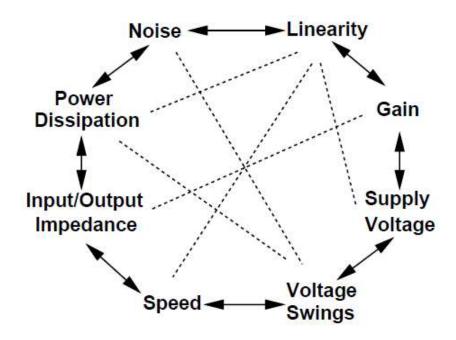
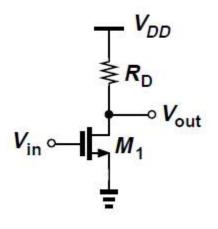

Ideal vs Non-ideal Amplifier

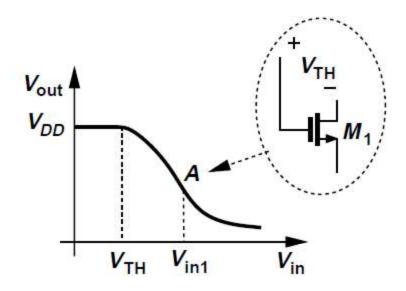
Ideal amplifier (Fig. a)


$$y(t) = \alpha_0 + \alpha_1 x(t)$$

- Large-signal characteristic is a straight line
- $-\alpha_1$ is the "gain", α_0 is the "dc bias"
- Nonlinear amplifier (Fig. b)

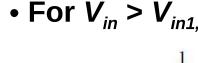
$$y(t) = \alpha_0 + \alpha_1 x(t) + \alpha_2 x^2(t) + \dots + \alpha_n x^n(t)$$

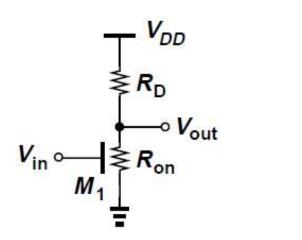

- Large signal excursions around bias point
- Varying "gain", approximated by polynomial
- Causes distortion of signal of interest


Analog Design Tradeoff

- Along with gain and speed, other parameters also important for amplifiers
- Input and output impedances decide interaction with preceding and subsequent stages
- Performance parameters trade with each other
 - Multi-dimensional optimization problem

Common-Source stage with Kesistive load


- Very high input impedance at low frequencies
- For $V_{in} < V_{TH}$, M_1 is off and $V_{out} = V_{DD}$


$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2$$

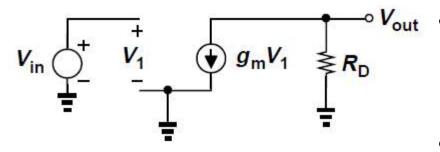
- When $V_{in} > V_{TH}$, M_1 turns on in saturation region, V_{out} falls
- When $V_{in} > V_{in1}$, M_1 enters triode

$$V_{in1} - V_{TH} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH})^2$$
out — in1 TH

Common-Source stage with kesistive load

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left[2(V_{in} - V_{TH}) V_{out} - V_{out}^2 \right]$$

• If V_{in} is high enough to drive M_1 into deep triode region so that


$$V_{out} = V_{DD} \frac{R_{on}}{R_{on} + R_D}$$

$$= \frac{V_{DD}}{1 + \mu_n C_{ox} \frac{W}{L} R_D (V_{in} - V_{TH})}$$

Common-Source stage with Kesistive load

$$A_v = rac{\partial V_{out}}{\partial V_{in}}$$
 • Taking derivative in saturation reg
$$= -R_D \mu_n C_{ox} rac{W}{L} (V_{in} - V_{TH}) ext{ gain is obtained}$$

$$= -g_m R_D.$$

 Taking derivative of I_D equation in saturation region, small-signal

V_{out} • Same result is obtained from small-signal equivalent circuit

$$V_{out} = -g_m V_1 R_D = -g_m V_{in} R_D$$

• g_m and A_v vary for large input signal swings according to

$$g_m = \mu_n C_{ox}(W/L)(V_{GS} - V_{TH}).$$

This causes non-linearity