
Java Networking Overview

The Java Networking API (java.net) provides the interfaces/classes for the following functions:

Addressing●   

Making TCP connections●   

Sending/Receiving Datagram Packets via UDP●   

Locating/Identifying Network Resources●   

Security

Authentication❍   

Permissions❍   

●   

The goal of this document is to provide a high-level overview of the facilities the java.net package
provides. For details about interfaces, classes, or factories, see the networking API. For basic networking
concepts, see Trail: Custom Networking in the Java Tutorial.

Addressing
java.net provides the following addressing-related classes:

InetAddress●   

Inet4Address●   

Inet6Address●   

SocketAddress●   

InetSocketAddress●   

For IP addressing, three classes are provided: InetAddress, Inet4Address, and Inet6Address.
InetAddress represents an IP address, which is either a 32- or 128-bit unsigned number used by IP, the
lower-level protocol on which protocols like TCP and UDP are built. To represent 32-bit IPv4 address,
Inet4Address is provided. (An IPv4 address has the familiar form nnn.nnn.nnn.nnn, where n is an
integer; e.g., 129.250.35.250). It is a subclass of InetAddress. To represent 128-bit IPv6 addresses,
Inet6Address is provided. It is also a subclass of InetAddress.

For socket addressing, two classes are provided: SocketAddress and InetSocketAddress.
SocketAddress is an abstract socket address, independent of a specific protocol. It is intended for

http://java.sun.com/j2se/1.4/docs/api/java/net/package-summary.html
http://java.sun.com/docs/books/tutorial/networking/index.html


subclassing for a specific protocol. InetSocketAddress below is an example. InetSocketAddress is a
subclass of SocketAddress; it represents an IP socket address. It can include an IP address (e.g.,
129.250.35.250) and port (e.g., 80); a hostname (e.g., coastnews.com) and port (e.g., 1000); or port
only (e.g., 1010). In the latter case, a wildcard IP address is assumed.

Making TCP Connections
These classes are related to making normal TCP connections:

ServerSocket●   

Socket●   

For simple connections between a client and a server, ServerSocket and Socket are all that you will
probably need.

ServerSocket represents the socket on a server that waits and listens for requests for service from a client.
Socket represents the endpoints for communication between a server and a client. When a server gets a request
for service, it creates a Socket for communication with the client and continues to listen for other requests on
the ServerSocket. The client also creates a Socket for communication with the server. The sequence is
shown below:

Once the connection is established, getInputStream() and getOutputSteam() may be used in
communication between the sockets



Sending/Receiving Datagram Packets via UDP
The following are related to sending and receiving datagram packets via UDP.

DatagramPacket●   

DatagramSocket●   

DatagramPacket represents a datagram packet. Datagram packets are used for connectionless delivery and
normally include destination address and port information. DatagramSocket is a socket used for sending and
receiving datagram packets over a network via UDP. A DatagramPacket is sent from a DatagramSocket
by calling the send(...) method of DatagramSocket with DatagramPacket as the argument:
send(DatagramPacket dp). receive(DatagramPacket dp) is use for receiving a
DatagramPacket. (The MulticastSocket class may be used for sending/receiving a
DatagramPacket to a mulitcast group. It is a subclass of DatagramSocket that adds functionality for
multicasting.)

Locating/Identifying Network Resources
These classes are related to locating or identifying network resources:

URI●   

URL●   

URLClassLoader●   

URLConnection●   

URLStreamHandler●   

HttpURLConnection●   

JarURLConnection●   

The most commonly used classes are URI, URL, URLConnection, and HttpURLConnection.

URI represents a Uniform Resource Identifier for a resource; it is an identifier for a resource but not necessarily a
locator for that resource. URL represents a Uniform Resource Locator for a resource. URLs are a subset of URIs,
though the class URL is not a subclass of the URI class. In short, a URL tells how to access the resource, while a
URI may or may not. The Uniform Resource Name (URN) is another subset of URI. No Java class exists for it.



URLConnection is the abstract superclass of all classes that represent a connection between an application and
a network resource identified by a URL. Given a URL and hence a protocol, URL.openConnection() returns
an instance of the appropriate implementation of URLConnection for the protocol. (The protocol is known
from the URL.) The instance provides the means—URLConnection.connect()—to actually open the
connection and access the URL.

HttpURLConnection is the most commonly used implementation of URLConnection. It is for http
protocol, the protocol used for accessing content on web servers. In the above diagram, if the access protocol for
the URL were http, then an instance of HttpURLConnection would be returned by the
openConnection() method.

Security
Security includes authentication- and permissions-related classes. Authentication relates to user authentication
and involves username and password checking. Authentication of a user may be required in a number of
situations, such as when a user tries to access a URL. Permissions relate to what actions may be performed; e.g.,
unless the NetPermission object "setDefaultAuthenticator" exists, then invoking the method
Authenticator.setDefault(Authenticator a) will cause a security exception.



Authentication

Authenticator●   

PasswordAuthentication●   

The abstract class Authenticator has methods for authenticating a network connection. It is typically
subclassed and an instance of the subclass is registered with the system by calling
setDefault(Authenticator a). (Note that if there is a security manager, it checks to see that the
security policy permits the NetPermission "setDefaultAthenticator". ) Then, when the system
requires authentication, it will call a method such as getPasswordAuthentication().

PasswordAuthentication is simply a data holder for a user name and a password.

Permissions

SocketPermission●   

NetPermission●   

A SocketPermission consists of a host, with optional port range, and a set of actions that may be performed
on that host—connect, accept, listen and/or resolve. It includes methods to determine if one
SocketPermission is equal to another or implies another Permission. A SocketPermission may be
included in a PermissionCollection for easy checking if a permission exists.

NetPermission is a class for various named network permissions. Currently there are three:
setDefaultAuthenticator, as mentioned above; requestPasswordAuthentication; and
specifyStreamHandler. A NetPermission may be included in a PermissionCollection for
easy checking if a permission exists.

For more information about permissions, see http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html.

 

http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html

