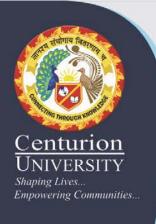
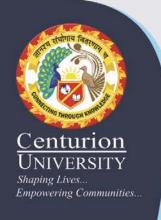

Soil and water Conservation Engineering

Presented By-

Shubham Kumar Sarangi

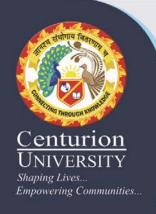

Asst Professor

DEPARTMENT OF AGRICULTURAL ENGINEERING, SOABE CENTURION UNIVERSITY OF TECHNOLOGY AND MANAGEMENT PARALAKHEMUNDI, ODISHA



Process of gully formation depends on:

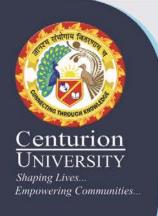
- Resistance offered by top soil & underlying hard layer.
- Rainfall characteristics that favors to increase volume of runoff over the land surface.
- Vegetation cover on the soil surface.
- Topography of the area including land slope.


- Creating land surface without vegetation.
- Faulty tillage practices.
- Overgrazing
- Absence of vegetative cover
- Not smoothening of rills, channels or depressions present on the ground surface.
- Improper construction of water channels, roads, rail lines, cattle trails etc.

Process of gully development

After initiation, gully development is accelerated by,

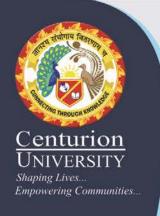
- Erosion of the bed & sides (scouring of soil by flowing water plus debris & abrasive materials carried by it).
- Sliding and mass movement of the sides (due to seepage, alternate freezing and thawing and under cutting of flow).
- Water -fall erosion at the gully head (resulting cutting of gully bank).


Stages of gully development

1. Stage 1 (Formation Stage)

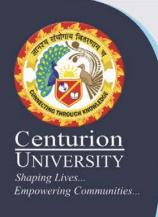
2. Stage 2 (Development Stage)

3. Stage 3 (Healing Stage)


4. Stage 4 (Stabilization Stage)

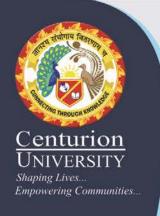
Formation stage

Stage 1 (Formation Stage)/ Initiation Stage


- Initiation of gully erosion
- Channel erosion
- Deepening of gully bed
- Depends on top soil & other factors
- This stage proceeds slowly if top soil is resistant

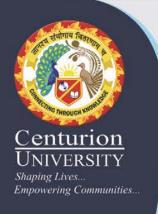
Development stage

Stage 2 (Development Stage)


- Major formation of the gully and erosion takes place
- Upstream movement of the gully head
- Enlargement of gully in width and depth
- Gully banks are eroded to maximum and width becomes maximum
- Gully cuts to C-horizon and parent material is removed rapidly

Healing stage

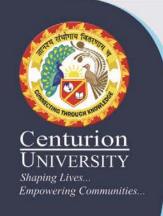
Stage 3 (Healing Stage)


- Local vegetation starts growing in the gully and get stabilized
- No significant erosion in any form from gully section
- Healing process starts

Stabilisation stage

Stage 4 (Stabilisation Stage)

- Last stage of gully development
- Gully gets fully stabilised
- Gully reaches a stable gradient
- Gully walls attain stable slope
- Sufficient vegetation cover develops over the gully surface to anchor the soil and permit development of new top soil
- No further development of gully unless healing process is disturbed


Classification of gully

Based on

Shape of the gully

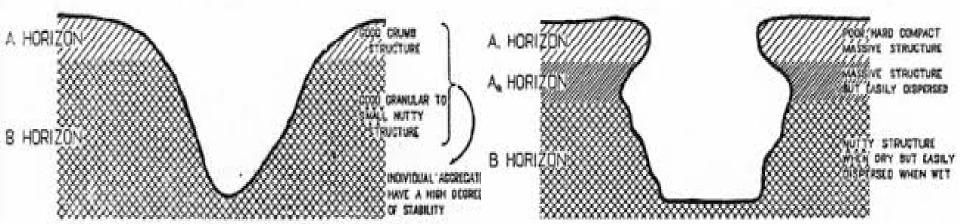
State of the gully

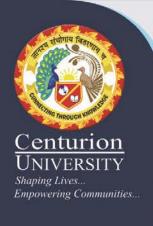
Dimension of the gully

Based on shape

Based on Shape of the gully

U-shaped

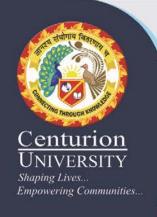

V-shaped


V - SHAPED GULLY

CHARACTERISTIC OF THE DOOKIE AND CASHEL SERIES

U-SHAPED GULLY

CHARACTERISTIC OF THE GOWANGARDIE AND CANIAMBD SERIES



U-shaped

- Found in alluvial plains where surface and sub-surface soil are easily erodible
- Runoff flow undermines and gully banks collapse
- Formation of vertical side walls in U shape

V-shaped

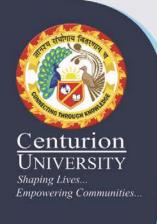
- Where sub-soil are tough to resist the rapid cutting of soil by runoff flow
- Resistance to erosion increases with depth
- Common in hilly regions accompanied with steep slope

Based on state

Based on State of the gully

Active gullies :

Whose dimensions are enlarged with time. Size enlargement is based on soil characteristics, land use and volume of runoff passing through the gully. Found in plain areas.


➡Inactive gullies :

Whose dimensions are constant with time. Found in rocky areas.

Based on dimension

UNIVERSITY			
S. No.	Symbol	Description	Specification
1.	G_1	Very small gullies	Upto 3 meter deep, bed width not greater than 18 m, side slope varies.
2.	G_2	Small gullies	Upto 3 meter deep, bed width greater than 18 m, side slope varies.
3. 200	G_3	Medium gullies	Depth ranges between 3 to 9m, bed width not less than 18m, sides are uniformly sloping between 8% to 15%.
4. ymamin	G_4	Deep and Narrow gullies	(a) 3 to 9 m deep, bed width less than 18m, side slope varies.
amout gr	Perelopes a Property over Armanu and	THE LEADER SECRET SEE WHITE	(b) Depth greater than 9 m, bed width varies, side slope varies, mostly steep or vertical.

Small Gully:

- Can easily be crossed by farm implements
- Removed by ploughing and smoothing operations
- By stabilizing the vegetation

Medium Gully:

- Cannot be easily crossed by farm implements
- Can be controlled by terracing and ploughing operations
- Sides are stabilised by creating vegetation on them

Large Gully:

- Cannot be reclaimed
- Tree planting is done as an effective method