POST HARVEST ENGINEERING OF CEREALS, PULSES AND OILSEEDS BTAP2204 3(2+1

PULSE MILLING

TYPES OF PULSES

INTRODUCTION

- **Pulses** are the dry, edible seeds of plants in the legume family, including chickpeas, lentils, dry peas and beans.
- Pulses are rich in protein and consumed in the form of dehusked split pulses.
- Madhya Pradesh is India's largest pulse producing state, which accounts for 23% of total pulse production in the country.
- India is the largest producer, consumer and importer of pulses in the world.

• Major pulses grown in India are chickpeas (gram), pigeon pea (tur or arhar), moong beans, urd dal, masur (lentil), peas and various kinds of beans.

- Pigeon pea is the 2nd important pulse crop after the Chick pea.
- The average % of husk in Arhar is 15% and endosperm is 85%.
- Chick pea husk content is 10-12%.

MILLING OF PULSES

- Milling of pulse means removal of outer covering or husk and splitting the grain into equal halves.
- The husk is tightly held by kernel so dehusking becomes difficult.
- Therefore the method of alternate wetting and drying is used to facilitate dehusking and splitting.
- Methods are milling :
- 1. Wet Milling
- 2. Dry milling
- 3. Jabalpur method
- 4. CFTRI method
- 5. Pantnagar method
- 6. CIAE method

>Dry milling is more popular and used in commercial mills.

DRY MILLING

The <u>steps</u> are as follows: (It require 3-4 days)

- 1. Cleaning
- 2. Pitting
- 3. Pretreatment with oil
- 4. Conditioning
- 5. Dehusking and splitting
- 6. Polishing

≻It results in 75% of dhal recovery

Cleaning: is done by a reel type or rotating sieve type cleaner.

➢Pitting :

- It is the process which results in cracking and scratching of husk that facilitate oil penetration and loosening of husk.
- For this, clean pulses are passed through emery roller machine. The machine consists of roller and cage(housing).
- The clearance between the roller and cage gradually narrows towards the outlet and due to this friction occurs between the pulse and emery .
- Thus results in cracking and and scratching of pulse.

≻Pretreatment with oil:

- The scratched pulses are passed through a screw conveyor and mixed with edible oil like linseed oil @ 1.5-2.5kg/tonne of pulse.
- Then they are kept for diffusion for 12 hours.

Conditioning :

- It is done by alternate wetting and drying.
- After sun drying for certain period, moisture is added and tempering is done for 8 h.
- This process is done for 2-4 days till they are sufficiently conditioned.
- Then drying is done to reduce the MC to 10-12%.
- Dehusking and splitting:
 - Gota machine is used for dehusking.
 - About 50% pulses are dehusked in one pass and then dehusked pulses are splited.
 - Generally two-three pass results in complete dehusking.

Polishing :

- Small quantity of oil or water is added .
- Grading of dal: Done using sieve.

WET MILLING

Steps are as follow: (It requires 4-5 days)

- 1. Cleaning
- 2. Soaking- It is done for 3-12 h
- 3. Mixing the soaked pulses with 3-5% red earth and heaped for 12 h
- 4. Sun Drying and tempering for 2-4 days
- 5. Separation of red eath: by sieving
- 6. Dehusking and splitting- 95-98 % are dehusked
- 7. Grading

≻It results in 72% of dhal recovery

DAL MILLING MACHINE

Milling efficiency

The overall efficiency of the pulse milling system can be estimated with the of the following equations.

1.
$$E = \left(1 - \frac{M_{uh}}{M_t}\right) \left(1 - \frac{M_b}{M_t}\right) \times H_I \times 100$$

 $H_l = \frac{H_a}{M_t H_t}$ where,

E =milling efficiency

 $M_{uh} = \text{mass of unhulled grains}$

 M_t = mass of grains fed to the system

 $M_b = \text{mass of brokens}$

 H_a = actual mass of husk removed during milling

 H_t = theoretical husk content of the grain

The theoretical husk content of common Indian legumes are given in Table

Husk content of Indian legumes	
Grain	Husk Content,%
pigeon pea	13.0–15.0
green gram	12.0
black gram	12.0
lentil	11.5
Bengal gram (chick pea)	11.5–13.0

Table 5 12

Milling of pulses in M.P.(JABALPUR method)

Pigeon-pea

Cleaning with sieves \rightarrow chaff, dirt etc.

Carborundum roller scratching \rightarrow Chuni, small brokens

Linseed oil mixing @ 150 ml/100 kg of grain, held for overnight

Sun drying for 10 hours

Carborundum roller, 2-4 passes

cleaning \rightarrow ret, chuni, small brokens

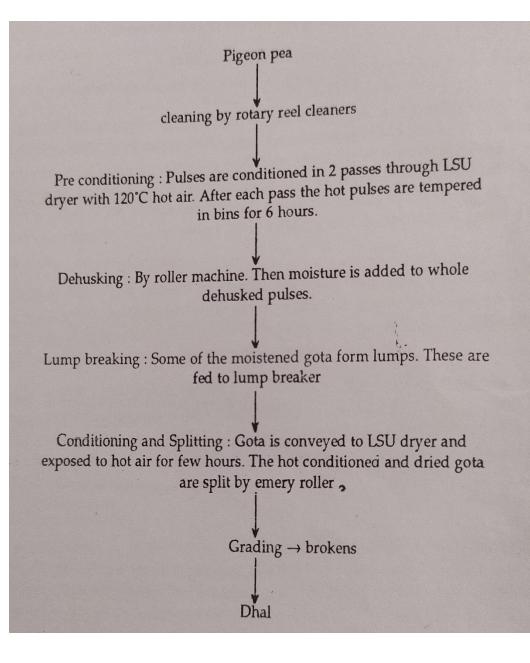
(grain and gota)

Linseed oil mixing by aunger

@ 100 ml/100 kg of grain and water

@ 250 ml/100 kg of grain, held overnight

Sun drying in thin layer of 1" thickness for 10 hours


Sheller (burr mill)

Aspirator cleaner \rightarrow ret, brokens

Dhal

CFTRI method of pulse milling

- This method eliminates mixing of oil and water for loosing of husk.
- Clean and graded grains are conditioned by dry heat treatment in 2 passes in LSU dryer with 120°C hot air.
- Grains are tempered for 6 h after completing each pass. The flowchart of CFTRI method is given:

