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- velocity potential and stream function 

- complex potential

- elementary solutions

- flow past a cylinder

- lift force: Blasius formulae

- Joukowsky transform: flow past a wing

- Kutta condition

- Kutta-Joukowski theorem

Outline



From the Helmholtz decomposition, we have

2D flows are defined by                  and              .

We have therefore 

We consider in this chapter incompressible and irrotational flows.
−→∇ · �v = 0

−→∇ × �v = 0

∆φ = 0

∆ψ = 0

vx = ∂xφ vy = ∂yφ

�v · �n = 0

vx = ∂yψ vy = −∂xψ
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2D potential flows

�v =
−→∇φ+

−→∇ ×−→
A

∂z(·) = 0 vz = 0
−→
A = ψ�ez

+ B. C.

We have two alternative but equivalent approaches.  

where the velocity potential satisfies the Laplace equation.

where the stream function satisfies the Laplace equation.

In the potential case, the irrotational condition is satisfied automatically.

In the stream function approach, this is the divergence free condition.

Since both conditions are satisfied, both velocity fields are equal.



Isopotential curves are defined by                                            or

They are conjugate functions that satisfy the Cauchy-Riemann relations. 

They are also harmonic functions (Laplace equation), with however different B. C.

                in S with                    on the boundary L

                in S with                    on the boundary L or                         along L

dφ = dx∂xφ+ dy∂yφ = 0 dy

dx
= −vx

vy

dψ = dx∂xψ + dy∂yψ = 0
dy

dx
=

vy
vx

∂xψ∂xφ+ ∂yψ∂yφ = (−vy)vx + (+vx)vy = 0

−→∇φ · �n = 0

ψ = constant

∆φ = 0

∆ψ = 0

vx = ∂xφ = ∂yψ

vy = ∂yφ = −∂xψ

−→∇ψ · �t = 0
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Isopotential curves and stream lines

The velocity field is defined equivalently by two scalar fields

Stream lines are defined by                                                       or 

Isopotential curves and stream lines are orthogonal to each other.



In cylindrical coordinates, we have 

and the complex velocity writes

We define the complex potential 

where                       and                 .

From complex derivation theory, we know that any complex function F is 
differentiable if and only if the two functions Φ and ψ satisfy the Cauchy-Riemann 
relations. Such complex functions are called analytic.

Luckily, since the velocity potential and the stream function are conjugate, the 
complex velocity potential is differentiable. 

F (z) = φ(x, y) + iψ(x, y)

z = x+ iy i2 = −1

w(z) = vx − ivy = (vr − ivθ) exp−iθ
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Complex potential and complex derivative

w(z) =
dF

dz
dF

dz
=

∂F

∂x
=

1

i

∂F

∂y

w(z) = ∂xφ+ i∂xψ = ∂yψ − i∂yφ = vx − ivy

We define the complex velocity 

where the complex derivative is defined as

We obtain

vr = ∂rφ =
1

r
∂θψ vθ =

1

r
∂θφ = −∂rψ



F (z) = U exp−iα z

w(z) = U exp−iα

vx = U cos(α)

vy = U sin(α)

φ = U cos(α)x+ U sin(α)y

ψ = U cos(α)y − U sin(α)x
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Uniform flow

Potential lines

Streamlines

Complex potential

Complex velocity

Velocity field

Velocity potential

Stream function



F (z) = Cz2

φ = C(x2 − y2)

ψ = 2Cxy

vx = 2Cx

φ = Cr2 cos(2θ)

ψ = Cr2 sin(2θ)

vy = −2Cy
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Stagnation flow

In polar coordinates This potential can also be used 
to describe a flow past a corner.

Streamlines are hyperbolae.



F (z) = c
√
z = cr1/2 expiθ/2

φ = c
√
r cos

θ

2

ψ = c
√
r sin

θ

2

vr =
c

2

1√
r
cos

θ

2

vθ =
c

2

1√
r
sin

θ

2
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Flow past an edge

Complex potential

Velocity potential

Stream function

Velocity field

The velocity field becomes infinite at the tip of the edge.



F (z) =
m

2π
log (z − z0)

w(z) =
m

2π

1

z − z0

vx =
m

2π

x− x0

r2

vy =
m

2π

y − y0
r2

vr =
m

2πr

−→∇ · �v = ∂rvr +
vr
r

= 0

�

L
�v · �ndl = vr2πr = m

�

S

1

2
v2dxdy =

� Rmax

Rmin

m2

4π

dr

r
=

m2

4π
log

�
Rmax

Rmin

�

φ =
m

2π
log r ψ =

mθ

2π
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Flow around a source or a sink

Complex potential

Complex velocity

Velocity field

In polar coordinates

The velocity divergence is zero everywhere                                          for r>0.

We apply the divergence theorem to a circle centered on the singularity:

The kinetic energy in the flow is 

In a real flow, the singularity is usually embedded inside the boundary condition.



The velocity curl is zero everywhere                                                for r>0.

We apply the curl theorem on a circle centered on the singularity:

F (z) = −i
Ω

2π
log (z − z0)

w(z) = −i
Ω

2π

1

z − z0

vx = − Ω

2π

y − y0
r2

vy =
Ω

2π

x− x0

r2

vθ =
Ω

2πr

�

L
�v · �tdl = vθ2πr = Ω

φ =
Ωθ

2π
ψ = − Ω

2π
log r
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Flow around a point vortex

Complex potential

Complex velocity

Velocity field

In polar coordinates

�

S

1

2
v2dxdy =

� Rmax

Rmin

m2

4π

dr

r
=

m2

4π
log

�
Rmax

Rmin

�
The kinetic energy in the flow is 

There is a direct analogy with the energy of dislocations in a solid.

−→∇ × �v =
�
∂rvθ +

vθ
r

�
�ez = 0
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Superposition principle and boundary conditions

Like for the Navier equation for thermoelastic equilibrium problems, the Laplace 
equation for the potential and/or the stream function is a linear boundary value 
problem. 

When proper boundary conditions are imposed (no vorticity), the solution 
always exists and is unique.Two different solutions can be added linearly and 
the sum represent also a solution with the corresponding boundary conditions. 

The previous elementary solutions form a library that you can combine to build 
up more complex curl-free and divergence-free flows.

Streamlines are perpendicular to potential curves. The velocity component 
normal to a streamline is always zero. Therefore, each streamline can be used 
to define a posteriori the boundary condition.

You can therefore add up randomly complex potential to get any kind of 
analytical complex function. Then, you compute the streamlines. Then, you 
define the embedded body by picking any streamline. You finally get yourself a 
valid potential flow ! 



Parameter µ is called the doublet strength.

For           , we find

F (z) =
m

2π
(log (z − z0)− log (z + z0))

z0 = � expiα

F (z) � −m�

π

expiα

z
= −µ expiα

z

α = 0

φ = −µx

r2
= −µ cos θ

r

ψ =
µy

r2
=

µ sin θ

r

vr = ∂rφ =
µ cos θ

r2
vθ =

1

r
∂θφ =

µ sin θ

r2

�v = µ
�r

r3

F (z) = −µ
expiα

z − z0
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Flow around a doublet

We superpose a source and a sink

very close to each other

Taylor expanding, we find

Potential and streamlines are circles.

The velocity field is given by                                     and 

It is a dipole field

The general form around an arbitrary center z0 is:



We reverse engineer the process. 

For a cylinder a radius a, if we define

then the potential flow around the cylinder is 

The streamline              is the circle  

F (z) = U∞z +
µ

z
φ = U∞x+ µ

x

r2
ψ = U∞y − µ

y

r2

ψ = 0 r =

�
µ

U∞

µ = U∞a2

F (z) = U∞

�
z +

a2

z

�

vr = U∞

�
1− a2

r2

�
cos θ vθ = −U∞

�
1 +

a2

r2

�
sin θ
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Flow past a cylinder

We superpose a uniform flow and a doublet.

We find

S S’

The velocity field is given by

The flow has 2 stagnation points S and S’ given by r=a and θ=0 and π.

The doublet is inside the embedded body, so there is no singularity in the flow.



Using the second Bernoulli theorem (curl-free, incompressible, no gravity), 

we know that the quantity                          is uniform.

We thus have p+
1

2
ρv2 = p∞ +

1

2
ρU2

∞

�n = (cos θ, sin θ)

−→
F = −

�

L
p�ndl

Fy = −1

2
ρU2

∞a

� 2π

0

�
1− 4 sin2 θ

�
sin θdθ ∝

�
3 cos θ − 4

3
cos3 θ

�2π

0

= 0

Fx = −1

2
ρU2

∞a

� 2π

0

�
1− 4 sin2 θ

�
cos θdθ ∝

�
sin θ − 4

3
sin3 θ

�2π

0

= 0
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Force acting on the cylinder

H =
P

ρ
+

1

2
v
2

vr = 0 vθ = −2U∞ sin θ

p = p∞ +
1

2
ρU2

∞
�
1− 4 sin2 θ

�

Using                            we find:

Exercise: compute the torque on the cylinder (use the cylinder axis). It is also zero !

The force acting on the cylinder is given by 

On the cylinder, we have               and 

The pressure field on the cylinder is thus 



Using the Bernoulli theorem and integrating the pressure field on the boundary,

we can compute the force on the cylinder (exercise)

F (z) = U∞

�
z +

a2

z

�
− iΩ

2π
log

�z
a

�

ψ = U∞

�
1− a2

r2

�
y − Ω

2π
log

� r
a

�

vr = U∞

�
1− a2

r2

�
cos θ

vθ = −U∞

�
1 +

a2

r2

�
sin θ +

Ω

2πr

sin θs =
Ω

4πU∞a
Ω < −4πU∞a

vθ = −2U∞ (sin θ − sin θs)

Fx = 0 Fy = −ρU∞Ω
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Flow past a cylinder with vorticity

We superpose a uniform flow, a doublet and a vortex.

Streamlines are given by

The cylinder r=a is still a proper boundary condition.

On the cylinder, we have to stagnation point given by

or one stagnation point away from the cylinder if  

At the boundary, we have 
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The Magnus effect

Rotating pipes induce a force perpendicular 
to the wind direction

Topspin tennis ball trajectory 
curves down.

Warning: viscosity effects can’t be ignored !



Boundary condition:                                                              and

Fx

Fy

−→
F = −

�

L
p�ndl �n

�t

�t = (cos θ, sin θ) �n = (sin θ,− cos θ)

Fx = −
�

L
p sin θdl Fy =

�

L
p cos θdl

dx = cos θdl dy = sin θdl

Fx − iFy = −
�

L
p (dy + idx) = −i

�

L
pdz∗

p = p∞ +
1

2
ρU2

∞ − 1

2
ρv2 v2 = w(z)w(z)∗

�v · �n = 0 vxdy − vydx = 0 w∗dz∗ = wdz

Fx − iFy =
i

2
ρ

�

L
w2(z)dz
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The complex force: Blasius formulae

We use curvilinear coordinates along the body 

The force components are

In Cartesian coordinates, we have

The complex force is defined as

Bernoulli theorem:                                           with  

We finally get the force for an arbitrary shaped body:



We consider an arbitrary closed contour in the complex plane.

We define the complex circulation as 

Using the same definition as before along the contour, we have

where the Cartesian coordinates are related to the curvilinear ones by

We finally get

Γ is the physical circulation and Q is the physical mass flux.

On the contour defining the body shape, the mass flux is zero and we have 

C =

�

L
w(z)dz

C =

�

L
(vxdx+ vydy) + i

�

L
(vxdy − vydx)

dx = dl cos θ dy = dl sin θ

C =

�

L
�v · �tdl + i

�

L
�v · �ndl = Γ+ iQ

C = Γ =

�

L
�v · �tdl

Romain TeyssierContinuum Mechanics 20/05/2013

The complex circulation



A conformal mapping is a differentiable complex function M that maps the complex 
plane z into another complex plane Z. 

We have                      and                          with 

If a flow is defined by a potential function           in the z plane, then the function 

is also analytic (it satisfies the Cauchy-Riemann relations). It is therefore a valid 
vector potential. 

The new streamlines and potential curves are the transform of the old one.

The new complex velocity writes 

The complex circulation is conserved by conformal mapping 

Z = M(z) z = m(Z) m = M−1

F (Z) = f(m(Z))

C =

�

L
W (Z)dZ =

�

L
w(z)m�(Z)dZ =

�

l
w(z)dz
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Conformal mapping

f(z)

W (Z) =
dF

dZ
=

df

dz

dm

dZ
= w(z)m�(Z)

We need to build more complex profile than just a cylinder. We use for that a 
mathematical trick called conformal mapping.



z = Z +
c2

Z

Z = c expiθ z = 2c cos θ

Z =
z

2
+

��z
2

�2
− c2

Z = a expiθ

z = (a+
c2

a
) cos θ + i(a− c2

a
) sin θ

M �(z) =
1

2
+

z

2
��

z
2

�2 − c2
z = ±2c
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The Joukowski transform

z

c 2c−2c

ZDefinition:

The circle of radius c becomes 
the line segment [-2c, 2c]

The inverse transform is 

zZ

The circle of radius a>c becomes 
an ellipse.

The derivative                                               has 2 singular points at  



We assume that the flow at infinity is at an angle with the x-axis.

The complex potential and velocity of the original flow are

Using the Joukowski mapping                   with a>c, we get the potential around an 
ellipsoidal cylinder. 

Using                     , we get

The original stagnation points                           become

F (Z) = U∞

�
Z exp−iα +a2

expiα

Z

�

Z = M(z)

c2

Z
= z − Z f(z) = U∞

�
z
a2

c2
expiα +M(z)

�
exp−iα −a2

c2
expiα

��

Zs = ±a expiα
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Acyclic flow past an ellipse

W (Z) = U∞ exp−iα

�
1− a2

Z2
expi2α

�

zs = ±
�
a expiα +

c2

a
exp−iα

�

We use the Joukowski transform from a flow past a circular cylinder.

The flow is acyclic: no circulation and no vortex component.



c → a

zs = ±2a cosα

w(z) = W (Z)M �(z)

Z = ±a W (±a) = −2iU∞ sinα w(±2a) → ∞
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Acyclic flow past a plate

We use the previous results, taking 

f(z) = U∞

�
z expiα −2i sinα

�
z

2
+

��z
2

�2
− a2

��

zs

Zs

The stagnation points are on the x-axis

Leading edge

Trailing edge

The complex velocity is given by 

The velocity at the leading and trailing edges is:

(see flow past an edge). This is unphysical !
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Flow past a plate with circulation

from P. Huerre’s lectures



F (Z) = U∞

�
Z exp−iα +a2

expiα

Z

�
− iΩ

2π
log

�
Z

a

�

W (Z) = U∞ exp−iα

�
1− a2

Z2
expi2α

�
− iΩ

2ΠZ

sin (θs − α) =
Ω

4πU∞a
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Flow past a plate with circulation
On the original circular cylinder, we have:

The stagnation points are now defined by

For a particular value of the circulation, the stagnation point will coincide with the 
trailing edge, therefore removing the singularity.

Ωc = − sinα4πU∞a

We still have an infinite number of solution, depending on the value of the point 
vorticity.

For a given body shape, we always choose the critical circulation as defining the 
unique physical solution.
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The Kutta condition

«A body with a sharp trailing edge which is moving through a 
fluid will create about itself a circulation of sufficient strength 
to hold the rear stagnation point at the trailing edge.»

Initially, we have zero circulation

Starting vortex produces vorticity

Kelvin’s theorem



F (Z) = U∞

�
(Z − b) exp−iα +a2

expiα

Z − b

�
− iΩ

2π
log

�
Z − b

a

�

W (Z) = U∞ exp−iα

�
1− a2

(Z − b)2
expi2α

�
− iΩ

2π(Z − b)
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The Joukowski profiles
We consider now the more general case of a circular cylinder for which the 
center has been offset from the origin.

Recipe: using the Kutta condition, we impose the singular trailing edge to be a 
stagnation point. By adjusting b, we remove the singularity at the leading edge.



U∞ exp−iα

�
1− a2

(c− b)2
expi2α

�
− iΩ

2π(c− b)
= 0

Ωc = −4πU∞a sin (α+ β)
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Critical circulation for Joukowski profiles
The trailing edge                is imposed to be a stagnation point.Z = +c

Since b is the center of the cylinder, we can define the angle c− b = a exp−iβ



M(z) = z +
∞�

n=0

an
zn

f(z) = U∞z exp−iα − iΩ

2π
log

�z
a

�
+

∞�

n=0

bn
zn

w(z) = U∞ exp−iα − iΩ

2πz
−

∞�

n=1

nbn
zn+1

an =
1

2πi

�

l
M(z)zn+1dz
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Flow past an arbitrarily shaped cylinder
We now consider the inverse problem: we know the shape of the cylinder and we 
would like to find the conformal mapping to a circular cylinder.

Any analytic complex function can be expanded in its Laurent series around the 
origin. We restrict ourselves to mapping for which points at infinity are invariants.

where

The general flow around the circular cylinder is given by the potential

F (Z) = U∞

�
Z exp−iα +a2

expiα

Z

�
− iΩ

2π
log

�
Z

a

�

Injecting the mapping for Z and Taylor expanding around infinity, we get:

and

The general flow is uniform to leading order, then a vortex flow to next order, 
then a doublet flow to higher order, and so on...

The circulation on the new body is C =

�

l
w(z)dz =

�

L
W (Z)dZ = Ω



We now compute the force acting on the arbitrarily shaped body.

We have the Clausius formula

The kinetic energy is expanded as

We have (residue theorem)                         and

The force is for any profile

We recover the force acting on the circular cylinder.

General results:

- no drag 

- without circulation                (d’Alembert’s paradox).

The force on a general Joukowski profile is

w2(z) = U2
∞ exp−2iα −U∞ exp−iα iΩ

πz
+

∞�

n=2

cn
zn

�

L

dz

z
= 2iπ

�

L

dz

zn
= 0 for n ≥ 2
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The Kutta-Joukowski theorem

Fx − iFy =
i

2
ρ

�

l
w2(z)dz

Fx − iFy = iρU∞ exp−iα Ω

Fx = 0

Fy = 0

Fy = 4πρU2
∞a sin (α+ β)



Cy = 8π
a

L
sin (α+ β) � 2π(α+ β)
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Lift coefficient

The lift coefficient is a dimensionless number that measures the performance of a 
wing profile (L is the length of the wing section).

Cy =
Fy

1
2ρU

2
∞L

For a Joukowski profile with small attack angle and small bending angle, 

The theory disagrees more and more with 
the experiment: we have neglected 
viscous effects.

It breaks down completely above 10 
degrees. This is because the zero 
streamline is detaching from the wing. 


