Introduction

2 Why is designing
digital ICs different
today than it was
before?

a Will it change in
future?




The First Computer

The Babbage
Difference Engine
(1832)

25,000 parts

cost: £17.470




ter (1946)

ENIAC - The first electronic compu




The Transistor Revolution

First transistor
Bell Labs, 1948




The First Integrated Circuits

Bipolar logic
1960’s

ECL 3-input Gate
Motorola 1966




Intel 4004 Micro-Processor

1971
1000 transistors
1 MHz operation




Intel Pentium (IV) microprocessor
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Moore’s Law

eln 1965, Gordon Moore noted that the
number of transistors on a chip doubled
every 18 to 24 months.

eHe made a prediction that
semiconductor technology will double its
effectiveness every 18 months
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Moore’s Law
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Electronics, April 19, 1965.
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Evolution in Complexity

Number of bits per chip
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Transistor Counts

K 1 Billion
1.000.000 Transistors
100,000
Pentium®lil
10,000 - Pentium®II
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Moore’s law in Microprocessors

1000
100 F 2X growth in 1.96 years!
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Die Size Growth

100 ¢

486 Penltaiﬁm ® proc

386

8086 286

Die size (mm)
=

2008 8085 ~T7% growth per year
?4004 ~2X growth in 10 years
T ey
1970 1980 1990 2000 2010
Year

Die size grows by 14% to satisfy Moore’s Law
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Frequency
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Power Dissipation
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Lead Microprocessors power continues to increase
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Power will be a major problem
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Power delivery and dissipation will be prohibitive
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Power density
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Power density too high to keep junctions at low temp
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Not Only Microprocessors

Cell
Phone

l‘ edn

Digital Cellular Market
(Phones Shipped)

1996 1997 1998 1999 2000
Units 48M 86M 162M 260M 435M

(data from Texas Instruments)

Analog

Baseband & I
i® e

Digital Baseband




Challenges in Digital Design

oc DSM oc 1/DSM
] ] i'llriié-ton-Mérket : . i .
“Microscopic Problems” e e !VlaCI’OSCODIc Issues
* Ultra-high speed design : " * Time-to-Market
* Interconnect N Reticy  © Millions of Gates

* High-Level Abstractions
* Reuse & IP: Portability

* Predictability

* etc.

* Noise, Crosstalk
 Reliability, Manufacturability
* Power Dissipation

e Clock distribution.

Everything Looks a Little Different
? ...and There’s a Lot of Them!
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Productivity Trends
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Complexity outpaces design productivity
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Why Scaling?

Q Technology shrinks by 0.7/generation

a With every generation can integrate 2x more
functions per chip; chip cost does not increase
significantly

0 Cost of a function decreases by 2x

Q But ...

* How to design chips with more and more functions?

= Design engineering population does not double every
two years...

Q Hence, a need for more efficient design methods
= Exploit different levels of abstraction

24



Design Abstraction Levels

SYSTEM\

MODULE

CIRCUIT

i
_______________ o




Design Metrics

1 How to evaluate performance of a
digital circuit (gate, block, ...)?
» Cost
» Reliability
= Scalability
» Speed (delay, operating frequency)
* Power dissipation
* Energy to perform a function
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Cost of Integrated Circuits

2 NRE (non-recurrent engineering) costs
» design time and effort, mask generation
* one-time cost factor

Q Recurrent costs
= silicon processing, packaging, test
= proportional to volume
= proportional to chip area
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NRE Cost is Increasing

“The club of people who can
attord an extreme sub-micron

ASIC or COTS design 1s getting
pretty exclusive.”

Ron Wilson, EE Times (May 2000)

025 02 015 01
Process Geometry (Meron)
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Die Cost

Single die

——Wafer

$/ AMDZ
o Going up to 127 (30cm)

From http://www.amd.com 29



Cost per Transistor

cost:
¢-per-transistor

1

0.1 \Fabrication capital cost per transistor (Moore’s law)
0.01 (/
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Yield

v — No. of good chips per wafer

— : x100%
Total number of chips per wafer

Water cost

Die cost = — —
Dies per wafer x Die yield

nx (wafer diameter/2)2 n x wafer diameter

die area \/ 2 xdie area

Ed:

\// \\=._—//

Dies per wafer =

31
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Defects

L.

die yield=| 1+

defects per unit area x die area

a

a is approximately 3

die cost = f(die area)4

X
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Some Examples (1994)

Chip Metal | Line | Wafer | Def./ | Area | Dies/ | Yield | Die

layers | width | cost | cm? | mm? | wafer cost
386DX 2 0.90 | $900 | 1.0 | 43 | 360 | 71% | %4
486 DX2 3 0.80 | $1200 | 1.0 | 81 | 181 | 54% | $12
Power PC 4 0.80 | $1700 | 1.3 | 121 | 115 | 28% | $53
601

HPPA7100 | 3 | 0.80 | $1300 | 1.0 | 196 | 66 | 27% | $73

DEC Alpha 3 0.70 | $1500 | 1.2 | 234 | 53 | 19% | $149

Super Sparc 3 0.70 | $1700 | 1.6 | 256 | 48 | 13% | $272

Pentium 3 0.80 | $1500 | 1.5 | 296 | 40 9% | $417
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Reliability—
Noise in Digital Integrated Circuits

Inductive coupling Capacitive coupling Power and ground
noise



DC Operation
Voltage Transfer Characteristic
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VOH = f(VOL)
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Mapping between analog and digital signals
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Definition of Noise Margins

wyn
VoH . .
v Noise margin high

IH
Undefined

Region

VoL & IL Noise margin low
IIOIl

Gate Output — Gate Input
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Noise Budget

a Allocates gross noise margin to
expected sources of noise

Q Sources: supply noise, cross talk,
interference, offset

Q Differentiate between fixed and
proportional noise sources
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Key Reliability Properties

QO Absolute noise margin values are deceptive

» a floating node is more easily disturbed than a
node driven by a low impedance (in terms of
voltage)

a Noise immunity is the more important metric —
the capability to suppress noise sources

O Key metrics: Noise transfer functions, Output
impedance of the driver and input impedance of the
receiver:;
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Regenerative Property

Regenerative Non-Regenerative
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Regenerative Property
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A chain of inverters
I I
5 — e e e ——— ~ _
N /, \ pm————————
A\ / \ p
\ /
= 3 |\ ! Vo \4/ a
\>(_D/ f \\" \_’I,\
> I\\ / \
1= 7 A v / 1 ]
/ Sem oo \
ol 1 |
Simulated response 0 2 4 6 8 1C
t (nsec)



Fan-in and Fan-out
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The Ideal Gate

?i=OO

Ro =0

~anout = o«

NM,, = NM, = Vp/2
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An Old-time Inverter
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Delay Definitions

50%
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Vout 0
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Ring Oscillator




A First-Order RC Network

Vout

\+—
Vin CJg\/\/\ C v out(f) — (1 _ e_t/T) V

t,=1In (2) 7 =0.69 RC

Important model - matches delay of inverter
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Power Dissipation

Instantaneous power:
p(t) — V(t)i(t) - Vsupplyi(t)

Peak power:
P peak — Vsupplylpeak

Average power:

1 ¢t+T Veuppty ¢t+T .
Fave = ?L p(t)dt = T L Lsupply (t )dt
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Energy and Energy-Delay

Power-Delay Product (PDP) =

E = Energy per operation =P, xt,

Energy-Delay Product (EDP) =

quality metric of gate =E xt,
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A First-Order RC Network

A Vout
|
Vin (T — C,
T T vdd ,
Eg_,q = [POAt= Vya[ig o 0dt =V, [ CdV = CpeVy,
0 0 0

T T vdd {
Ecap - IPcap(t)dt - JVoutlcap(t)dt = CLVouthout ECL 'Vdd
0 0 0

2
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Summary

a Digital integrated circuits have come a long
way and still have quite some potential left for
the coming decades

a Some interesting challenges ahead

» Getting a clear perspective on the challenges and
potential solutions is the purpose of this book

a Understanding the design metrics that govern
digital design is crucial

» Cost, reliability, speed, power and energy
dissipation
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