Lecture-4 **Physical Principles of Remote Sensing: Electromagnetic Radiation** Mr.Prafulla Kumar Panda Centurio **Centurion University of Technology and** Management Contact:9438269572 **<u>E-mail</u>**: prafullapanda@cutm.ac.in

Radiation Principles

Radiation terminology

- (i). Radiant Flux
 - ≻Radiant energy/sec(Watts)

(ii). Irradiance or Spectral radiance

Amount of radiant energy incident on horizontal surface of unit area per unit time

Radiant Energy From Sun

- Radiant energy as per as **Stefan–Boltzmann** Law
- states that the total <u>energy</u> radiated per unit surface <u>area</u> of a <u>black</u> <u>body</u> per unit <u>time</u> (also known as the black-body <u>irradiance</u> or <u>emissive power</u>)

 $Rs = Es \delta \ T^4$

- Rs= Solar Radiation
- Es=Emissivity of radiating surface
- $\delta = \text{Stefan}-\text{Boltzmann's constant}(5.7 \times 10^{-8} \text{W m}^{-2} \text{K}^{-4})$
- T= absolute temperature of radiation over surface

Blackbody Radiation

- All objects whose temperature are above absolute zero Kelvin (-273.15°C) emit radiation at all wavelengths
- A "blackbody" is one that is a perfect absorber and perfect emitter (hypothetical, though Earth and Sun are close)
- Intensity and spectral composition of emitted radiation depends upon

Matter of the objectIts temperature

P.K.PANDA

What do they mean?

- Planck equation gives the radiance of an object at a given temperature at any wavelength
- Stefan-Boltzmann equation describes the total amount of energy being radiated
- Wien's equation describes the wavelength of maximum radiation

Planck Equation..... continued

- Planck's equation describes how heat energy is transformed into radiant energy
- According to Planck's law, an object will emit radiation in all wavelengths but not equally
- This is the basic law for radiation measurements in all parts of the EM spectrum

Examples using Wien's Displacement Equation

 $T_{sun} = 5800K$ Peak of Sun's radiation = $\lambda_{max} (\mu m) = \frac{2898}{T}$ 2898mmK / 5800K = 0.5 mm

T_{earth} = 288K Peak of Earth's radiation = 2898mmK / 288K = 10 mm

Sun's Radiant Energy Distribution

Name of Spectral Region	Wavelength Range, μm	Percent of Total Energy
Gamma and X-rays	< 0.01	Negligible
Far Ultraviolet	0.01 - 0.2	0.02
Middle Ultraviolet	0.2 - 0.3	1.95
Near Ultraviolet	0.3 - 0.4	5.32
Visible	0.4 - 0.7	43.5
Near Infrared	0.7 - 1.5	36.8
Middle Infrared	1.5 - 5.6	12.0
Thermal Infrared	5.6 - 1000	0.41
Microwave	> 1000	Negligible
Radio Waves	> 1000	Negligible

P.K.PANDA

• For terrestrial remote sensing, the most important source is the sun

Reflected solar energy is used 0.3 - 2.5 mm

• The Earth is also an energy source >6 mm for self-emitted energy

