- A common-gate (CG) stage senses the input at the source and produces the output at the drain
- Gate is biased to establish proper operating conditions

- Bias current of M_1 flows through the input signal source
- Alternatively, M_1 can be biased by a constant current source, with the signal capacitively coupled to the circuit

Common-Gate Stage: Large-signal behavior

- Assume V_{in} decreases from a large positive value and that $\lambda=0$
- For $V_{in} \ge V_b$ - V_{TH} , M_1 is off and $V_{out} = V_{DD}$ For lower values of V_{in} , if M_1 is in

saturation
$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_b - V_{in} - V_{TH})^2.$$

• As V_{in} decreases further, so does V_{out} driving M_1 into the triode region if

$$V_{DD} - \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_b - V_{in} - V_{TH})^2 R_D = V_b - V_{TH}$$

• In the region where M_1 is saturated, we can express the output voltage as

$$V_{out} = V_{DD} - \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_b - V_{in} - V_{TH})^2 R_D$$

Input-output characteristic

- For M_1 in saturation, $V_{out} = V_{DD} \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_b V_{in} V_{TH})^2 R_D$
- Small-signal gain can thus be obtained

$$\frac{\partial V_{out}}{\partial V_{in}} = -\mu_n C_{ox} \frac{W}{L} (V_b - V_{in} - V_{TH}) \left(-1 - \frac{\partial V_{TH}}{\partial V_{in}} \right) R_D.$$

• Since $\frac{\partial V_{TH}/\partial V_{in}}{\partial V_{out}}=\frac{\partial V_{TH}/\partial V_{SB}}{W}=\eta$, we have

$$\frac{\partial V_{out}}{\partial V_{in}} = \mu_n C_{ox} \frac{W}{L} R_D (V_b - V_{in} - V_{TH}) (1 + \eta)$$
$$= g_m (1 + \eta) R_D.$$

• Gain of the common-gate (CG) stage is positive

$$\frac{\partial V_{out}}{\partial V_{in}} = \mu_n C_{ox} \frac{W}{L} R_D (V_b - V_{in} - V_{TH}) (1 + \eta)$$
$$= g_m (1 + \eta) R_D.$$

- Body effect increases the effective transconductance of the stage
- For a given bias current and supply voltage (i.e., a given power budget), voltage gain of the CG stage can be maximized by
 - Increasing gm by widening the input device, eventually reaching subthreshold operation $[g_m = I_D I \zeta V_T]$
 - Increasing R_D and inevitably, the dc drop across it
- The minimum allowable value of V_{out} is V_{GS} - V_{TH} + V_{I1} , where V_{I1} denotes the minimum voltage required by I_1

 Consider output impedance of transistor and impedance of the signal source

• In small-signal equivalent circuit, since current flowing $R_{\rm s}$

is
$$-V_{out}/R_D$$
, $V_1 - \frac{V_{out}}{R_D}R_S + V_{in} = 0$ (1)

$$-V_{out}/R_D - g_m V_1 - g_{mb} V_1$$

• Moreove
$$r_O\left(\frac{-V_{out}}{R_D} - g_m V_1 - g_{mb} V_1\right) - \frac{V_{out}}{R_D} R_S + V_{in} = V_{out}$$
 (2)

• Substituting V_1 from (1) in (2),

$$r_O\left[\frac{-V_{out}}{R_D} - (g_m + g_{mb})\left(V_{out}\frac{R_S}{R_D} - V_{in}\right)\right] - \frac{V_{out}R_S}{R_D} + V_{in} = V_{out}$$

• Therefore,

$$\frac{V_{out}}{V_{in}} = \frac{(g_m + g_{mb})r_O + 1}{r_O + (g_m + g_{mb})r_O R_S + R_S + R_D} R_D$$

 The voltage gain expression is similar to that of a degenerated CS stage

• From the small-signal equivalent circuit for finding input impedance, we have

$$V_1 = -V_X$$

- The current through r_o is equal to $I_X + g_m V_1 + g_{mb} V_1 = I_X (g_m + g_{mb}) V_X$
- Voltages across r_o and R_D can be added and equated to

$$R_D I_X + r_O [I_X - (g_m + g_{mb})V_X] = V_X$$

- The drain impedance is divided by $(g_m + g_{mb})r_Q$ when seen at the source
- Important in short-channel devices because of their Copyright © 2017 McGaW-Hill Education. Copyright © 2017 McGaW-Hill Education.

• Suppose $R_D = 0$, then

$$\frac{V_X}{I_X} = \frac{r_O}{1 + (g_m + g_{mb})r_O} \\
= \frac{1}{\frac{1}{r_O} + g_m + g_{mb}},$$

• This is the impedance seen at the source of a source follower, a predictable result since with $R_D = 0$ the circuit configuration is the same as a source follower

- If R_D is replaced with an ideal current source, earlier result predicts that input impedance approaches infinity
- Total current through the transistor is fixed and is equal to I_1
- Therefore, a change in the source potential cannot change the device current, and hence $I_x = 0$
- The input impedance of a CG stage is relatively low *only* if the load impedance connected to the drain is small

• In a CG stage with a current source load, substituting $R_D = \infty$ in the voltage gain equation, we get

$$A_v = (g_m + g_{mb})r_O + 1$$

- Gain does not depend on R_s
- From the foregoing discussion, if $R_D \to \infty$, so does the impedance seen at the source of M_1 , and the small-signal voltage at node X becomes equal to V_{in}

- In a degenerated CS stage, we loosely say that a transistor transforms its source resistance *up*
- In a CG stage, the transistor transforms its drain resistance down
- The MOS transistor can thus be viewed as an resistance transformer

• From the above small-signal equivalent circuit, we can find output impedance as

$$R_{out} = \{[1 + (g_m + g_{mb})r_O]R_S + r_O\}||R_D$$

Result is similar to that obtained for a degenerated CS stage

 Input signal of a common-gate stage may be a current rather than a voltage as shown below

- Input current source exhibits output impedance of R_P
- To find the "gain" $V_{out}II_{in}$, replace I_{in} and R_P with a Thevenin equivalent and use derived result to write

Thevenin equivalent and use derived result to write
$$\frac{V_{out}}{I_{in}} = \frac{(g_m + g_{mb})r_O + 1}{r_O + (g_m + g_{mb})r_OR_P + R_P + R_D}R_DR_P$$

$$R_{out} = \{ [1 + (g_m + g_{mb})r_O]R_P + r_O \} || R_D$$

Copyright Copyri