Insect Nomenclature & Classification

Scientific Nomenclature

- Caroles Linnaeus (1707 1778) in his **10th edition of systema nature**
- published in 1758 used the binomial system of nomenclature for the first time
- This double naming in **latin** one for the **genus** and the second for the **species**
- In 1842, Strickland published a code of nomenclature in English Strickland code
- Another code called 'Dall code" was evolved by the Americans in 1877
- 1901 at Berlin, an international code of zoological nomenclature was evolved
- At the 16th session of International congress of Zoology in Washington, the latest international code of Zoological nomenclature was approved
- The same was revised and published in 1964

Holotype: The descriptions of unrecorded species should be based on a single specimen whether it be a male or female

Allotype: The opposite sex specimen which is described along with the holotype

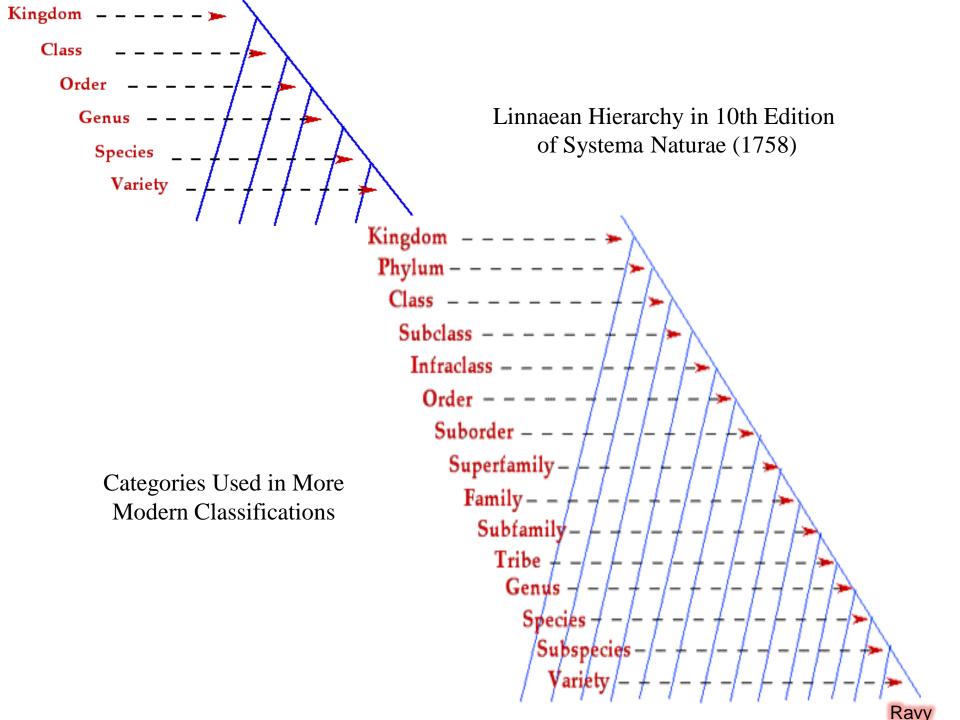
Neotype: A specimen later designated to replace a holotype, If the latter can be documented as lost or destroyed

Syntype: A group of specimens thought to represent a species, as designated or indicated by the author(s) of the original description

Paratype: Other specimens of the species kept along with the holotype and allotype

Topotype: Specimen(s) collected from the same location as the holotype

If the same name is given by different scientists to different organisms, it is called **Homonymy**


- The names are to be given in **Latin**
- **Authors name** in full should be written at the **end of species name** without any punctuation
- The generic name has to be a simple or compound word
- The supraspecific categories ends with

Tribe -ini

Sub family -inae

Family -idae

Super family -oides

Classification of insects:

The basic biological unit in the classification is species

Species: These are a group of individuals which are similar in their structure, capable of interbreeding and producing fertile off spring, but at the same time reproductively isolated from other groups

Subspecies: is an aggregate of phenotypically similar populations of a species, inhabiting a geographic subdivision of the range of a species and differing taxonomically from other populations of the species

Genus : A group of species having some definite similar characters or relationships is called a genus

Subfamily: is a group of allied genera to form a subfamily

Family: is a taxonomic category containing a single genus or a group of genera of common phylogenetic origin which is separated from related families by a decided gap. Such families showing similar characters form order.

- The classification of animals was first started by **Aristotle** (384-322BC)
- **Linnaeus** is considered as the father of the classification of animals and plants, classified insects into only seven orders viz Coleoptera, Hemiptera, Lepidoptera, Neuroptera, Diptera, Hymenoptera and Aptera
- •Jeannel recognized 40 orders
- •Brues, Melander and carpenter recognized 27 orders
- •Imms and pruthi gave 29 orders
- •Essig and Mani listed 33 orders
- •Ross 28 orders

Sub Class: Apterygota -Primitive wingless insects with pregenital abdominal appendages ,with no or slight metamorphosis, malpighian tubules are rudimentary, no pleural suture in the thoracic region and monocondylic mandibles

Sub class: pterygota- Insects with developed wings and showing definite metamorphosis, pregenital appendages are absent, A pleural suture divides the thoracic pleura in to episternum and epimeron and dicondylic mandibles

Division 1: Exopterygota (Hemimetabola). Metamorphosis simple, wings develop externally, Immatue stages (nymphs) usually resemble adults in structure and habits

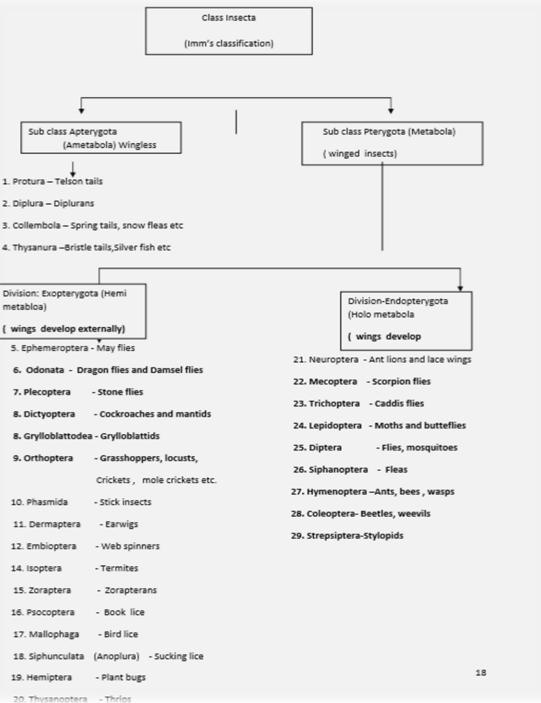
Division 2: Endopterygota (Holometabola). Metamorphosis complex accompanied by a pupal instar, wings develop internally. Immature stages (larvae) differ from adult in structure and habit.

Characters of Phylum Arthropda (Arthro-Joint, Poda –Foot)

- a. The segmented body
- b. Bilateral symmetry
- c. Paired jointed appendages usually terminates in a class
- d. Chitinous exoskeleton
- e. Ventral nervous system and
- f. Dorsal heart
- g. Haemocoelic body cavity
- h. Muscles are composed of striated fibres, ciliated epithelium absent
- i. Open type of circulatory system
- It is the largest phylum in the animal kingdom. Besides insects, many creatures like crayfish, crabs, lobsters, centipedes, millipedes, spiders, mites, ticks, scorpions etc come under this category

Phylum arthropoda is classified into

- 1. Crustacea (crusta-shell):eg: prawns, crabs, wood louse
- 2. Arachnida (Arachine-spider): eg:scorpion, spider, ticks, mites
- 3. Chilopoda (chilo-lip,poda-legs): eg:centipedes
- 4. Diplopoda (diplo-two,poda-legs): eg:millipedes
- 6. Trilobita (an extinct group)
- 7. Hexopoda (hexa-Six; poda-legs) eg.insects



Characters of Class insecta

- 1. Body divided in to head, thorax and abdomen
- 2. Possess three pairs of legs, hence the name Hexapoda
- 3. Presence of one or two pairs of wings
- 4. A pair of antennae
- 5. Respiration by means of internal air tubes known as trachea
- 6. Genital opening situated at the posterior end of the body
- 7. Presence of metamorphosis(incomplete/complete) during development
- 8. Possess exoskeleton made up of hard cuticle
- 9. Excretion is mainly by malpighian tubules which help in maintaining ionic balance

Characters of Sub Classes:

Apterygota(Ametabola)	Pterygota(Metabola)
Small and primitive insects	Developed insects
Primarily wingless	Winged and secondarily wingless
Mouth parts are hidden in the head	Mouthparts are exposed
Mandibles articulate with head at	Mandibles articulate with head at
single point -Monocondyle	two points -Dicondyle
Malphigian tubules are absent or	Malphigian tubules are present
rudimentary	
Adults have pregenital abdominal	Adults without pregenital
appendages	abdominal appendages
Pleural suture in thorax is absent	Pleural suture divides thoracic
	pleuron into episternum and
	epimeron
Metamorphosis is simple or	Metamorphosis is present and
absent	variable
Abdominal segments are more in	Abdominal segments are
number (11 or 12)	secondarily reduced (8 to 10)
Adults moult several times	Adults donot moult

Characters of divisions of Sub class Pterygota

Exopterygota(Hemimetabola)	Endopterygota(Holometabola)
Wings develop externally	internally
Metamorphosis simple and incomplete	Complete and complex
Immature stages (nymphs)	Immature stages (lava) differ
resemble adults in structure and habits	adults in structure and habits
No pupal instar	Pupal instar present

Protura

Diplura

Collembola

Ephemeroptera

Odonata

Plecoptera

Grylloblattidae

Orthoptera

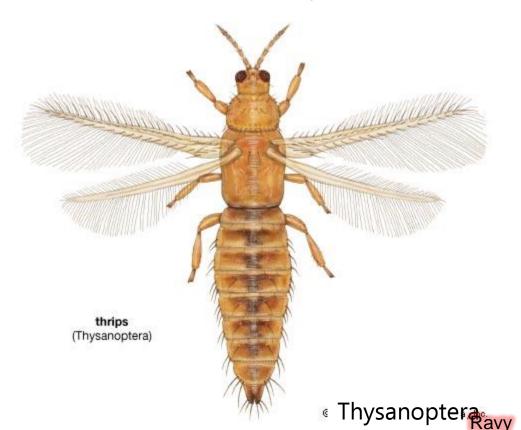
Dictyoptera

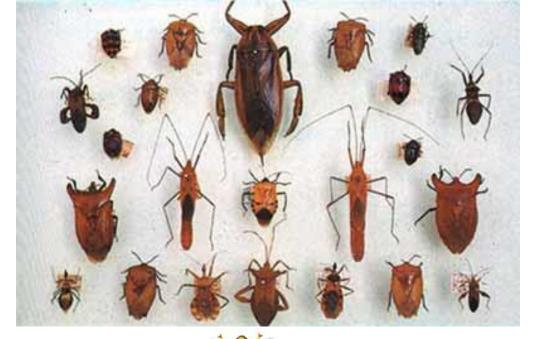
Dermaptera

Zoraptera

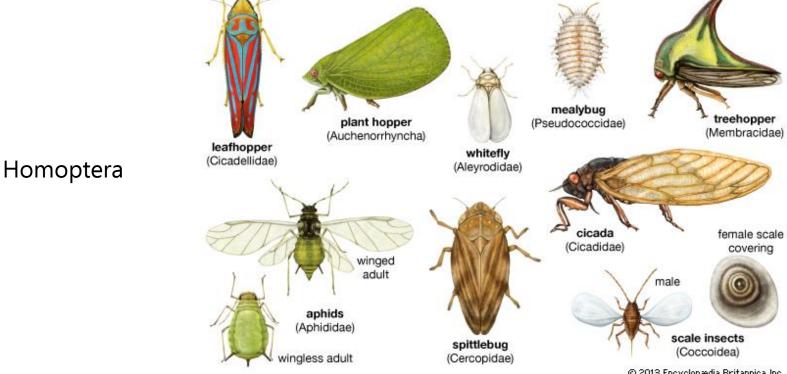
Isoptera

Embioptera


Mallophaga



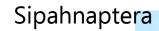
Siphunculata



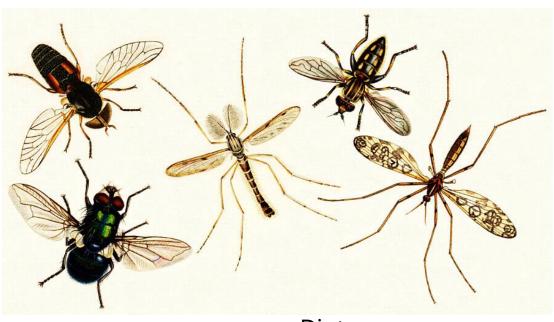
Psocoptera

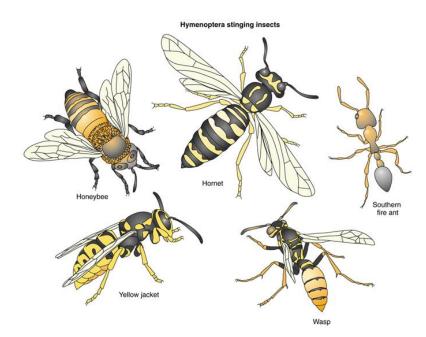
Heteroptera

Nueroptera


Mecoptera

Trichoptera


Strepsiptera



Lepidoptera

Diptera

Hymenoptera

Coleoptera