

- □ Can hold up to 200 000 litres of culture
- Cells are provided with nutrients and very carefully controlled environment to keep them in desired growth stage
- Usually made out of stainless steel as many fermentations produce acid.
- Nutrients and other materials are fed in by valve operated pipelines.



- Conditions in the fermenter are carefully monitored to regulate cell growth.
- □ Fermenter and all pipework must be sterile before fermentation begins
- □ This is usually achieved by flushing the whole system with superheated steam before the production begins.

- Interior is monitored by sterilisable probes which record temp., pressure, stirrer speed, pH, oxygen and carbon dioxide levels.
- ☐ These are all recorded and electronic control systems with automatic valves will regulate them.
- □ E.g. if medium becomes too acidic, bases can be added from a reservoir to correct the pH



□ A fermenter with a 30 000 gallon capacity

- □ The production of microbial products is called fermentation but it is not fermentation in the defined sense of the word.
- Process if frequently aerobic so ferementer has to be well aerated.
- □ Incoming air is filtered and pumped into the base of the fermenter a valve releases the pressure from the top f the tank.

- An antibiotic producing fermentation may use a tonne of sugar a day.
- The organisms are likely to raise the temperature of the culture by more than 1°C per hour; more heat will come from the activity of the impeller.
- This rise in temperature could quickly kill the microbes if not cooled.
- Cooling is achieved by either a water jacket or cooling coils inside the fermenter.

- Most fermentations are batch processes, e.g. beer and wine, penicillin
- □ Nutrients and the innoculum are added to the sterile fermenter and left to get on with it!
- Anti-foaming agent may be added.
- Once the desired amount of product is present in the fermenter the contents are drained off and the product is extracted.