The double-reciprocal (Lineweaver-Burk) plot allows easy calculation of K_m and V_{max}

Many factors influence the activity of an enzyme

- pH
- Temperature
- Concentration of molecules that bind to enzyme
 - Substrate
 - Reversible inhibitors
 - Irreversible inhibitors (inactivators)
 - Allosteric effectors
- Covalent modification
- Enzyme concentration

Enzymes show maximum activity at their pH optimum

Figure 6-17 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Enzymes can be inhibited by substrate analogs

Enzymes are greatly inhibited by transitionstate analogs

Competitive inhibition $E + S \iff ES \longrightarrow E + P$ + EI

Figure 6-15a *Lehninger Principles of Biochemistry, Fifth Edition* © 2008 W. H. Freeman and Company

Uncompetitive inhibition

Figure 6-15b *Lehninger Principles of Biochemistry, Fifth Edition* © 2008 W. H. Freeman and Company

Figure 6-15c *Lehninger Principles of Biochemistry, Fifth Edition* © 2008 W.H. Freeman and Company

Competitive inhibition $E + S \iff ES \longrightarrow E + P$ + EI

Figure 6-15a *Lehninger Principles of Biochemistry, Fifth Edition* © 2008 W. H. Freeman and Company

α is the factor by which [S] must be increased to overcome the presence of inhibitor

Uncompetitive inhibition

Figure 6-15b *Lehninger Principles of Biochemistry, Fifth Edition* © 2008 W. H. Freeman and Company

Figure 6-15c *Lehninger Principles of Biochemistry, Fifth Edition* © 2008 W.H. Freeman and Company

© 2008 John Wiley & Sons, Inc. All rights reserved.

TABLE 6–9	Effects of Reversible Inhibitors on Apparent V _{max} and Apparent K _m		
Inhibitor type	Apparent V _{max}	Apparent K _m	
None	V _{max}	<i>K</i> _m	
Competitive	V _{max}	αK _m	
Uncompetitive	$V_{\rm max}/lpha'$	$K_{\rm m}/lpha'$	
Mixed	$V_{\rm max}/lpha'$	$\alpha K_{\rm m}/\alpha'$	

Table 6-9Lehninger Principles of Biochemistry, Fifth Edition© 2008 W. H. Freeman and Company

Table 12-2 Effects of Inhibitors on Michaelis–Menten Reactions ^a				
Type of Inhibition	Michaelis–Menten Equation	Lineweaver-Burk Equation	Effect of Inhibitor	
None	$\boldsymbol{v_o} = \frac{\boldsymbol{V_{max}[S]}}{\boldsymbol{K_M} + [S]}$	$\frac{1}{v_{o}} = \frac{K_{M}}{V_{max}} \frac{1}{[S]} + \frac{1}{V_{max}}$	None	
Competitive	$\boldsymbol{v}_{o} = \frac{\boldsymbol{V}_{max}[S]}{\alpha \boldsymbol{K}_{\boldsymbol{M}} + [S]}$	$\frac{1}{v_{o}} = \frac{\alpha K_{M}}{V_{max}} \frac{1}{[S]} + \frac{1}{V_{max}}$	Increases $K_M^{\rm app}$	
Uncompetitive	$\boldsymbol{v}_{o} = \frac{\boldsymbol{V}_{max}[S]}{\boldsymbol{K}_{M} + \boldsymbol{\alpha}'[S]} = \frac{(\boldsymbol{V}_{max}/\boldsymbol{\alpha}')[S]}{\boldsymbol{K}_{M}/\boldsymbol{\alpha}' + [S]}$	$\frac{1}{v_{o}} = \frac{K_{M}}{V_{max}} \frac{1}{[S]} + \frac{\alpha'}{V_{max}}$	Decreases K_M^{app} and V_{max}^{app}	
Mixed (noncompetitive)	$\boldsymbol{v}_{o} = \frac{\boldsymbol{V}_{max}[S]}{\alpha \boldsymbol{K}_{M} + \alpha'[S]} = \frac{(\boldsymbol{V}_{max}/\alpha')[S]}{(\alpha/\alpha')\boldsymbol{K}_{M} + [S]}$	$\frac{1}{v_{\rm o}} = \frac{\alpha K_M}{V_{\rm max}} \frac{1}{[S]} + \frac{\alpha'}{V_{\rm max}}$	Decreases V ^{app} ; may increase or decrease K ^{app}	
[1]	[1]			

$$a_{\alpha} = 1 + \frac{11}{K_1}$$
 and $\alpha' = 1 + \frac{11}{K_1'}$