HYBRID SEED PRODUCTION IN VEGETABLES

Seed.....?

- An embryo, a living organism embedded in the supporting or the food storage tissue.
 - A carrier of new technologies
 - A basic tool for secured food supply
 - The principal means to secure crop yields in less favorable production areas
 - A medium for rapid rehabilitation of agriculture in cases of natural disaster

For hybrid seed production one should know

Principles of Seed Production

Genetic Agronomic Environmental Mechanical admixtures requirements Natural crossing Land requirements Developmental variations Pollination requirements Minor genetic variations Isolation requirements Selective influence of disease

4

Scope and Importance of Vegetables

- > Vegetables are considered as "Protective Supplementary Food"
- Different uses of vegetables -
 - Cooking, salad, pickle, fried, stuffed
 - High medicinal value
 - Use as ornaments
 - Different industrial uses
- Vegetable make effective use of land and labour resources
- They play an important role in national economy
- ➤ Increase vegetable production through use of hybrid seeds

Why hybrids are adopted by farmers?

- Greater productivity
- Longer harvest duration
- Better adaptability to environments
- Better tolerance to diseases and pests
- Uniform produce
- Hetter market acceptability
- Better nutritional quality

Table 1: The most commonly utilized mechanisms for developing commercial

by bride in vestetables and flavore

Mechanism	Commercially exploited in:		
Hand emasculation + HP	Tomato, eggplant, sweet pepper, okra, hot pepper		
Remove staminate flowers + HP	Cucurbits (bitter gourd, bottle gourd, etc.)		
Male sterility + HP	Tomato, hot pepper, sweet pepper		
Male sterility + NP	Onion, cabbage, cauliflower, carrot, hot pepper, Petunia, Marigold, Dianthus, Zinnia		
Self incompability + NP	Most of cole vegetables like broccolis, cabbage, Petunia, Marigold, Ageratum, Bellis etc.		
Gynoecism + NP	Cucumber, muskmelon.		
Remove staminate flowers + NP	Cucurbits including bitter gourd, summer squash, winter squash, etc.		

HP = Hand pollination NP = Natural pollination

Emasculation and Pollination

Steps in emasculation and pollination

1. Emasculation:

- √ Next day opening flower buds are selected
- √To be done before anther dehiscence
- √To be done with hand/ forceps

Put the dried anther cones in a cup then tranfer to pollen lid cup

Dry anthers at 30°C for 24 hrs

Anther cones are taken and put them in glassine envelopes

Flower collection

Limitations of Emasculation and Pollination

□ Time consuming

- Labour intensive (Skill is necessary for commercial seed production)
- Increased cost of production

WHY MALE STERILITY AND SELF INCOMAPATABILITY?

- Production of large scale of F₁ seeds.
- Reduced cost of hybrid seed production.
- Speedup the hybridization programme.
- Commercial exploitation of hybrid vigour.

MALDSTERILITY

Cytoplasmic male sterility

Genetic Male Sterilit

Types of male starility

A) Genetic male sterility (GMS):

- wide occurrence in plants
- mostly governed by a single recessive gene, ms
- male sterile alleles arise spontaneously or may be artificially induced

B) Cytoplasmic male sterility (CMS):

- determined by the cytoplasm
- it is the result of mutation in the mitochondrial genome (mtDNA)
- CMS transfer easily to a given strain

C) Cytoplasmic-genetic male sterility (CGMS):

- nuclear gene restores the fertility in the male sterile line
- also known as nucleoplasmic male sterility
- fertility restorer gene R is required

D) Chemically induced male sterility:

- IAA, IBA, Ethrel, etc.

SOURCES FOR MALE STERILITY

- Natural population
- Artificially induced through mutagenesis
- Genetic engineering
- Protoplast fusion

Table 8: Different male sterile mutants in tomato.

Mutant	Description	Inheritance	Governing by single recessive gene
Stamenless	Stamens absent	Monogenic recessive	sl
Positional sterility	Stigma exerted	Monogenic recessive	ps
Pollen sterility	Pollen abortive	Monogenic recessive	ms series
Functional sterility	Anthers do not dehisce	Monogenic recessive	ps-2

SELF INCOMPATIBILITY

Self incompatibility:

- Inability to set seed from application of pollen produced on same plant or it refers to failure of viable pollen of a given plant to fertilise the ovules of the same plant, but it capable of fertilising effectively the ovules of the most other plant of the same variety.
- Self incompatibility occurs in more than 3000 sp belonging to 250 genera, spread in about 70 families.

Types of self incompatibility

1. Game to phytic.

SI reaction of a pollen is determined by its own genotype not by the genotype of the plant on which the pollen is produced

2. Sporophytic.

SI reaction of pollen is governed by the genotype of the plant on which the pollen is produced and not by the genotype of the pollen.

The superior self incompatible lines for hybrid seed production should possess the following characters

- ✓ Stable self incompatibility.
- High seed set of self pollination at bud stage.
- Favorable and uniform economic characters.
- Desirable combination ability.

Conclusion

- Hand emasculation and pollination is time consuming method but can be practiced if skilled labour available.
 - Tomato, Chilli, Bhendi, etc.,
- Male sterility and self incompatibility are two best methods of hybrid seed production.
 - GMS: Chilli
 - CMS: Onion, Potato, etc.,
 - CGMS: Chilli, etc.,
 - Colecrops, Petunia, etc.,

Hybrid seed production-Introduction

 Hybrid varieties have been evolved in those high valued vegetable crops that exhibit marked heterosis

- Solanaceous vegetables (tomato, eggplant, sweet pepper)
- Cucurbits (melons, cucumber, pumpkin and gourds)
- Root and bulb crops (onion, radish, carrot)

Techniques of hybrid seed production

- SOLANACEOUS CROPS
- ✓ Tomato

Hybridization techniques:

- Indeterminate tomato varieties staked and trained with either single stem or double stem, while determinate varieties are trained with 3 stems
- Usually1st to 4th cluster on each branch selected
- The emasculation involves in holding the corolla at the base and with a single upward pull pick off the corolla along with all the stamens
- Usually the anthers are picked off a day before anthesis with the help of forceps leaving the petals intact

- Fresh pollen collection on the day of anthesis by a vibrator are shed by vibrating the flowers
- Pollens are collected in a glass tube or on a glass plate from the male line and are transferred to the stigma by finger or by inserting the stigma into a glass tube containing the pollen grains. Left over pollen grains in the glass tube are not used on the next day because its viability is reduced considerably

- Physiological Parameters Affecting Tomato
 Seed Yield and Vigor
- Prolonged high temperature affect pollen fertility and physiology of fertilization leading to poor seed set
- Age of pollen and stigma, abundant or scarce pollination, height of inflorescence and fertilizer application exert an influence on vigor of plant

Seed extraction and Drying

- By fermentation method
- By acid or alkali treatment: 10cc or 36% NaOH added in 4kg tomato pulp for 15 minutes.

□ Seed Yield

 1kg tomato produce 3-4g of seed yield. Av. Seed yield: 60-70kg/ha

- Manifestation of Heterosis:
- Heterosis in sweet pepper ranged 35-40%
- Eggplant 50-150%
- In eggplant it is manifested by earliness, fruit number per plant & fruit weight
- Sweet pepper: plant height, days to flower, fruit weight, early and total yield

- Hybridization techniques:
- Stigma is receptive a day prior to anthesis in eggplant
- Bud pollination possible giving good fruit set and seed yield
- In sweet pepper, emasculation done a day prior to anthesis, whereas, pollination done in the morning on the day of anthesis
- Natural cross pollination ranged from 0.2-46.8% in eggplant flowers
- Pepper flowers are visited by honey bees occasionally. Fresh pollen grains are collected on the day of anthesis by a vibrator and can be stored for a period of 1 to 2 months at O°C using silica gel for proper drying of the

- Use of Male Sterility in Hybrid Seed
 Production in Eggplant and Sweet Pepper
- Male sterile lines available in eggplant (genic male sterility) & sweet pepper (genic and ems) but not successful at commercial seed production
- Seed set on male sterile lines ranged from 46-67% in capsicum
- Cytoplasmic male sterility used now in chilli pepper to produce F1 hybrid commercially by several seed companies

Seed Extraction

- Eggplant harvested 50-55 days after anthesis and stored for 10 days for post harvest ripening
- Sweet pepper: 60-65 days after anthesis
- Ripe fruits crushed and seeds separated by washing. Dry air at 28-30°C

Seed Yield

- Eggplant: 150-200kg/ha
- Peppers: 100-200kg/ha. 1kg yields 5-7g of seed.

Techniques of hybrid seed production- Cucurbits

- Steps of Hybrid Seed Production in Cucurbitaceous Vegetables
- Production of inbred lines by inbreeding for 3 to 5 generations.
- Selection of inbred parents through combining ability tests and potential hybrid production ability.
- Production of hybrid seeds (preferably single cross hybrids and pistilate parent preparation is relatively easy, and single fruit produces quite a large number of seeds)
- Maintenance of inbred parents

Techniques of hybrid seed production- Watermelon

- Technique of Hybrid Seed Production
- Hybrid seeds of watermelon can be produced by two ways
 - 1. Through artificial pollination.
 - Removal of maleflower and use of insect pollination.

Techniques of hybrid seed production- Watermelon

Artificial pollination:

- Field lay-out
- Selection of female flowers
- Bagging of female & male flowers
- Collection of male flowers
- Period of pollination
- Seed fruit management
- Harvesting
- Extraction, washing and drying of seeds
- Seed yield 150-300kg/ha based on varieties, extent of pollination & field condition

Techniques of hybrid seed production- Watermelon

- 2. Removal of male flowers & Use of Insect Pollination
- In this technique, male flowers of female plant completely removed before opening
- Fruits from female parent harvested as crossed fruits and other variety as srlf fruit of male variety
- Used in commercial hybrid seed production
- Also referred as crossing block method

Techniques of hybrid seed production- Pumpkin

- Production of inbred lines
- Seed sowing of diversified genotypes in Nov-Jan for winter ecotypes. For summer ecotypes, seed sowing after the1st monsoon
- Bagging of male and female flowers one day before anthesis
- Select the vigorous inbreds after 4-5 generations of inbreeding

Techniques of hybrid seed production- Pumpkin

Production of Hybrid Seeds

- Planting of female and male inbred parents in 4:1 ratio
- Spray 50-100 ml of ethephon per litre of water on pistilate parent to increase female flowers
- Bagging of flowers before anthesis. Rebag the female flowers after pollination for another two days
- Harvest fruits after 60 days of pollination
- Remove seeds from the fruits, wash and dry for 3-4 days and sun dry for another 3-4 days.
- Preserve the seeds in sealed polyethylene bags at low temperature (4-5°C)

Techniques of hybrid seed production- Bottle gourd

Production of Inbred Lines of Diverse Genetic Background

- Bagging of male & female flowers
- Inbreeding at anthesis through following morning and rebagging of the female flowers for another 2 to 3 days.
- Inbreeding done for 4-5 generations and select better types by discarding the poor performers.

Techniques of hybrid seed production- Bottle gourd

Production of Hybrid Seeds

- Planting of female and pollinator inbreds in 4:1 ratio.
- Bagging of female and male flowers before anthesis
- Harvesting of mature fruits after senescence of the plant, remove seeds, wash and dry. Store in sealed polyethylene bags at low temperature

Maintenance of Inbred Parents

Inbreeding of parents to produce seeds should be done when the parental stock is depleted. Produce large quantity of seeds to maintain genotypic & phenotypic integrity of the hybrid.

Techniques of hybrid seed production- Bulbous crops

- Heterosis in Onion:
- Ranged from 14-67%. It is manifested in uniform bulb size, bulb weight & efficient source sink ratio
- Male Sterility in Onion:
- Controlled by combination of cytoplasmic factor '5' together with recessive nucleus gene in its homozygous form

Techniques of hybrid seed production- Bulbous crop: Onion

- Hybrid Seed Production Techniques
- For the production of hybrid seed in onion, male and cytoplasmic female lines planted in the ratio of 2:8
- Success of hybrid seed production depends upon the pollen distribution pattern from fertile to sterile plants in the crossing block

Techniques of hybrid seed production- Onion

- Factors Affecting Hybrid Seeds in Onion
- Weak inbred lines
- Abnormal florets where ovary started to develop but failed to produce seed
- Aborted ovule
- Excessive heat damaging the flowers
- Seed Yield
 - Hybrid seed yield in onion ranges from 300-350 kg/ha

Techniques of hybrid seed production- Cole crops

- Manifestaion of heterosis:
- Heterosis in cabbage: 25-61%
- Cauliflower: 20-60%
- Broccoli: 26-58%
- Manifested by head/curd size, early maturity, head/curd weight and plant weight

Techniques of hybrid seed production- Cole crops

- Male Sterility and Hybrid Seed Production
- Cytoplasmic male sterile lines and their maintainers have been developed in cauliflower, cabbage and broccoli using radish cytoplasm for male sterility
- Cytosterile plants of broccoli, cabbage and cauliflower are petaloid with large nectarines responsible for bee attraction and good female fertility
- □ Seed Yield
 - It varies from 500 800 kg/ha

Thank you