Half-Circuit Technique

 The half-circuit technique can be applied even if the two inputs are not fully differential

• The unsymmetrical inputs V_{in1} and V_{in2} each can be viewed as the sum of a differential component and a common-mode component, as

$$V_{in1} = \frac{V_{in1} - V_{in2}}{2} + \frac{V_{in1} + V_{in2}}{2}$$
$$V_{in2} = \frac{V_{in2} - V_{in1}}{2} + \frac{V_{in1} + V_{in2}}{2}$$

Half-Circuit Technique

- The circuit can be visualized as shown above
- The circuit senses a combination of a differential input and a common-mode variation
- Effect of each type of input can be computed by superposition, with the half-circuit applied to the differential-mode operation

Half-Circuit Technique: Example

• Unsymmetrical inputs V_{in1} and V_{in2} are superposed as differential [Fig. (a)] and common-mode [Fig. (b)] signals

Half-Circuit Technique: Example

For differential-mode operation, circuit reduces to Fig. (a)

Thus,

$$V_X = -g_m(R_D || r_{O1}) \frac{V_{in1} - V_{in2}}{2}$$

$$V_Y = -g_m(R_D || r_{O2}) \frac{V_{in2} - V_{in1}}{2}$$

$$V_X - V_Y = -g_m(R_D || r_O)(V_{in1} - V_{in2})$$

Half-Circuit Technique: Example

 For common-mode operation, circuit reduces to that in Fig. (b)

- If circuit is fully symmetric and I_{SS} is an ideal current source, the currents drawn by M_1 and M_2 from R_{D1} and R_{D2} are exactly equal to $I_{SS}/2$ and independent of $V_{in,CM}$
- V_X and V_Y remain equal to $V_{DD} R_D(I_{SS}/2)$ and do not vary with $V_{in,CM}$, therefore, circuit simply amplifies $V_{in1} V_{in2}$ while eliminating the effect $V_{in,CM}$

 A differential pair can incorporate resistive degeneration to improve linearity [Fig. (a)]

- R_{s1} and R_{s2} soften the nonlinear behavior of M_1 and M_2 by increasing the differential voltage necessary to turn off one side [Fig. (b)]
- Suppose at $V_{in1} V_{in2} = \Delta V_{in2}$, M_2 turns off and $I_{D1} = I_{SS}$, then $V_{GS2} = V_{TH}$ and hence

$$V_{in1} - V_{GS1} - R_S I_{SS} = V_{in2} - V_{TH}$$

$$V_{in1} - V_{in2} = V_{GS1} - V_{TH} + R_S I_{SS}$$

$$= \sqrt{\frac{2I_{SS}}{\mu_n C_{ox} \frac{W}{L}}} + R_S I_{SS}$$

- First term on RHS is ΔV_{in1} , the input difference needed to turn off M_2 if $R_S = 0$, giving $\Delta V_{in2} \Delta V_{in1} = R_S I_{SS}$
- Linear input range is widened by approximately $\pm R_s I_{ss}$

 The small-signal voltage gain can be found using the halfcircuit concept

 The half-circuit is simply a degenerated CS stage exhibiting a gain of

$$|A_v| = \frac{R_D}{\frac{1}{g_m} + R_S}.$$

if
$$\lambda = y = 0$$

- The degenerated circuit trades gain for linearity
- A_v is less sensitive to g_m variations

Degeneration resistors consume voltage headroom

• In equilibrium, each resistor sustains a voltage drop of $R_sI_{ss}/2$ and maximum allowable differential swing is

reduced by $R_s I_{ss}/2$

- This can be resolved by splitting the tail current source in half and connecting each to the source terminal
- No headroom is sacrificed across the degeneration resistance in equilibrium

Basic Differential Pair: Common-Mode Response

- In reality, the differential pair is not fully symmetric and the tail current source exhibits a finite output impedance
- A fraction of the input CM variations appear at the output

- First assume that circuit is symmetric but tail current source has a finite output impedance R_{ss} [Fig. (a)]
- Increase in $V_{in,CM}$ causes V_P to increase and both V_X , V_Y to drop, which remain equal due to symmetry [Fig. (b)]

Basic Differential Pair: Common-Mode

Response

- M₁ and M₂ are "in parallel" and can be reduced to one composite device with twice the width, bias current and transconductance
- "Common-mode gain" of the circuit is $(\lambda = y = 0)$ $A_{v,CM} = \frac{V_{out}}{V_{in,CM}}$

$$A_{v,CM} = \frac{V_{out}}{V_{in,CM}}$$
$$= -\frac{R_D/2}{1/(2g_m) + R_{SS}}$$

 Input CM variations disturb bias points and affect smallsignal gain and output swings

Basic Differential Pair: Common-Mode Response

• There is variation in differential output due to change in $V_{in,CM}$ since the circuit is not fully symmetric, i.e., slight mismatches between the two sides

- $R_{D1} = R_D$, $R_{D2} = R_D + \Delta R_D$, where ΔR_D denotes a small mismatch and circuit is otherwise symmetric ($\lambda = y = 0$ for M_1 and M_2)
- M_1 and M_2 operate as one source follower, raising V_P by

$$\Delta V_P = \frac{R_{SS}}{R_{SS} + \frac{1}{2q_m}} \Delta V_{in,CM}$$

Basic Diπerential Pair: Common-Mode Response

- Since M_1 and M_2 are identical, I_{D1} and I_{D2} increase by $[g_m/(1+2g_mR_{SS})]\Delta V_{in,CM}$
- V_X and V_Y change by different amounts

$$\Delta V_X = -\Delta V_{in,CM} \frac{g_m}{1 + 2g_m R_{SS}} R_D$$

$$\Delta V_Y = -\Delta V_{in,CM} \frac{g_m}{1 + 2g_m R_{SS}} (R_D + \Delta R_D)$$

 Common-mode change at the input introduces a differential component at the output – common-mode to differential conversion

Basic Differential Pair: Common-Mode Response

- Common-mode response depends on output impedance of tail current source and asymmetries in the circuit
- Two effects:
 - Variation of output CM level (in the absence of mismatches)
 - Conversion of input CM variations to output differential components (more severe)

conversion

- CM to differential conversions become significant at high frequencies since the total capacitance shunting the tail current source introduces larger tail current variations
- This capacitance is arises from parasitics of the current source and source-bulk junctions of M_1 and M_2
- Asymmetry in the circuit stems from both the load resistors and the input transistors
 - Latter contributes a greater mismatch

Common-Mode Kesponse: Iransistor Mismatch

- M_1 and M_2 exhibit unequal transconductances g_{m1} and g_{m2} due to dimension and VTH mismatches (assume $\lambda = y = 0$)
- Calculate small-signal gain from $V_{in,CM}$ to X and Y [Fig. (b)]

$$I_{D1} = g_{m1}(V_{in,CM} - V_P)$$

• Also,
$$I_{D2} = g_{m2}(V_{in,CM} - V_P) \ (I_{D1} + I_{D2})R_{SS} = V_P$$

Common-Mode Kesponse: Iransistor Mismatch

Thus,

$$V_P = \frac{(g_{m1} + g_{m2})R_{SS}}{(g_{m1} + g_{m2})R_{SS} + 1} V_{in,CM}$$

We now obtain the output voltages as

$$V_X = -g_{m1}(V_{in,CM} - V_P)R_D \qquad V_Y = -g_{m2}(V_{in,CM} - V_P)R_D$$

$$= \frac{-g_{m1}}{(g_{m1} + g_{m2})R_{SS} + 1}R_DV_{in,CM} \qquad = \frac{-g_{m2}}{(g_{m1} + g_{m2})R_{SS} + 1}R_DV_{in,CM}$$

The differential component at the output is

$$V_X - V_Y = -\frac{g_{m1} - g_{m2}}{(g_{m1} + g_{m2})R_{SS} + 1} R_D V_{in,CM}$$

Common-Mode Kesponse: Iransistor Mismatch

The circuit converts input CM variations to a differential error by a factor of

$$A_{CM-DM} = -\frac{\Delta g_m R_D}{(g_{m1} + g_{m2})R_{SS} + 1}$$

• A_{CM-DM} denotes common-mode to differential-mode conversion and $\Delta g_m = g_{m1} - g_{m2}$

Common-Mode Response

 Common-mode rejection ratio (CMRR) is defined as the desired gain divided by undesired gain

$$CMRR = \left| \frac{A_{DM}}{A_{CM-DM}} \right|$$

• If only g_m mismatch is considered, it can be shown that

$$|A_{DM}| = \frac{R_D}{2} \frac{g_{m1} + g_{m2} + 4g_{m1}g_{m2}R_{SS}}{1 + (g_{m1} + g_{m2})R_{SS}}.$$

Hence,

$$CMRR = \frac{g_{m1} + g_{m2} + 4g_{m1}g_{m2}R_{SS}}{2\Delta g_m}$$

$$\approx \frac{g_m}{\Delta g_m}(1 + 2g_mR_{SS}),$$

- g_m denotes the mean value, i.e., $g_m = (g_{m1} + g_{m2})/2$
- $2g_m R_{ss} >> 1$ and hence $CMRR \approx 2g_m^2 R_{SS}/\Delta g_m$

 Differential pairs can employ diode-connected [Fig. (a)] or current-source loads [Fig. (b)]

For Fig. (a), small-signal differential gain is

$$A_v = -g_{mN} \left(g_{mP}^{-1} || r_{ON} || r_{OP} \right)$$

$$\approx -\frac{g_{mN}}{g_{mP}},$$

N and P subscripts denote NMOS and PMOS respectively

• Expressing g_{mN} and g_{mP} in terms of device dimensions,

$$A_v \approx -\sqrt{\frac{\mu_n(W/L)_N}{\mu_p(W/L)_P}}$$

For current-source loads [Fig. (b)], the gain is

$$A_v = -g_{mN}(r_{ON}||r_{OP})$$

- Diode-connected loads consume voltage headroom and create trade-off between output voltage swing, input CM range and gain
- For higher gain, $(W/L)_P$ must decrease, thereby increasing $|V_{GS} V_{THP}|$ and lowering output CM level
- Solved by adding PMOS current sources M_5 and M_6 to supply part of input pair bias current [Fig. (a)]

- In Fig. (a), g_m of load devices M_3 and M_4 is lowered by reducing their current instead of $(W/L)_P$
- For $I_{D5} = I_{D6} = 0.8I_{D1} = 0.8I_{D2}$, I_{D3} and I_{D4} are reduced by a factor of 5
- For a given overdrive, g_{mP} is lowered by the same factor
- Differential gain is five times that of the case without auxiliary PMOS current sources (if $\lambda = 0$)

 Since diode-connected loads limit output swings, loads are realized by resistors

- Maximum voltage at each output node is V_{DD} $|V_{GS3,4} V_{TH3,4}|$ instead of V_{DD} $|V_{TH3,4}|$ for diode-connected loads
- For a given output CM level and 80% auxiliary currents,
 RD can be five times larger, yielding a voltage gain of

$$|A_v| = g_{mN}(R_D||r_{ON}||r_{OP})$$

Cascode Differential Pair

- Small-signal voltage gain can be increased by increasing output impedance of both NMOS and PMOS devices via cascoding [Fig. (a)], but at the cost of less headroom
- The gain is calculated using the half-circuit technique [Fig. (b)]

$$|A_v| \approx g_{m1}[(g_{m3}r_{O3}r_{O1})||(g_{m5}r_{O5}r_{O7})]$$

Differential pair whose gain is controlled by a control

voltage [Fig. (a)]

- In Fig.(a), the control voltage Vcont controls the tail current and hence the gain
- Here, $A_v = V_{out}/V_{in}$ varies from zero (if $I_{D3} = 0$)to a maximum value given by voltage headroom limitations and device dimensions
- Simple example of Variable Gain Amplifier (VGA)

 An amplifier is sought whose gain can be continuously varied from a negative to a positive value

- Fig. (b) shows two differential pairs that amplify the input by opposite gains
- Here, $V_{out1}/V_{in} = -g_m R_D$ and $V_{out2}/V_{in} = +g_m R_D$
- If I_1 and I_2 vary in opposite directions, so do $|V_{out1}/V_{in}|$ and $|V_{out2}/V_{in}|$

- V_{out1} and V_{out2} are combined into a single output as shown in Fig. (a)
- The two voltages are summed, producing $V_{out} = V_{out1} + V_{out2} = A_1V_{in} + A_2V_{in}$, where A_1 and A_2 are controlled by V_{cont1} and V_{cont2} respectively
- Actual implementation shown in Fig. (b) where drain terminals are shorted to sum the currents and generate the output voltage

- V_{out1} and V_{out2} must change I_1 and I_2 in opposite directions so that the amplifier gain changes monotonically
- This is done using a differential pair, as shown in Fig. (c)
- For large $|V_{cont1} V_{cont2}|$, all of I_{SS} is steered to one of the top differential pairs and $|V_{out}/V_{in}|$ is maximum
- If $V_{cont1} = V_{cont2}$, the gain is zero
- Simplified structure in Fig.(d), called a "Gilbert Cell"

