

- Degeneration resistor R_s in series with source terminal makes input device more linear
 - As V_{in} increases, so do I_D and the voltage drop across R_S
 - Part of the change in V_{in} appears across R_s rather than gate-source overdrive, making variation in I_D smoother
- Gain is now a weaker function of g_m

- Nonlinearity of circuit is due to nonlinear dependence of I_D upon V_{in}
- Equivalent transconductance G_m of the circuit can be defied as $G_m = \partial I_D/\partial V_{in}$

$$V_{out} = V_{DD} - I_D R_D$$

$$\partial V_{out} / \partial V_{in} = -(\partial I_D / \partial V_{in}) R_D$$

$$I_D = f(V_{GS})$$

$$G_m = \frac{\partial I_D}{\partial V_{in}}$$

$$= \frac{\partial f}{\partial V_{GS}} \frac{\partial V_{GS}}{\partial V_{in}}.$$

- g_m is the transconductance of M_1
- Small-signal voltage gain A_v is then given by

$$A_v = -G_m R_D$$
$$= \frac{-g_m R_D}{1 + g_m R_S}$$

• Same result for G_m is obtained from small-signal equivalent circuit, by noting that

$$V_{in} = V_1 + I_D R_S$$
$$I_D = g_m V_1$$

- As R_s increases, G_m becomes a weaker function of g_m and hence I_D
- ullet For $R_S\gg 1/g_m$, $G_m\approx 1/R_S$, i.e., $\Delta I_Dpprox \Delta V_{in}/R_S$
- Most of the change in V_{in} across R_s and drain current becomes a "linearized" function of input voltage

• Including body-effect and channel-length modulation, G_m is found from modified small-signal equivalent circuit

$$\begin{split} V_{in} &= V_1 + I_{out} R_S \\ I_{out} &= g_m V_1 - g_{mb} V_X - \frac{I_{out} R_S}{r_O} \\ &= g_m (V_{in} - I_{out} R_S) + g_{mb} (-I_{out} R_S) - \frac{I_{out} R_S}{r_O} \\ G_m &= \frac{I_{out}}{V_{in}} \\ &= \frac{g_m r_O}{R_S + [1 + (g_m + g_{mb}) R_S] r_O} \end{split}$$

Large-signal behavior

• I_D and g_m vary with V_{in} as derived in calculations in Chapter 2

 At low current levels, turn-on behavior is similar to when R_s=0 since

$$\mathbf{a}^{1}/g_{m}\gg R_{S}$$

• As over $g_m \approx g_m$ of g_m increase, effect of R_s becomes more significant

Small-signal derived previously can be written as

$$A_v = -\frac{R_D}{\frac{1}{g_m} + R_S}$$

- Denominator = Series combination of inverse transconductance + explicit resistance seen from source to ground
- Called "resistance seen in the source path"
- Magnitude of gain = Resistance seen at the drain/ Total resistance seen in the source path

Degeneration causes increase in output resistance

• Ignoring R_D and including body effect in small-signal equivalent model,

$$V_1 = -I_X R_S$$
 $I_X - (g_m + g_{mb})V_1 = I_X + (g_m + g_{mb})R_S I_X$
 $R_{out} = [1 + (g_m + g_{mb})R_S]r_O + R_S$
 $= [1 + (g_m + g_{mb})r_O]R_S + r_O.$

- r_o is boosted by a factor of $\{1 + (g_m + g_{mb})R_s\}$ and then added to R_s
- Alternatively, R_s is boosted by a factor of $\{1 + (g_m + g_{mb})r_o\}$ and then added to r_o

• Compare $R_s = 0$ with $R_s > 0$

- If R_s = 0, $g_m V_1 = g_{mb} V_{bs} = 0$ and $I_X = V_X/r_O$
- If R_s > 0, $I_X R_S$ > 0 and V_1 < 0, obtaining negative $g_m V_1$ and $g_{mb} V_{bs}$
- Thus, current supplied by V_X is less than $V_X | r_o$ and hence output impedance is greater than r_o

<u>Intuitive understanding of increased output impedance</u>

•Apply voltage change ΔV at output and measure resulting change ΔI in output current, which is also the change in current through R_s

- •Resistance seen looking into the source of M_1 is 11 $(g_m + g_{mb})$

•Voltage change across D is
$$\Delta V_{RS} = \Delta V \frac{\frac{1}{g_m + g_{mb}} ||R_S|}{\frac{1}{g_m + g_{mb}} ||R_S + r_O|}$$

Intuitive understanding of increased output impedance

•Change in current across R_s is

$$\Delta I = \frac{\Delta V_{RS}}{R_S}$$

$$= \Delta V \frac{1}{[1 + (g_m + g_{mb})]R_S r_O + R_S},$$

•Output resistal
$$\frac{\Delta V}{\Delta I} = [1 + (g_m + g_{mb})R_S]r_O + R_S$$

- To compute gain in the general case including body effect and channel-length modulation, consider above smallsignal model
- From KVL at input,

$$V_1 = V_{in} + V_{out}R_S/R_D$$

• KCL at output
$$give V_{out}$$

$$I_{ro} = -\frac{V_{out}}{R_D} - (g_m V_1 + g_{mb} V_{bs})$$

$$= -\frac{V_{out}}{R_D} - \left[g_m \left(V_{in} + V_{out} \frac{R_S}{R_D}\right) + g_{mb} V_{out} \frac{R_S}{R_D}\right]$$

• Since voltage drops across r_o and R_s must add up to V_{out} ,

$$V_{out} = I_{ro}r_O - \frac{V_{out}}{R_D}R_S$$

$$= -\frac{V_{out}}{R_D}r_O - \left[g_m\left(V_{in} + V_{out}\frac{R_S}{R_D}\right) + g_{mb}V_{out}\frac{R_S}{R_D}\right]r_O - V_{out}\frac{R_S}{R_D}$$

Voltage gain is therefore

$$\frac{V_{out}}{V_{in}} = \frac{-g_m r_O R_D}{R_D + R_S + r_O + (g_m + g_{mb}) R_S r_O}$$

Lemma

- In a linear circuit, the voltage gain is equal to $-G_mR_{out}$
 - $-G_m$ denotes the transconductance of the circuit when output is shorted to ground
 - $-R_{out}$ represents the output resistance of the circuit when the input voltage is set to zero
- Norton equivalent of a linear circuit

