearance
- In their cellular organization, they are related most closely to the protists

# **Economic importance of fungi**

- Fungi are both useful as well as harmful to humankind
- Useful activities of fungi
  - Food Industry
  - Mushrooms are a type of fungi Edible
    - Agaricus bisporous
  - Lecanora esculata is a lichen
  - Reindeer moss a lichen in tundra
  - Food yeast contains vitamins of the B-group,
     E-group and 15% proteins, (used as SCP)

#### Industrial applications

- In breweries :
  - Anaerobic respiration (fermentation) of glucose yeasts yield ethyl alcohol and CO<sub>2</sub>
- In bakeries :
  - Saccharomyces cervisiae baker's yeast.
- Cheese processing :
  - Penicillium and Aspergillus
- Chemical industry :
  - citric acid, gallic acid, gluconic acid, Aspergillus sp.
- Others:
  - perfumes are obtained from lichens
- Role in agriculture:
  - Saprophytic fungi help in the decay of dead animals and plants
- Recycling and mineralization of materials

#### Medical uses

- Anibiotics
  - Patulia
  - Fumigati
  - Cephalosporin
  - Viridin
- Synthesis of vitamins and enzymes
- Synthesis of proteins and fats

### Harmful activities of fungi

- Human diseases
- Plant diseases
- Food spoilage
- Tropical deterioration

### **Algae**

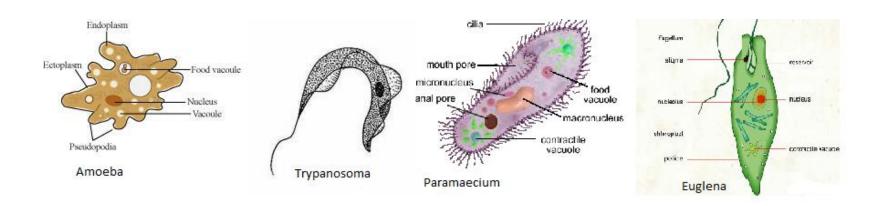
- Algae are classified under the group thallophyta in the division cryptogams
- they lack tissues
- Algae are autotrophic oxygenic photosynthesis, freshwater seawater, moist soil
- single celled, colonial or filamentous
- Algae are usually green
- may be blue green or red or brown
- cell wall is made up of cellulose reserve food as starch

### Properties of major groups of algae

| Groups                                        | Morphology                              | Pigments / carbon<br>reserve / cell wall<br>features                                   | Habitats                          | Examples      |
|-----------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------|---------------|
| Chlorophyta<br>(Green algae)                  | Unicellular to<br>leafy                 | Chlorophylls a&b starch; cell walls of cellulose                                       | Freshwater,<br>soil and<br>marine | Chlamydomonas |
| Chrysophyta<br>Golden-brown<br>algae, diatoms | Unicellular                             | Chlorophylls a, c<br>and e; Lipids; silica                                             | Freshwater,<br>soil and<br>marine | Navicula      |
| Phaeophyta<br>(Brown algae)                   | Filamentous to leafy                    | Chlorophylls a & c<br>Xanthophylls; Laminarin,<br>mannitol; cellulose                  | Marine                            | Laminaria     |
| Pyrrophyta<br>(Dinoflagellates)               | Unicellular<br>flagellated              | Chlorophylls a&c starch; cellulose                                                     | Freshwater,<br>marine             | Gonyaulux     |
| Rhodophyta<br>(Red algae)                     | Unicellular,<br>filamentous to<br>leafy | Chlorophylls a&d,<br>phycocyanin,<br>phycoerythrin; starch;<br>fluoridoside, cellulose | Marine                            | Polysiphonia  |

# Different groups of algae




### **Protozoa**

- Protozoa are unicellular or colonial eurkaryotes
- cell wall is absent
- various membrane bound cell organelles
- may be pseudopodia (as in Amoeba) cilia (Paramecium) or flagella (Euglena)
- Parasitic forms do not possess any of these locomotory structures
- Nutrition may be holophytic or holozoic
- autotrophic, heterotrophic or myxotrophic
- Cyst formation is common

# Major groups of protozoa

| Group         | Habitats                   | Common diseases   | Examples    |
|---------------|----------------------------|-------------------|-------------|
| Mastigophora  | Freshwater; parasites of   | Sleeping sickness | Trypanosoma |
| (Flagellates) | animals                    | Leishmaniasis     | Leishmania  |
| Sarcodina     | Freshwater and marine;     | Amoebic dysentery | Entamoeba   |
| (Amoebas)     | animal parasites           |                   |             |
| Ciliophora    | Freshwater and marine;     | Dysentery         | Paramecium  |
| (Ciliates)    | animal parasites           |                   |             |
| Sporozoa      | Primarily animal parasites | Malaria           | Plasmodium  |
| (Sporozoans)  |                            |                   |             |
| Euglenoids    | Freshwater, some marine    |                   | Euglena     |
| (Phototrophic | (Also considered with      |                   |             |
| flagellates)  | algae)                     |                   |             |

### Protozoa

