

INDUSTRIAL INTERNET OF THINGS LAB 2ND YEAR BTECH 4TH SEM Guided By- Prof. Rajesh Mishra (Course Code: CUTM1017) Session 2021-2022

Hands on Lab Guide

(Lab Manual)

Department of computer science & Engineering CUTM, Parlakhemundi

INDEX

Exp. No.	Name of the Experiment	Page. No	Remarks
01	To Interface Led with Arduino Uno and its Proteus Simulation	01	
02	To Interface Led and switch with Arduino Uno and its Proteus Simulation	02	
03	To Interface IR Sensor with Arduino Uno and its Proteus Simulation	03	
04	To Interface Rain Sensor with Arduino Uno and its Proteus Simulation	04	
05	To Interface Motor with Arduino Uno and its Proteus Simulation.	05	
06	To Interface led and Relay with Arduino Uno and its Proteus Simulation	06	
07	Ladder Diagram for all the logic Gates in using Virtual Lab	07 - 08	
08	Ladder Diagram for given Expression using Virtual Lab	09	
09	To Interface Node Mcu Connectivity with WIFI Network.	10 - 11	
10	To Send field Data to Thingspeak Server	12 - 13	
11	To Receive Data from Thingspeak Server	14 - 16	

 $\underline{EXP-0}1$

Aim – To Interface Led with Arduino Uno and its Proteus Simulation.

• ARDUINO IDE CODE -

```
➢ For Single Led -
```

```
int led = 3;
void setup(){
  pinMode (3, OUTPUT);
}
void loop(){
  digitalWrite(3,HIGH);
  delay(1000);
  digitalWrite(3,LOW);
  delay(1000);
}
```

```
int led1 = 3;
int led2 = 4;
void setup(){
   pinMode (3, OUTPUT);
   pinMode (4, OUTPUT);
}
void loop(){
   digitalWrite(3,HIGH);
   digitalWrite(4,LOW);
   delay(200);
   digitalWrite(4,HIGH);
   delay(200);
}
```

➢ For Double Led -

<u>EXP - 0</u>2

Aim – To Interface Led and switch with Arduino Uno and its Proteus Simulation.

• ARDUINO IDE CODE -

```
int sw = 3;
int led =5;
void setup(){
    pinMode (3,INPUT);
    pinMode (5,OUTPUT);
}
void loop(){
    int x= digitalRead (3);
    if(x==HIGH){
        digitalWrite (5,HIGH);
    }
    else{
        digitalWrite(5,LOW);
    }
}
```


$\underline{EXP-0}3$

Aim – To Interface IR Sensor with Arduino Uno and its Proteus Simulation.

• ARDUINO IDE CODE -

```
int ir = 3;
int led =5;
void setup(){
  pinMode (3,INPUT);
  pinMode (5,OUTPUT);
}
void loop(){
  int x= digitalRead (3);
  if(x==HIGH){
    digitalWrite (5,HIGH);
  }
  else{
    digitalWrite(5,LOW);
  }
}
```


$\underline{EXP-0}4$

Aim – To Interface Rain Sensor with Arduino Uno and its Proteus Simulation.

• ARDUINO IDE CODE -

```
int rain = 3;
int led =5;
void setup(){
   pinMode (3,INPUT);
   pinMode (5,OUTPUT);
}
void loop(){
   int x= digitalRead (3);
   if(x==HIGH){
     digitalWrite (5,HIGH);
   }
   else{
     digitalWrite(5,LOW);
   }
}
```


$\underline{\text{EXP}} - \underline{0}5$

Aim – To Interface Motor with Arduino Uno and its Proteus Simulation.

• ARDUINO IDE CODE -

```
int pinm1 =2;
int pinm2 =3;
int pinm3 =4;
int pinm4 =5;
void setup(){
  pinMode(2,OUTPUT);
  pinMode(3,OUTPUT);
  pinMode(4,OUTPUT);
  pinMode(5,OUTPUT);
}
void loop(){
  digitalWrite(3,HIGH);
  digitalWrite(2,LOW);
  digitalWrite(4,HIGH);
  digitalWrite(5,LOW);
  delay(2000);
}
```


<u>EXP - 0</u>6

Aim – To Interface led and Relay with Arduino Uno and its Proteus Simulation.

• ARDUINO IDE CODE-

```
int led =5;
void setup(){
  pinMode (5,OUTPUT);
}
void loop(){
  digitalWrite (5,HIGH);
  delay(2000);
  digitalWrite(5,LOW);
  delay(2000);
}
```


$\underline{\text{EXP}} - 07$

Aim – Ladder Diagram for all the logic Gates in using Virtual Lab.

AND GATE:

OR GATE:

 $\underline{\text{EXP}} - 07$

NOT GATE:

NAND GATE:

NOR GATE:

$\underline{\text{EXP}} - 08$

Aim-Ladder Diagram for given Expression using Virtual Lab.

1.) Z = ~AB + CD

2.) Z = (A + B) (C + ~D)

3.) F = (~A + B) (C + ~D +E)

<u>EXP - 09</u>

Aim – To Interface Node Mcu Connectivity with WIFI Network.

• ARDUINO IDE CODE -

```
#include <ESP8266WiFi.h>
const char* ssid = "iQ00 Z6 Lite 5G";
const char* password = "12345670";
void setup()
{
      Serial.begin(115200);
     delay(10);
     WiFi.begin(ssid, password);
    Serial.println();
    Serial.print("Connecting to ");
    Serial.println(ssid);
    while (WiFi.status() != WL_CONNECTED)
       {
        Serial.println("WIFI is not Connected");
        //Serial.println();
        delay(500);
        }
    Serial.println();
    Serial.println("WIFI is Connected");
    Serial.print("Connected, IP address: ");
    Serial.println(WiFi.localIP());
}
void loop() {
}
```

<u>EXP - 09</u>

• WIFI CONNECTING -

	end
ענינדרן נעמשערנינדעררם דעטטרר דרני מטנימרשעיניטעמשעשירעיניטאנאדרטאנילמאמשמרטערנטעירמעימדינריור ווויד אינעראיניר	b
Connecting to iQ00 Z6 Lite 5G	
WIFI is not Connected	
WIFI is Connected	
Connected, IP address: 192.168.243.145	

<u>EXP - 10</u>

Aim – To Send field Data to Thingspeak Server.

• ARDUINO IDE CODE :-

```
#include <ESP8266WiFi.h>;
#include <WiFiClient.h>;
#include <ThingSpeak.h>;
const char* ssid = "IQOO Z6 Lite 5G";
const char* password = "12345670";
WiFiClient client;
unsigned long myChannelNumber = 2069527;
const char * myWriteAPIKey = "SVE0BPVK6R8AJTYL";
void setup()
{
Serial.begin(9600);
WiFi.begin(ssid, password);
   Serial.println();
    Serial.print("Connecting to ");
   Serial.println(ssid);
   while (WiFi.status() != WL_CONNECTED)
       {
        Serial.print(".");
        delay(500);
       }
ThingSpeak.begin(client);
}
void loop()
{
int c=5;
      Serial.println("c value:");
   Serial.println(c);
ThingSpeak.writeField(myChannelNumber, 1,c, myWriteAPIKey);
delay(100);
}
```

$\underline{\text{EXP}} - 10$

• SENDING DATA TO THINGSPEAK: -

Channels Apps Devices Support	Commercial Use How to Buy
Author: mwa0000027980622 Access: Private	
Private View Public View Channel Settings Sharing API Keys Data Import / Export	
Add Visualizations	MATLAB Analysis MATLAB Visualization
	Channel 2 of 3 < >
Channel Stats	
Created: <u>9.days.ago</u> Last entry: <u>less than a minute ago</u> Entries: 6	
Field 1 Chart C 🕫 🔎 🗶	
Project 1	
soo 20. Mar 22. Mar 24. Mar 26. Mar Date	

<u>EXP - 11</u>

Aim – To Receive Data from Thingspeak Server.

• ARDUINO IDE CODE-

```
#include "ThingSpeak.h"
#include <ESP8266WiFi.h>
const char* ssid = "iQ00 Z6 Lite 5G";
const char* password = "12345670";
unsigned long channel = 2070847;
unsigned int led1 = 1;
unsigned int led2 = 2;
unsigned int led3 = 3;
WiFiClient client;
void setup() {
  Serial.begin(115200);
  delay(100);
  pinMode(D0, OUTPUT);
  pinMode(D2, OUTPUT);
  pinMode(D4, OUTPUT);
  digitalWrite(D0, 0);
  digitalWrite(D2, 0);
  digitalWrite(D4, 0);
  Serial.println();
  Serial.println();
  Serial.print("Connecting to ");
  Serial.println(ssid);
  WiFi.begin(ssid, password);
  while (WiFi.status() != WL_CONNECTED) {
   delay(500);
    Serial.print(".");
  }
  Serial.println("");
  Serial.println("WiFi connected");
  Serial.println("IP address: ");
  Serial.println(WiFi.localIP());
```

<u>EXP - 11</u>

```
Serial.print("Netmask: ");
  Serial.println(WiFi.subnetMask());
  Serial.print("Gateway: ");
  Serial.println(WiFi.gatewayIP());
  ThingSpeak.begin(client);
}
void loop() {
  int led_1 = ThingSpeak.readFloatField(channel, led1);
  int led_2 = ThingSpeak.readFloatField(channel, led2);
  int led_3 = ThingSpeak.readFloatField(channel, led3);
  if(led_1 == 1){
   digitalWrite(D0, 1);
   Serial.println("D0 is On..!");
  }
  else if(led_1 == 0){
   digitalWrite(D0, 0);
    Serial.println("D0 is Off..!");
  }
  if(led_2 == 1){
   digitalWrite(D2, 1);
   Serial.println("D2 is On..!");
  }
  else if(led_2 == 0){
   digitalWrite(D2, 0);
    Serial.println("D2 is Off..!");
  }
  if(led_3 == 1){
   digitalWrite(D4, 1);
    Serial.println("D4 is On..!");
  }
  else if(led_3 == 0){
   digitalWrite(D4, 0);
   Serial.println("D4 is Off..!");
  }
  Serial.println(led_1);
  Serial.println(led_2);
  Serial.println(led_3);
  delay(5000);
```

<u>EXP - 11</u>

• RECEIVING DATA FROM THINGSPEAK -

