

 From the small-signal equivalent circuit for finding input impedance, we have

$$V_1 = -V_X$$

- The current through r_O is equal to $I_X + g_m V_1 + g_{mb} V_1 = I_X (g_m + g_{mb}) V_X$
- Voltages across r_o and R_D can be added and equated to

$$R_D I_X + r_O [I_X - (g_m + g_{mb})V_X] = V_X$$

- The drain impedance is divided by $(g_m + g_{mb})r_o$ when seen at the source
- Important in short-channel devices because of their Copyright © 2017 MOW HILL IN SIC REPRODUCTION OF DISTRIBUTION WITHOUT THE PRIOR WRITTEN CONSENT OF MCGraw-Hill Education.

56

• Suppose $R_D = 0$, then

$$\frac{V_X}{I_X} = \frac{r_O}{1 + (g_m + g_{mb})r_O} \\
= \frac{1}{\frac{1}{r_O} + g_m + g_{mb}},$$

• This is the impedance seen at the source of a source follower, a predictable result since with $R_D = 0$ the circuit configuration is the same as a source follower

- If R_D is replaced with an ideal current source, earlier result predicts that input impedance approaches infinity
- Total current through the transistor is fixed and is equal to I_1
- Therefore, a change in the source potential cannot change the device current, and hence $I_x = 0$
- The input impedance of a CG stage is relatively low *only* if the load impedance connected to the drain is small

Common-Gate Stage

• In a CG stage with a current source load, substituting $R_D = \infty$ in the voltage gain equation, we get

$$A_v = (g_m + g_{mb})r_O + 1$$

- \bullet Gain does not depend on R_s
- From the foregoing discussion, if $R_D \to \infty$, so does the impedance seen at the source of M_1 , and the small-signal voltage at node X becomes equal to V_{in}

Common-Gate Stage

- In a degenerated CS stage, we loosely say that a transistor transforms its source resistance *up*
- In a CG stage, the transistor transforms its drain resistance *down*
- The MOS transistor can thus be viewed as an resistance transformer

 From the above small-signal equivalent circuit, we can find output impedance as

$$R_{out} = \{[1 + (g_m + g_{mb})r_O]R_S + r_O\} ||R_D$$

Result is similar to that obtained for a degenerated CS stage

Common-Gate Stage

• Input signal of a common-gate stage may be a current rather than a voltage as shown below

- Input current source exhibits output impedance of R_P
- To find the "gain" $V_{out}II_{in}$, replace I_{in} and R_P with a Thevenin equivalent and use derived result to write

Thevenin equivalent and use derived result to write
$$\frac{V_{out}}{I_{in}} = \frac{(g_m + g_{mb})r_O + 1}{r_O + (g_m + g_{mb})r_OR_P + R_P + R_D}R_DR_P$$

$$R_{out} = \{ [1 + (g_m + g_{mb})r_O]R_P + r_O \} ||R_D|$$

Copyright Land Line Decided and Copyright and Live in the prior written consent of McGraw-Hill Education.