

Soil-Water Conservation Engineering and Structures

Presented By-

Shubham Kumar Sarangi

Asst Professor

DEPARTMENT OF AGRICULTURAL ENGINEERING, SOABE CENTURION UNIVERSITY OF TECHNOLOGY AND MANAGEMENT PARALAKHEMUNDI, ODISHA

EROSIVITY

Potential ability of rain to cause erosion

Depends on physical characteristics of rainfall

Energy required to break soil aggregates, splash them and carry them with runoff

FACTORS AFFECTING EROSIVITY

- **1. Rainfall intensity**
- 2. Drop size distribution
- 3. Terminal velocity
- 4. Wind velocity, and
- 5. Direction of slope

Rainfall Intensity

The rainfall intensity acts as the force, by which an individual water droplet strikes over the soil surface. K.E and intensity of rainfall are related as

 $E_{K} = 210.3 + 89 \log_{10} I$ (Wischmeir & Smith, 1958)

Where,

Eк = Kinetic energy of rainfall (metric tonnes per ha per cm of rain)

I= Rainfall intensity (cm/hr)

Terminal Velocity

It is a function of drop size and counted in terms of K.E of respective raindrops at the time of their impact over the soil surface.

 $E_{k} = (I.V^{2})/2$

Where, E_k= Rainfall energy (watt / m²) I = Intensity of rainfall (mm/s) V = Terminal velocity before impact (m/sec)

ERODIBILITY

UNIVERSITY Shaping Lives... Empowering Communities...

enturion

- Vulnerability or susceptibility of the soil to erosion
- Depends on physical characteristics of soil, texture, aggregate stability, shear strength, infiltration capacity, organic matter, land and crop management practices

Bouyouces (1935)- erodibility depends on mechanical composition and proportional to % Sand + % Silt

%clay

ERODIBILITY

Range of particle's diameter

Clay - below 0.002mm

Sand - from 0.06 to 2 mm

Silt - from 0.002 to 0.006mm