Common-Source stage with Kesistive load

• For large values of R_D , channel-length modulation of M_1 becomes significant, V_{out} equation becomes

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2 (1 + \lambda V_{out})$$

Voltage gain is

$$A_v = -g_m \frac{r_O R_D}{r_O + R_D}$$

 Above result is also obtained from small-signal equivalent circuit

equivalent circuit
$$V_{\text{in}} = V_{\text{out}}$$

$$V_{\text{out}} = V_{\text{out}} = V_{\text{out}}$$

$$V_1 = V_{in}$$
$$g_m V_1(r_O || R_D) = -V_{out}$$

$$V_{out}/V_{in} = -g_m(r_O || R_D)$$

Diode-Connected MOSFET

- A MOSFET can operate as a small-signal resistor if its gate and drain are shorted, called a "diode-connected" device
- Transistor always operates in saturation

Impedance of the device can be found from small-signal equivalent model

$$V_1 = V_X$$

$$I_X = V_X/r_O + g_m V_X$$

$$V_X/I_X = (1/g_m)||r_O \approx 1/g_m$$

Diode-Connected MOSFET

 Including body-effect, impedance "looking into" the source terminal of diode-connected device is found as

$$V_{1} = -V_{X} V_{bs} = -V_{X} \frac{V_{X}}{I_{X}} = \frac{1}{g_{m} + g_{mb} + r_{O}^{-1}}$$

$$= \frac{1}{g_{m} + g_{mb}} || r_{O}$$

$$(g_{m} + g_{mb})V_{X} + \frac{V_{X}}{r_{O}} = I_{X} \approx \frac{1}{g_{m} + g_{mb}}.$$

Diode-Connected MOSFET: Example

• Find R_x if $\lambda = 0$

Result is same compared to

$$V_1 = V_X$$

$$V_{bs} = -V_X$$

• Set independent sources to zero, apply λ and find $\mathsf{result}^{(g_m + g_{mb})V_X = I_X}$

$$\frac{V_X}{I_X} = \frac{1}{g_m + g_{mb}}.$$

 Loosely said that looking into source of MOSFET, we see $1/g_m$ when $\lambda = y = 0$

when drain of M_1 is at ac ground,

 Neglecting channel-length modulation, using impedance result for diode-connected device,

$$A_{v} = -g_{m1} \frac{1}{g_{m2} + g_{mb2}}$$
$$= -\frac{g_{m1}}{g_{m2}} \frac{1}{1 + \eta},$$

where, $\eta=g_{mb2}/g_{m2}$

• Expressing g_{m1} and g_{m2} in terms of device dimensions,

$$A_v = -\sqrt{\frac{(W/L)_1}{(W/L)_2}} \frac{1}{1+\eta}$$

 This shows that gain is a weak function of bias currents and voltages, i.e., relatively linear input-output characteristic

• From large-signal analysis,
$$\frac{1}{2}\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{1}(V_{in}-V_{TH1})^{2}=\frac{1}{2}\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{2}(V_{DD}-V_{out}-V_{TH2})^{2}$$

$$\sqrt{\left(\frac{W}{L}\right)_{1}}(V_{in}-V_{TH1})=\sqrt{\left(\frac{W}{L}\right)_{2}}(V_{DD}-V_{out}-V_{TH2})$$

- If V_{TH2} does not vary much with V_{out} , input-output characteristic is relatively linear.
- Squaring function of M_1 (from its input voltage to its drain current) and square root function of M_2 (from its drain current to its overdrive) act as inverse functions

$$f^{-1}(f(x)) = x$$

• As I_1 falls, so does overdrive of M_2 so that

$$V_{GS2} \approx V_{TH2}$$
 $V_{out} \approx V_{DD} - V_{TH2}$

- Subthreshold conduction of M_2 eventually brings V_{out} to V_{DD} , but at very low current levels, finite capacitance at output node C_P slows down the change in V_{out} from V_{DD} - V_{TH2} to V_{DD} .
- In high-frequency circuits, V_{out} remains around V_{DD} - V_{TH2} when I_1 falls to small values.

- For $V_{in} < V_{TH1}$, $V_{out} = V_{DD} V_{TH2}$
- When $V_{in} > V_{TH1}$, previous large-signal analysis predicts that V_{out} approximately follows a single line
- As V_{in} exceeds $V_{out} + V_{TH1}$ (to the right of point A), M_1 enters the triode region and the characteristic becomes nonlinear.

CS Stage with Diode-Connected PMOS device

- Diode-connected load can be implemented as a PMOS device, free of body-effect
- Small-signal voltage gain neglecting channel-length modulation

$$A_v = -\sqrt{\frac{\mu_n(W/L)_1}{\mu_p(W/L)_2}}.$$

- Gain is a relatively weak function of device dimensions
- Since $\mu_n \approx 2\mu_p$, high gain requires "strong" input device (narrow) and "weak" load device (wide)
- This limits voltage swings since for $\lambda = 0$, we get

$$\frac{|V_{GS2} - V_{TH2}|}{V_{GS1} - V_{TH1}} = A_v$$

• For diode-connected loads, swing is constrained by both required overdrive voltage and threshold voltage, i.e., for small overdrive, output cannot exceed V_{DD} - $|V_{TH}|$.

CS Stage with Current-Source Load

- Current-source load allows a high load resistance without limiting output swing
- Voltage gain is $A_v = -g_{m1}(r_{O1}||r_{O2})$
- Overdrive of M_2 can be reduced by increasing its width, r_{o2} can be increased by increasing its length
- Output bias voltage is not well-defined
- Intrinsic gain of M_{\star} increases with L and decreases with I_D

$$g_{m1}r_{O1} = \sqrt{2\left(\frac{W}{L}\right)_{1}\mu_{n}C_{ox}I_{D}}\frac{1}{\lambda I_{D}}$$

CS Stage with Active Load

- Input signal is also applied to gate of load device, making it an "active" load
- M_1 and M_2 operate in parallel and enhance the voltage gain
- From small-signal equivalent circuit.

$$-(g_{m1} + g_{m2})V_{in}(r_{O1}||r_{O2}) = V_{out}$$
$$A_v = -(g_{m1} + g_{m2})(r_{O1}||r_{O2})$$

- Same output resistance as CS stage with current-source load, but higher transconductance
- Bias current of M_1 and M_2 is a strong function of PVT

C5 Stage with Active Load: Supply sensitivity

- Variations in V_{DD} or the threshold voltages directly translate to changes in the drain currents
- Supply voltage variations "supply noise" are amplified too
- Voltage gain from V_{DD} to V_{out} can be found to be

$$\frac{V_{out}}{V_{DD}} = \frac{g_{m2}r_{O2} + 1}{r_{O2} + r_{O1}}r_{O1}
= \left(g_{m2} + \frac{1}{r_{O2}}\right)(r_{O1}||r_{O2})$$

CS Stage with Triode Load

- Voltage gain is $A_v = -g_{m1}R_{on2}$, where R_{on2} is the MOS ON resistance given by

$$R_{on2} = \frac{1}{\mu_p C_{ox}(W/L)_2 (V_{DD} - V_b - |V_{THP}|)}$$

- R_{on2} depends on $\mu_p C_{ox}$, V_b and V_{THP} which vary with PVT
- Generating a precise value of V_p is complex, which makes circuit hard to use
- Triode loads consume lesser voltage headroom than copyright diade-connected devices ince of white maxin with prefer the formens