
Architecture Area,

Speed & Power

Two Always Block FSM Style (Good
Style)

One of the best Verilog coding styles is to code the FSM
design using two always blocks, one for the
sequential state register and one for the
combinational next-state and combinational output
logic.

module fsm_4states

(output reg gnt,

input dly, done, req, clk, rst_n);

parameter [1:0] IDLE = 2'b00,

BBUSY = 2'b01,

BWAIT = 2'b10,

BFREE = 2'b11;

reg [1:0] state, next;

always @(posedge clk or negedge

rst_n)

if (!rst_n) state <= IDLE;

else state <= next;

Two Always Block FSM Style (Good Style)

always @(state or dly or done or req) begin

next = 2'bx;

gnt = 1'b0;

case (state)

IDLE : if (req) next = BBUSY;

else next = IDLE;

BBUSY: begin

gnt = 1'b1;

if (!done) next = BBUSY;

else if (dly) next = BWAIT;

else next = BFREE;

end

BWAIT: begin

gnt = 1'b1;

if (!dly) next = BFREE;

else next = BWAIT;

end

BFREE: if (req) next = BBUSY;

else next = IDLE;

endcase end endmodule

Two Always Block FSM Style (Good Style)

Making default next equal all X's
assignment

Placing a default next state assignment on the line immediately following the
always block sensitivity list is a very efficient coding style. This default
assignment is updated by next-state assignments inside the case statement.

There are three types of default next-state assignments that are commonly used:
(1) next is set to all X's, (2) next is set to a predetermined recovery state such
as IDLE, or (3) next is just set to the value of the state register.

By making a default next state assignment of X's, pre-synthesis simulation
models will cause the state machine outputs to go unknown if not all state
transitions have been explicitly assigned in the case statement.

This is a useful technique to debug state machine designs, plus the X's will be
treated as "don't cares" by the synthesis tool.

Some designs require an assignment to a known state as opposed to assigning
X's. Examples include: satellite applications, medical applications, designs that
use the FSM flip-flops as part of a diagnostic scan

One Always Block FSM Style (Avoid This Style!)

One of the most common FSM coding styles in use
today is the one sequential always block FSM coding
style.

For most FSM designs, the one always block FSM
coding style is more verbose, more confusing and
more error prone than a comparable two always block
coding style.

One Always Block FSM Style:

module fsm_4states

(output reg gnt,

input dly, done, req, clk, rst_n);

parameter [1:0] IDLE = 2'd0,

BBUSY = 2'd1,

BWAIT = 2'd2,

BFREE = 2'd3;

reg [1:0] state;

always @(posedge clk or negedge rst_n)

if (!rst_n) begin

state <= IDLE;

gnt <= 1'b0;

end

else begin

state <= 2'bx;

gnt <= 1'b0;

case (state)

IDLE : if (req) begin

state <= BBUSY;

gnt <= 1'b1;

end

else

One Always Block FSM Style:

One Always Block FSM Style

BBUSY: if (!done) begin

state <= BBUSY;

gnt <= 1'b1;

end

else if (dly) begin

state <= BWAIT;

gnt <= 1'b1;

end

else state <= BFREE;

BWAIT: if (dly) begin

state <= BWAIT;

gnt <= 1'b1;

end

else state <= BFREE;

BFREE: if (req) begin

state <= BBUSY;

gnt <= 1'b1;

end

else state <= IDLE;

endcase

end

endmodule

Onehot FSM Coding Style (Good Style)

Efficient (small and fast) onehot state machines can be
coded using an inverse case statement; a case statement
where each case item is an expression that evaluates to
true or false.

Reconsider the fsm_4state design shown.

The key to understanding the changes is to realize that the
parameters no longer represent state encodings, they now
represent an index into the state vector, and comparisons
and assignments are now being made to single bits in
either the state or next-state vectors.

Notice how the case statement is now doing a 1-bit
comparison against the onehot state bit.

Onehot FSM Coding Style

Onehot FSM Coding Style

Onehot FSM Coding Style

This is the only coding style where one should use
full_case and parallel_case statements.

The parallel case statement tells the synthesis tool
to not build a priority encoder even though in
theory, more than one of the state bits could be
set

(as engineers, we should know that this is a
onehot FSM and that only one bit can be

set so no priority encoder is required).

Registered FSM Outputs (Good Style)

The Only Change one has to do is

always @(posedge clk or negedge rst_n)

if (!rst_n) gnt <= 1'b0;

else begin

gnt <= 1'b0;

case (next)

IDLE, BFREE: ; // default outputs

BBUSY, BWAIT: gnt <= 1'b1;

endcase

end

endmodule

