

- Source follower (also called "common-drain" stage)
 senses the input at the gate and drives load at the source
- It presents a high input impedance, allowing source potential to "follow" the gate voltage
- Acts as a voltage buffer

- For $V_{in} < V_{TH}$, M_1 is off and $V_{out} = 0$
- As V_{in} exceeds V_{TH} , M_1 turns on in saturation since $V_{DS} = V_{DD}$ and $V_{GS} V_{TH} \approx 0$ and I_{D1} flows through R_S
- As V_{in} increases further, V_{out} follows the input with a difference (level shift) equal to V_{GS}
- Input-output characteristic neglecting channel-length modulation can be expressed as

$$\frac{1}{2}\mu_nC_{ox}\frac{W}{L}(V_{in}-V_{TH}-V_{out})^2R_S=V_{out}$$

- For $V_{in} < V_{TH}$, M_1 is off and $V_{out} = 0$
- Differentiating both sides of large-signal equation for V_{out} , $\frac{1}{2}\mu_n C_{ox} \frac{W}{L} 2(V_{in} V_{TH} V_{out}) \left(1 \frac{\partial V_{TH}}{\partial V_{in}} \frac{\partial V_{out}}{\partial V_{in}}\right) R_S = \frac{\partial V_{out}}{\partial V_{in}}$

$$\frac{1}{2}\mu_n C_{ox} \frac{W}{L} 2(V_{in} - V_{TH} - V_{out}) \left(1 - \frac{\partial V_{TH}}{\partial V_{in}} - \frac{\partial V_{out}}{\partial V_{in}}\right) R_S = \frac{\partial V_{out}}{\partial V_{in}}$$

Since

$$\partial V_{TH}/\partial V_{in} = (\partial V_{TH}/\partial V_{SB})(\partial V_{SB}/\partial V_{in}) = \eta \partial V_{out}/\partial V_{in}$$

• Therefore,
$$\frac{\partial V_{out}}{\partial V_{in}} = \frac{\mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH} - V_{out}) R_S}{1 + \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH} - V_{out}) R_S (1 + \eta)}$$

$$g_m = \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH} - V_{out})$$

Therefore,

$$A_v = \frac{g_m R_S}{1 + (g_m + g_{mb})R_S}$$

 Small-signal gain can be obtained more easily using small-signal equivalent model

$$V_{in} - V_1 = V_{out}, V_{bs} = -V_{out}$$

• We have,

$$g_m V_1 - g_{mb} V_{out} = V_{out} / R_S$$

• KCL:
$$V_{out}/V_{in} = g_m R_S/[1 + (g_m + g_{mb})R_S]$$

- Voltage gain begins from zero for $V_{in} \approx V_{TH}$ ($g_m \approx 0$), and monotonically increases
- As drain current and g_m increase, A_v approaches $g_m/(g_m+g_{mb})=1/(1+\eta)$
- Since η itself slowly decreases with V_{out} , A_{v} would eventually become equal to unity, but for typical allowable source-bulk voltages, η remains greater than roughly than 0.2
- Even if $R_s = \infty$, voltage gain of a source follower is not equal to one

- Drain current of M_1 depends heavily of input dc level
- Even if V_{TH} is relatively constant, the increase in V_{GS} means that V_{out} (= V_{in} - V_{GS}) does not follow V_{in} faithfully, incurring nonlinearity
- To alleviate this issue, the resistor can be replaced by a constant current source
- Current source is itself is implemented as an NMOS transistor operating in the saturation region

Calculation of output impedance

- From small-signal equivalent circuit, $V_X = -V_{bs}$
- It follows that $I_X g_m V_X g_{mb} V_X = 0$ and $R_{out} = \frac{1}{g_m + g_{mb}}$
- Body effect decreases output resistance of source followers
- If V_X decreases by ΔV so the drain current increases
 - w/o body effect, V_{GS} increases by ΔV
 - with body effect, V_{TH} decreases as well, thus $(V_{GS}-V_{TH})^2$ and I_{D1} increase by a greater amount, hence lower

- Magnitude of the current source $g_{mb}V_{bs} = g_{mb}V_X$ is linearly proportional to the voltage across it, can be modelled by a resistor equal to $1/g_{mb}$ (valid only for source followers)
- This appears in parallel with the output, decreasing the overall output resistance
- Since without $1|g_{mb}$, the output resistance is $1|g_m$, we conclude that

$$R_{out} = \frac{1}{g_m} \| \frac{1}{g_{mb}} \|$$
$$= \frac{1}{g_m + g_{mb}}$$

- Modelling effect of g_{mb} by a resistor helps explain lower than unity gain for $R_s = \infty$
- From the Thevenin equivalent circuit

$$A_v = rac{\dfrac{1}{g_{mb}}}{\dfrac{1}{g_m} + \dfrac{1}{g_{mb}}}$$

$$= rac{g_m}{g_m + g_{mb}}.$$

 Small-signal equivalent circuit with a finite load resistance and channel-length modulation is shown

• $1lg_{mb}$, r_{O1} , r_{O2} and R_L are in parallel, therefore,

$$R_{eq} = (1/g_{mb})||r_{O1}||r_{O2}||R_L$$

It follows that

$$A_v = \frac{R_{eq}}{R_{eq} + \frac{1}{g_m}}.$$

Issues with Source Follower

- Source followers exhibit high input impedance and moderate output impedance, but at the cost of
 - Nonlinearity
 - Voltage headroom limitation
- Even when biased by ideal current source, there is input-output nonlinearity due to nonlinear dependence of V_{TH} on the source potential
- In submicron technologies, r_o changes substantially with $V_{\rm DS}$ and introduces additional variation in small-signal gain

Issues with Source Follower

- Nonlinearity can be eliminated if the bulk is tied to the source
 - Possible only for PFETs since all NFETs usually share the same substrate
- PMOS source follower employing two separate n-wells can eliminate the body effect of M_1
- Lower mobility of PFETs yields a higher output impedance than that available in the NMOS counterpart

Issues with Source Follower

• Source followers also shift the dc level of the signal by V_{GS} , thereby consuming voltage headroom

- In the cascade of CS stage and source follower shown above,
 - w/o source follower, minimum allowable value of V_X would be V_{GS1} - V_{TH1} (for M_1 to remain in saturation)
 - with source follower, V_X must be greater than V_{GS2} + $(V_{GS3}-V_{TH3})$ so that M_3 is saturated
- For comparable overdrive voltages in M_1 and M_3 ,

Comparison of C5 stage and Source Follower

- Comparing the gain of source followers and CS stage with a low load impedance
 - E.g., driving an external 50- Ω termination in a high-frequency environment
- When load is driven by a source follower, overall voltage gain is

$$\frac{V_{out}}{V_{in}}|_{SF} \approx \frac{R_L}{R_L + 1/g_{m1}}$$

$$\approx \frac{g_{m1}R_L}{1 + g_{m1}R_L}.$$

Comparison of C5 stage and Source Follower

 Load can be included as part of a common-source stage, providing a gain of

$$\frac{V_{out}}{V_{in}}|_{CS} \approx -g_{m1}R_L$$

- Key difference between the two topologies is the achievable voltage gain for a given bias current
- For example, if $1/g_{m1} \approx R_L$, source follower exhibits a gain of at most 0.5 whereas the common-source stage provides a gain close to unity
- Thus, source followers are not efficient drivers