EXOTOXINS

- Bacterial protein toxins are the most potent poisons may show activity at very high dilutions.
- Protein toxins are resemble enzymes.
- bacterial exotoxins are:
- ✓ Proteins.
- ✓ Denatured by heat, acid, proteolytic enzymes.
- \checkmark Have a high biological activity (most act catalytically).
- \checkmark Exhibit specificity of action.
- ✓ Bacterial exotoxins have enterotoxic, cytotoxic, hemolytic and neurotoxic effect.

Features of Exotoxins

- Exotoxins:
- Excreted by living cells

Produced by Gram-positive and Gram-negative bacteria

> Polypeptides

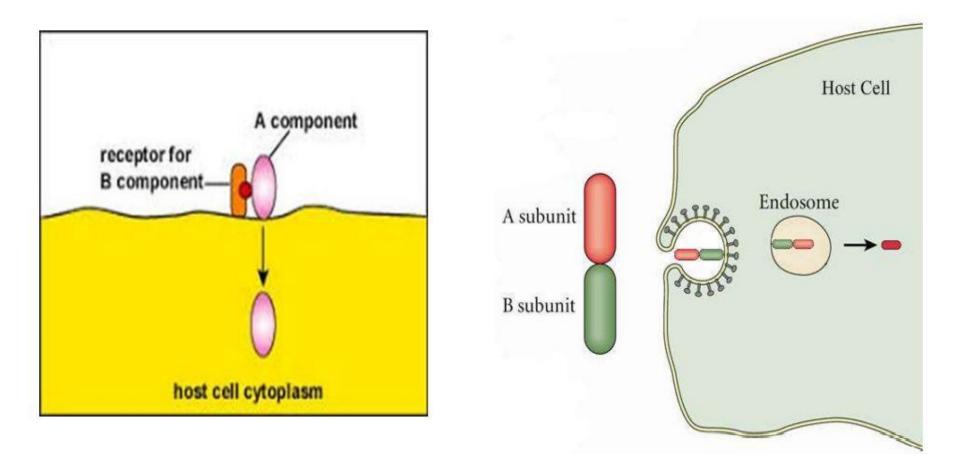
➤Usually bind to specific receptors on cells

➢ Highly toxic. Fatal to animals in very small doses

► Relatively heat labile. Toxicity destroyed over 60°C

- Highly antigenic. Stimulate formation of antitoxin. Antitoxin neutralizes the toxin Converted to toxoid by formalin. Toxoid is nontoxic but antigenic used to immunize, e.g. tetanus toxoid
- Usually controlled by extra-chromosomal genes, e.g. plasmids, phage gene

>do not produce fever in the host


A+B subunit arrangement

- Many protein toxins, notably those act intracellularly (with regard to host cells), consist of two components:
- One component (subunit A) is responsible for the enzymatic activity of the toxin;
- The other component (subunit B) is concerned with binding to a specific receptor on the host cell membrane and transferring the enzyme across the membrane.
- The enzymatic component is not active until it is released from the native (a+b) toxin.

Attachment and Entry of Toxins

- There are at least two mechanisms of toxin entry into target cells.
- Direct entry, the b subunit of the native (a+b) toxin binds to a specific receptor on the target cell and induces the formation of a pore in the membrane through which the a subunit is transferred into the cell cytoplasm.
- Alternative mechanism : receptor-mediated endocytosis (rme).

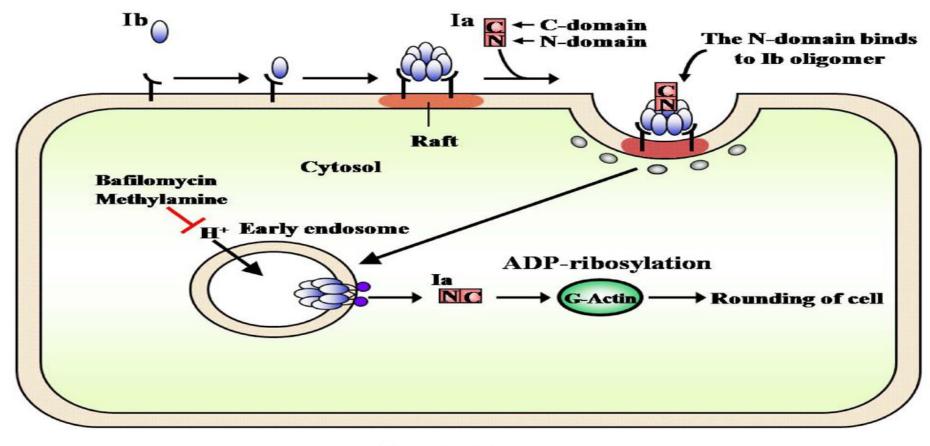
Attachment and entry of toxin

Bacteria produced exotoxin

Name of bacteria	Name of exotoxin	Type of action
Staphylococcus. Aureus	Enterotoxin, toxic shock syndrome	Acts as super antigen, stimulates T- cell , releases large amount of cytokines
Streptococcus.pyogenus	S.Pyrogenic exotoxin	Acts as super antigen, stimulates T- cell ,releases large amount of cytokines
Corynebacterium.diptheriae	Diphtheria toxin	Inhibiting protein synthesis by inhibiting Elongation Factor-2
Clostridium.perfringens	Alpha-toxin	Lecithinase and phospholipase activity causes myo-necrosis
Clostridium.tetani	Tetanus toxin (tetanospsmin)	Decreases the neurotransmitter, release from the inhibitory neurons(glycine&GABA)
Clostridium.botulinum	Botulinum toxin	Decrease neuro transmitter (acetyl- choline) release from neurons (spastic- paralysis)
Escherichia.coli (diarrheagenic)	Heat – labile toxin	Act.of adenylate cyclase t cAMP in target cell diarrhea
	Heat-stable	cAMP in target cell secretory diarrhea
	verocytotoxic	Inhibiting protein synthesis by inhibiting ribosomes
Shigella dysentriae type 1	Shiga toxin	Inhibition of protein synthesis by inhibiting of ribosomes
Vibrio cholerae	Cholera toxin	Act.of adenylate cyclase CAMP in target cell diarrhea
pseudomonas	Exotoxin	Inhibiting protein synthesis by inhibiting Elongation Factor-2

Staphylococcal enterotoxin

- It is responsible for the manifestations of staphylococcal food poisoningnausea, vomiting and diarrhoea 2-6 hrs after consuming food contaminated by toxin.
- Toxin is relatively heat stable, resisting 100°c for 10-40 mins depending on the concentration of the toxin and the nature of the medium.
- About 2/3rd of *S. aureus* strains, growing in carbohydrate and protein foods, secret the toxin.
- Milk and milk products is also contaminated.
- The source of infection is usually a food handler, become a carriers.


- 8 antigenic types of enterotoxins are currently known, named A,B,C1-3,
 D,E and H. they are formed by toxigenic strains either by singly or in combination.
- The toxin acts directly on autonomic nervous system to cause illness.
- The toxin is very potent.
- The toxin also exhibit pyrogenic, mitogenic, hypotensive, thrombocytopenic and cytotoxic effect.
- Sensitive serological tests such as latex agglutination and ELISA are available for detection of toxin.

Toxic shock syndrome

- It is potentially fatal multisystem disease presenting with fever, hypotension, myalgia, vomiting, diarrhea, mucosal hyperaemia and an erythromatous rash.
- TSST type 1 is often more responsible, through enterotoxin B or C may also cause the syndrome.
- TSST 1 antibody seen in convalescents.
- Staphylococcal enterotoxins and TSST-1 are super antigens which are potent activators of T lymphocytes.
- This leads to an excessive and dysregulated immune response, with release of cytokines interlukin1-2,TNF and interferon gamma.
- This explain the multisystem involvement and florid manifestations in staphylococcal food poisoning and TSS.

Clostridium perfringens Toxin

- Perfringolysin O:
- Cholesterol-dependent cytolysins (CDCs) constitute a family of pore forming toxins secreted by Gram positive bacteria.
- These toxins form transmembrane pores by inserting a large β-barrel into cholesterol-containing membrane bilayers.
- Binding of water-soluble CDCs to the membrane triggers, formation of oligomers containing 35-50 monomers.
- The coordinated insertion of more than seventy β-hairpins into the membrane requires multiple structural conformational changes and leads to pore formation.
- Perfringolysin O(PFO), secreted by Clostridium perfringens, has become the prototype for the CDCs.

- Clostridium perfringens iota-toxin is composed of the enzyme component (Ia) and the binding component (Ib).
- Ib binds to receptor on targeted cells and translocates Ia into the cytosol of the cells.
- ✤ Ia ADP-ribosylates actin, resulting in cell rounding and death