

Soil and water Conservation Engineering

Presented By-

Shubham Kumar Sarangi

Asst Professor

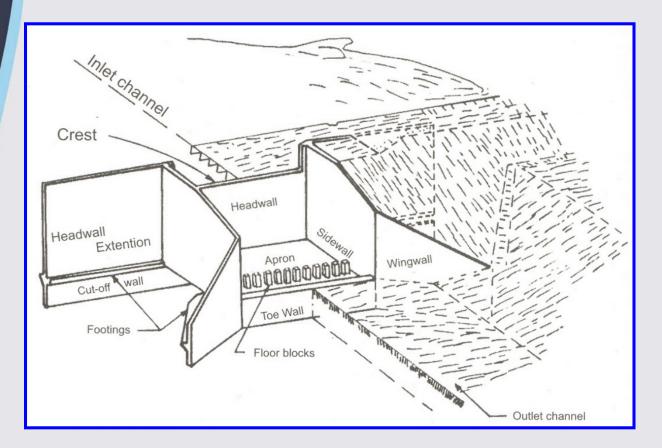
DEPARTMENT OF AGRICULTURAL ENGINEERING, SOABE CENTURION UNIVERSITY OF TECHNOLOGY AND MANAGEMENT PARALAKHEMUNDI, ODISHA

PERMANENT GULLY CONTROL STRUCTURES

Main Functions:

- To halt the advancement of gully head at overfall.
- To control and stabilize the gully grade.
- To convey the water safely from grassed waterways into drainage ditches very smoothly.
- Where the volume and peak rate of runoff to be handled is very large and can not be controlled by vegetative measures and simple field structures.
- Where high degree of safety against the loss of life and property is warranted.

Site to be protected is inaccessible and regular maintenance of structure is not possible.


General requirements for pgcs:

- They should be constructed with permanent materials.
- They should have adequate capacity to handle the peak rate of runoff.
- They should help in stabilizing the gully and store water wherever necessary.

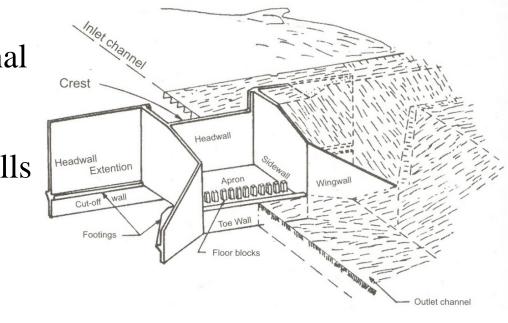
Permanent Structures

1. DROP SPILLWAY

Advantages

- Stability: Drop spillway is very stable and likelihood of serious structural damage is less than other types of structures.
- 2. Non-clogging of weir: The rectangular weir is less susceptible to clogging by debris than the openings of other structures of comparable discharge capacity.
- 3. Low maintenance cost.
- 4. Ease and economy of construction: They are relatively easy to construct.

Empowering Communities...


Disadvantages

- 1. It is more costly than some other types of structures where the required discharge capacity is less than 3 cumecs and the total head or drop is greater than 3m.
- It is not a favourable structure where temporary spillway storage is needed to obtain a large reduction in discharge.
- A stable grade below the structure is essential. 3.

Structural Parts & Functions

- 1. Head wall and head wall extension
- 2. Side walls
- 3. Wing walls
- 4. Apron
- 5. Longitudinal
- 6. End sills
- 7. Cut-off walls

Structural parts

Head wall:

- Acts as a front wall against runoff flow in the drop spillway.
- Constructed across the gully width.
- Suitable notch size (rectangular) is made at the top in the head wall for easy water conveyance over it.
- Size of notch is made sufficient to allow water very safely.

Head wall extension:

- It is the extended portion of the head wall into the gully sides.
- It provides structural strength against sliding of the structure.
- Check the flow of water from the sides of the drop spillway.

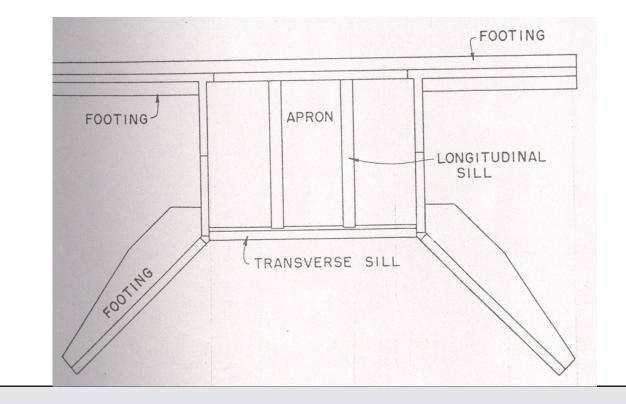
Side wall

- Constructed in the side along the gully wall.
- These two walls determines the apron section.
- Side walls prevent splashing of water over the gully banks and confine the water flow within the apron.

Wing wall:

- Constructed at the rear end of the structure with some inclination (45^{0} from vertical).
- These walls are extended upto the gully sides, which prevents the flow backward into the space left between gully wall and side wall of the structure.
- Vertical walls known as toe walls are built around the apron to prevent under cutting.

Empowering Communities...


<u>Apron:</u>

- Main component that receives the gully flow with high velocity and makes the flow causing negligible soil erosion/no erosion from the channel d/s side.
- It contain several blocks of some height making apron surface rough and thus dissipates max. K.E. of falling water by creating hydraulic jump.

Longitudinal wall:

- Constructed in length wise parallel to the side wall in the apron section.
- These sills also makes the apron stable.

End sill or transverse sill:

- It is the elevated portion of the rear end of the apron.
- It obstructs the water going directly into the channel below.

Cut off wall:

Constructed to provide structural strength against sliding.