MOSFET as a Switch

- When gate voltage is high, device is on.
- Source and drain are interchangeable.
- But,
 - At what gate voltage does the device turn on?
 - How much is the resistance between S and D?
 - What limits the speed of the device?

- n-type MOS (NMOS) has n-doped source (S) and drain (D) on p-type substrate ("bulk" or "body").
- S/D junctions "side-diffuse" during fabrication so that effective length $L_{eff} = L_{drawn} 2L_D$.
- Typical values are $L_{eff} \approx 10$ nm and $t_{ox} \approx 15$ Å.
- The S terminal provides charge carriers and the D terminal collects them.
- As voltages at the three terminals changes, the source and drain may exchange roles.

- MOSFETs actually have four terminals.
- Substrate potential greatly influences device characteristics.
- Typically S/D junction diodes are reversed-biased and the NMOS substrate is connected to the most negative supply in the system.

• PMOS is obtained by inverting all of the doping types (including the substrate).

- In complementary MOS (CMOS) technologies both NMOS (NFET) and PMOS (PFET) are needed and fabricated on the same wafer.
- In today's CMOS, the PMOS is fabricated in an *n*-well, where the *n*-well is tied to the most positive supply voltage.

MOS Symbols

- Substrate is denoted by "B" (bulk).
- PMOS source is positioned on top since it has a higher potential than the gate.
- Most circuits have NMOS and PMOS bulk tied to ground and V_{DD} , respectively, so we tend to omit the connections (b,c).
- Digital circuits tend to incorporate "switch" symbols (c).

- As V_G increases from zero, holes in p-substrate are repelled leaving negative ions behind to form a depletion region.
- There are no charge carriers, so no current flow.

- Increasing $V_{\rm G}$ further increases the width of the depletion region and the potential at the oxidesilicon interface.
- Structure resembles voltage divider consisting of gate-oxide capacitor and depletion region capacitor in series.

- When interface potential reaches sufficiently positive value, electrons flow from the source to the interface and eventually to the drain.
- This creates a channel of charge carriers (inversion layer) beneath the gate oxide.
- The value of V_G at which the inversion layer occurs is the threshold voltage (V_{TH}) .

$$V_{TH}=\Phi_{MS}+2\Phi_F+rac{Q_{dep}}{C_{ox}}.$$

$$\Phi_F=(kT/q)\ln(N_{sub}/n_i). \qquad Q_{dep}=\sqrt{4q\epsilon_{si}|\Phi_F|N_{sub}}.$$

Where

- Φ_{MS} is the difference between the work functions of the polysilicon gate and the silicon substrate.
- k is Boltzmann's constant.
- q is the electron charge.
- N_{sub} is the doping density of the substrate.
- n_i is the density of electrons in undoped silicon.
- Q_{dep} is the charge in the depletion region.
- C_{ox} is the gate oxide capacitance per unit area.
- ϵ_{si} is the dielectric constant of silicon.

- In practice, threshold voltage is adjusted by implanting dopants into the channel area during device fabrication.
- For NMOS, adding a thin sheet of p^+ increases the gate voltage necessary to deplete the region.

- Turn-on phenomena in PMOS is similar to that of NMOS but with all polarities reversed.
- If the gate-source voltage becomes sufficiently negative, an inversion layer consisting of holes is formed at the oxide-silicon interface, providing a conduction path between source and drain.
- PMOS threshold voltage is negative.

$$I = Q_d \cdot v$$

- Where
 - Q_d is the mobile charge density along the direction of current I.
 - v is the charge velocity.

- Onset of inversion occurs at $V_{GS} = V_{TH}$.
- Inversion charge density produced by gate oxide capacitance is proportional to $V_{GS} V_{TH}$ since for $V_{GS} \ge V_{TH}$, charge placed on the gate must be mirrored by charge in the channel, yielding a uniform channel charge density: $Q_d = WC_{ox}(V_{GS} V_{TH}).$
- Where WC_{ox} is the total capacitance per unit length.

- Channel potential varies from zero at the source to $V_{\scriptscriptstyle D}$ at the drain.
- Local voltage difference between the gate and the channel varies from V_G to $V_G V_D$.
- Charge density now varies with respect to x : $Q_d(x) = WC_{ox}[V_{GS} V(x) V_{TH}]$

where V(x) is the channel potential at x.

$$I_D = \mu_n C_{ox} \left(\frac{W}{L}\right) \left[(V_{GS} - V_{TH}) V_{DS} - \left(\frac{1}{2}\right) V_{DS}^2 \right].$$

Since

-
$$I = Q_d \cdot v$$
.

-
$$v = \mu E$$
.

$$-E(x) = -dV/dx.$$

-
$$Q_d(x) = WC_{ox}[V_{GS} - V(x) - V_{TH}].$$

-
$$I_D = WC_{ox}[V_{GS} - V(x) - V_{TH}]\mu_n(dV(x)/dx)$$
.

$$\int_{x=0}^{L} I_{D} dx = \int_{V=0}^{V_{DS}} W C_{ox} \mu_{n} [V_{GS} - V(x) - V_{TH}] dV.$$

 A negative sign is added because the charge carriers are negative for NMOS.

$$I_D = \mu_n C_{ox} \left(\frac{W}{L}\right) \left[(V_{GS} - V_{TH}) V_{DS} - \left(\frac{1}{2}\right) V_{DS}^2 \right].$$

- V_{GS}-V_{TH} is known as the "overdrive voltage."
- W/L is known as the "aspect ratio."
- If $V_{DS} \le V_{GS} V_{TH}$, we say the device is operating in the "triode region."

• If $V_{DS} \ll 2(V_{GS} - V_{TH})$, then

$$I_D \approx \mu_n C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_{TH}) V_{DS}.$$

• In this case, the drain current is a linear function of V_{DS} so the path from source to drain can be represented by a linear resistor:

$$R_{on} = \frac{1}{\mu_n C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_{TH})}.$$

- If V_{DS} << 2(V_{GS} - V_{TH}), the device is operating in "deep triode region."
- In this region, a MOSFET can operate as a resistor whose value is controlled by the overdrive voltage.
- Unlike bipolar transistors, a MOS device may be on even if it carries no current.

 For example, given the topology on the left and that

$$\mu_n C_{ox} = 50 \, \mu \text{A/V}^2$$

$$-W/L = 10$$

-
$$V_{TH} = 0.3 \text{ V}$$
,

$$R_{on} = \frac{1}{50 \,\mu\text{A/V}^2 \times 10(V_G - 1 \text{ V} - 0.3 \text{ V})}.$$

- In reality, if $V_{DS} > V_{GS} V_{TH}$, I_D becomes relatively constant and we say that the device operates in "saturation region."
- $V_{D,sat} = V_{GS} V_{TH}$ denotes the minimum V_{DS} necessary for operation in saturation.

- If V_{DS} is slightly larger than $V_{GS}-V_{TH}$, the inversion layer stops at $x \le L$, and the channel becomes "pinched off."
- As V_{DS} increases, the point at which Q_{D} equals zero gradually moves towards the source.
- At some point along the channel, the local potential difference between the gate and the oxide-silicon interface is not sufficient to support an inversion layer.

• Electron velocity ($v = I/Q_d$) rises tremendously as they approach the pinch-off point (where $Q_d \rightarrow 0$) and shoot through the depletion region near the drain junction and arrive at the drain terminal.

$$V_{GS} = \sqrt{\frac{2I_D}{\mu_n C_{ox} \frac{W}{L'}}} + V_{TH}$$

Since the integral becomes

$$- \int_{x=0}^{x=x_2=L'} I_D dx = \int_{V=0}^{V=V_{GS}-V_{TH}} W C_{ox} \mu_n [V_{GS}-V(x)-V_{TH}] dV .$$

$$I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L'}\right) (V_{GS}-V_{TH})^2 .$$

- I_D is relatively independent of V_{DS} if L' remains close to L.
- The device exhibits a "square-law" behavior.

For PMOS devices, the equations become

$$I_D = -\mu_p C_{ox} \frac{W}{L} \left[(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right].$$

$$I_D = -\frac{1}{2} \mu_p C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^2.$$

- The negative sign shows up due to the assumption that drain current flows from drain to source, whereas holes in a PMOS flow in the reverse direction.
- V_{GS} , V_{DS} , V_{TH} , and $V_{GS}-V_{TH}$ are negative for a PMOS transistor that is turned on.
- Since the mobility of holes is about ½ the mobility of electrons, PMOS devices suffer from lower "current drive" capability.

- A saturated MOSFET can be used as a current source connected between the drain and the source.
- NMOS current sources inject current into ground while PMOS current sources draws current from $V_{\rm DD}$.

- $V_{DS} = V_{GS} V_{TH} = V_{D,sat}$ is the line between saturation and triode region.
- For a given V_{DS} , the device eventually leaves saturation as V_{GS} increases.
- The drain is defined as the terminal with a higher (lower) voltage than the source for an NMOS (PMOS).

