Soc Design Issues

System-Level Design Issues

Key Aspects of Design Reuse

- Fundamentals
 - Well-designed IP is the key to successful SOC design
- System level design guidelines
 - To produce well-designed IP
 - To integrate well-designed IP to an SOC design
 - Driven by the needs of IP integrator and chip designer
- Principles behind these guidelines
 - Discipline
 - Consistent good practices
 - Simplicity
 - The simpler the design, the easier to fix the bugs
 - Locality
 - Make timing and verification problem local by careful block and interface design

FULL CUSTOM DESIGN IN REUSE

- Full custom design
 - Design that are not from synthesis
- Major problems
 - Performance gain is limited
 - Non-portable, hard to modify designs
 - Redesign take time
- Limit full custom design for only small part of design
 - Even aggressive processor designer uses full custom only for data path

INTERFACE AND TIMING CLOSURE

- Timing problems due to deep submicron process
 - Dominated wire delay
 - Imprecise wireload model due to uncertainty of wire delays
- Solution
 - Tools
 - Timing driven P&R, Physical synthesis
 - Tactics for fundamental good design
 - Register all inputs/outputs of the macro
 - Unit for floorplan
 - Register all outputs of the subblock of macro
 - Unit for synthesis
 - Exception
 - Cache interface
 - Design likes PCI interface that needs glue logic at the interface

SYNCHRONOUS V.S. ASYNCHRONOUS

- Synchronous
 - Avoid asynchronous and multi-cycle paths
 - Tools work best for synchronous design
 - Accelerate synthesis and simulation
 - Ease static timing analysis
- Register based
 - Use (positive) edge triggered DFF
 - Latches shall be used only in small memory or FIFOs

CLOCKING

- Clock planning
 - Minimize the number of clock domains
 - Isolate the interface between clock domains
 - Careful synchronizer design to avoid metastability
 - Isolate clock generation and control logic
- Document the clock scheme
 - Required clock frequencies and PLL
 - Interface timing requirements to other parts of the system
- PLL
 - Disabling/bypassing scheme
 - Ease testing
- For hard blocks
 - Eliminate the clock delay using a PLL
 - Balance the clock insertion delay

Reset

- Synchronous reset
 - Easy to synthesize
 - Requires a free-running clock
- Asynchronous reset
 - Do not require a free-running clock
 - Not affect flip-flop data timing due to separated input
 - Harder to implement, like clock, CTS is required
 - Synchronous de-assertion problem
 - Make STA and cycle-based simulation more difficult
- Asynchronous reset is preferred

INTERNAL GENERATED RESET

- Internal generated reset causes unwanted reset
 during scan shift
- Solution
 - Force internal generated reset signal inactive during test

