

EXPERIMENT NO: 1

<u>Carbohydrates</u> <u>Starch</u>

Definition:

Carbohydrates: natural plant products - organic compounds consist of C,H and O.

Complex polysaccharides: substances with very high molecular weight and consist of a large number of monosaccharide units linked together through glycosidic linkage. **Starch (Amylum):**

Natural plant product which is a mixture of amylose (25%) and amylopectin (75%). **Amylose:**

- Linear molecule consists of 250 300 glucose units of αD glucose units linked together through $\alpha 1.4$ glycosidic linkage.
- More water soluble than amylopectin
- Amylose + $I_2 \rightarrow$ blue color

Amylopectin:

- Branched molecule consists of more than 1000 units of α- D glucose linked together through α 1,4 and α- 1,6 glycosidic linkage.
- Amylopectin is less water soluble than amylose.
- Amylopectin + $I_2 \rightarrow$ violet color

Plants containing starch:

- ✓ Cereal seeds contain 50- 65 % starch
- ✓ Ginger rhizomes 50% starch.
- ✓ Potato tubers 80- 90% starch.

Commercial sources of starch:

- 1. Corn starch: isolated from the caryopses of Zea mays L. (Graminae)
- 2. Wheat starch: isolated from the caryopses of *Triticum aestivum L*. (*Graminae*)
- 3. Rice starch: isolated from the caryopses of *Oryza sativa L.* (*Graminae*)
- 4. Potato starch: isolated from the tubers of *Solanum tuberosum L.* (*Solanaceae*)

Properties of Starch:

- 1. White mass powder, odorless with starchy taste
- 2. Insoluble in water and form colloidal solution with water.
- <u>3.</u> Starch + $I_2 \rightarrow$ Deep blue color.
- <u>4.</u> Starch + NaOH or chloral hydrate \rightarrow gelatinization
- <u>5.</u> Starch + H₂O \rightarrow gel (with heat)
- 6. Corn starch and wheat starch have neutral pH Rice starch has slightly alkaline pH Potato starch has slightly acidic pH

Identification tests for starch:

1) Give positive reaction with Fehling's solution test:

Starch + HCl (hydrolysis) + NaOH (neutralization) + Fehling's solution \rightarrow Red colour

- 2) Give positive reaction with Molisch's test
 - Starch + H₂SO₄ + α naphthol \rightarrow Purple ring
- 3) Starch + $H_2O \rightarrow$ gel (jelly form) with heat
- 4) Starch + $I_2 \rightarrow$ deep blue \rightarrow colour disappears (with heating) \rightarrow the colour reappears with cooling.

The general uses:

- <u>1.</u> Nutritive.
- 2. Demulcent.
- 3. Pharmaceutical uses as tablets filler and binder.
- <u>4.</u> Antipruritic: Baby paste®- (Vitamed company) used in case of diaper rash, skin irritation (ZnO, Starch).
- 5. Industrial uses: papers, clothes.
- <u>6.</u> Antidote in case of poisoning from Iodine.

Microscopical characters:

I. Potato starch

- Central and eccentric hilum (dot shape)
- The horse shoe-shaped hila are eccentrically situated, small and unapparent
- Clear striations(rings are clearly evident)
- o Mussel-shaped

Rice plant

II. Rice starch

- They are very small, polyhedral and polygonal grains
- Aggregated from 2 150 component
- Sharp angles
- Rings and hila cannot be detected (Striations are absent)
- Very rare we can detect the presence of centric hila.

3

Wheat plant

Triticum ∨ulgare

III. Wheat starch

- Contain large granules.
- Lenticular.
- Smaller ones globular. Hilum is centric.
- Faint striations.
- Transition sizes are rare.

Corn plant

IV. Corn starch

- **□** Rings (striations) are usually absent.
- □ Spheroidal and polygonal.
- Polyhydral
- **□** The usually stellate hila can often be found
- □ X-Y hilum

