
DESIGN OFOF LOGIC CORES

DESIGN FORREUSE

● Design‐for‐reuse is an absolute necessity
 maintain productivity levels,
 keep the design time within reasonable

● Good designer
 100 gates per day, or 30 lines of RTL
 100K gateASIC (a typical 1990s design)

1000 designer‐days ‐> 5 person team for 1000 designer‐days ‐> 5 person team for

 10 M gate ASIC design
 100,000 designer‐days ‐>500 persons for

 100 M gate SoC design
 1,000,000 designer‐days ‐> 5,000 persons

about 10years!

necessity to:

reasonable bounds.

RTL code a day.
design)

for about ayearfor about ayear

for about a year

persons for about a year! or 50 person team

DESIGN FOR REUSER

● Good functional documentation,
● Good coding practices,
● Carefully designed verification
 thorough testsuites,

● Robust and versatile EDA tool● Robust and versatile EDA tool

● Effectiveporting mechanism
libraries (for hardcores).

REQUIREMENTS

documentation,

verificationenvironments

tool scriptstool scripts

across various technology

GENERAL GUIDELINES FOR DESIGN R
SOFT AND FIRM CORES DESIGN PROCESSS F C D P

Designing
Cores

REUSE DESIGN PROCESS FOR

ROCESS FOR HARD CORESH C

Designing Logic

GENERAL GUIDELINES

● Synchronous Design
● Memoryand Mixed‐Signal Design
● On‐Chip Buses

● Clock Distribution

Clear/Set/Reset Signals● Clear/Set/Reset Signals
● Deliverable Models

UIDELINES FOR DESIGNREUSE

Design

SYNCHRONOUS

● Use registers for synchronization
core logic and its inputs and
outputs to manage core‐to‐core
interaction.
 Creates a wrapper around a core.

portability portability
 manufacturing testapplication

● Avoid latches in random logic
 Use them only in blocks such as

FIFOs, memories, and stacks

•Avoid asynchronous loops, internal
direct combinational paths from

Designing
Cores

YNCHRONOUS DESIGN

synchronization in
inputs and

core‐to‐core

core.

logic
as

internal pulse generator circuits,
from block inputs to outputs

Designing Logic 6

MEMORY AND MIXED

● Large memories: different parasitics
cells and a cell in the middle of an
 Include rows and columns of dummy

periphery of largememories

 Make these rows and columns part
repair (BISR) mechanism, to minimizerepair (BISR) mechanism, to minimize

● most commonly used analog/mixed‐
signal circuits used in SoC: PLLs,
ADCs/DACs,and temperature
 extremely sensitive to noise

technology parameters
place them at the corners

Designing
Cores

IXED‐SIGNALDESIGN

‐
.

parasitics at boundary
an array.

dummy cells at the

part of the built‐in self
minimize area overhead.minimize area overhead

analog/mixed‐
SoC: PLLs,

temperature sensors.
noise and

Designing Logic 7

ON‐CHIP BUSES

●On‐chip buses and data transaction
designed prior to the core selection

● Core providers cannot envision all possible
 Parameterized interfaces should be used
 FIFO‐based interfaces are flexible and versatile

cores and the system buses

● Organizations (VSI Alliance, …) develop● Organizations (VSI Alliance, …) develop
interface standards/specifications.
 support multiple masters, separate identity

fully synchronous and multiple cycle
request‐and‐grant protocol

transaction protocol must be
selection process.

possible interfaces.
used in core design.
versatile in handling varying data rates between

develop on‐chip bus and core develop on‐chip bus and core

identity for data and control signals,
cycle transactions, bus

CLOCK DISTRIBUTION

● Use the smallest number of clock domains.
● Isolate each clock in an independent
● Use buffers at the clock boundary.

● Avoid metastability between clock

● Use synchronization method at the
 E.g., clock buffering and dual stage FFs

● Distribute a low‐frequency chip‐level
contain local PLLs.
 Each core’s local PLL should lock to this

for the core.

ISTRIBUTION

domains.

independent domain.

domains interface

the clock boundaries.
FFs or FIFOs at the clock boundary.

chip‐level synchronization clock when cores

this clock and generate required frequency

CLEAR/SET/RESETSIGNALS

● Document all reset schemes for the
 Synchronous/asynchronous, internal/external
 any software reset schemes used,
 does any functional block has locally
 whether resets are synchronized with

● Use synchronousreset if possible
 avoids race conditions on reset, avoids race conditions on reset,
 static timing analysis difficult with asynchronous
 designer has to evaluate the reset pulse
 to make sure it becomes inactive synchronously

IGNALS

the entire design:
internal/external power‐on‐resets,

locally generated resets,
with local clocks, …

asynchronous resets,
pulse width at every FF

synchronously to clocks

DELIVERABLE MODELS

● Design reuse depends on quality
 behavioral or instruction set architecture
 bus functional model for system‐level
 fully functional model for timing

logic simulation/emulation,
 physical design models: floor planning, physical design models: floor planning,

● Might be delivered in encrypted
reverse engineering.
 createa top‐level module and instantiate
 the top‐level module behaves as a

planning, and timing of the core

ODELS

quality of deliverable models:
architecture (ISA) model,

system‐level verification,
timing and cycle‐based

planning, timing, and areaplanning, timing, and area

encrypted form to restrict piracy and

instantiate the core model inside it.
a wrapperand hides the whole netlist, floor

DELIVERABLE MODELSODELS(NEED AND USAGE)

DESIGN PROCESS FOR
CORES

● Design Flow
● Development Process for Soft/Firm
● RTL Guidelines

● Soft/Firm Cores Deliverables

FOR SOFT AND FIRM

Soft/Firm Cores

Deliverables

DESIGN FLOW

● Design with a
conventional EDA
RTL synthesisflow.

● Reusability
requirement requirement

multiple configuration
tests should be
developed and run.

Designing
Cores
Designing Logic 14

DEVELOPMENT PROCESS
CORES

● Required design specifications
process:
1. Functional (purpose andoperation)
2. Physical (packaging, area, power,
3. Design requirements (architecture

data flow)data flow)
4. Interface requirements to specify

timing diagrams, and DC/AC
5. Test and debug (testing, DFT

generation method, fault grading,
6. Software requirements (software

hardware blocks)

FOR SOFT/FIRM

specifications at every step in development

operation)
power, technologylibraries, …)

(architecture and block diagrams with

specify signal names and functions,
DC/AC parameters

methodology, test vector
grading,…)

(software drivers and models for

RTLGUIDELINES

● RTLcoding style determines:
 Portability
 Reusability
 Area and performance of the core

● So, develop RTL code that is:
 Simple and easy to understand,
 structured, structured,
 uses simple constructs and consistent
 Easy to verify and synthesize.

● Consult Verilog/VHDL books for

core after synthesis.

understand,

consistent naming conventions

for good coding guidelines.

SOFT/FIRM CORES DELIVERABLES

● Product files
 Synthesizable sourcecode
 Application notes with HDL design example
 Synthesis scripts & timing constraints
 Scripts for scan insertion and ATPG
 Reference library
 Installation scripts Installation scripts

● Verification files
 Bus functional model/monitors used
 Testbench files including representative

ELIVERABLES

example
constraints

used in testbench
representative verification tests

SOFT/FIRM CORES DELIVERABLES

● Documentation
 User guide/Functionalspecification
 Datasheet

● System integration files/tools
 Cycle‐based/emulation models Cycle‐based/emulation models

and/or its testbenches and BFMs
 Compilers, debuggers, real‐time

software drivers for programmable

● Additional for firmcores:
 gate‐level netlist, description

timing model, area, and power

ELIVERABLES(CONTD..)

specification

files/tools
models as appropriate for macromodels as appropriate for macro

BFMs
real‐time operating systems and

programmable processor IP

of the technology library,
powerestimates.

DESIGN METHODOLOGY

General Guidelines for Design Reuse
Design Process for soft and firm cores
Design Process for Hard Cores

Clock and Reset
Porosity, Pin Placement, and Aspect

FOR LOGIC CORES

General Guidelines for Design Reuse
Design Process for soft and firm cores
Design Process for Hard Cores

Porosity, Pin Placement, and Aspect Ratio

CLOCK AND RESET

● Implementation of clock and reset
clock and reset.
 Since SoC‐level information not available

● Clock and reset require buffering
● Clock must be available on an output

Used for synchronization with other Used for synchronization with other

reset should be independent of SoC

available at the time of core design.

buffering and minimum wire loading.
output pin of the core.
other SoC‐level on‐chip clocks.other SoC‐level on‐chip clocks.

POROSITY, PIN PLACEMENT
RATIO

LACEMENT, AND ASPECT

